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Abstract—A brain-computer interface (BCI) can’t be effec-
tively used since electroencephalography (EEG) varies between
and within subjects. BCI systems require calibration steps to ad-
just the model to subject-specific data. It is widely acknowledged
that this is a major obstacle to the development of BCIs. To
address this issue, previous studies have trained a generalized
model by removing the subjects’ information. In contrast, in this
work, we introduce a style information encoder as an auxiliary
task that classifies various source domains and recognizes open-
set domains. Open-set recognition method was used as an
auxiliary task to learn subject-related style information from the
source subjects, while at the same time helping the shared feature
extractor map features in an unseen target. This paper compares
various OSR methods within an open-set subject recognition
(OSSR) framework. As a result of our experiments, we found that
the OSSR auxiliary network that encodes domain information
improves generalization performance.

Keywords—Brain–computer interface; electroencephalography;
motor imagery; domain generalization; open-set recognition

I. INTRODUCTION

The brain-computer interface (BCI) interprets the intention
of the user to communicate with external devices by ana-
lyzing brain signals [1]–[3]. Among the various methods for
measuring brain signals [4]–[7], a well-established and widely
used brain signal is electroencephalography (EEG), which is
non-invasive and has a high temporal resolution [8], [9]. The
following paradigms are commonly used for EEG-based BCI:
motor imagery (MI) [10]–[13], event-related potential (ERP)
[14]–[17], and steady-state visual potential (SSVEP) [18].

It is challenging to analyze EEGs because they vary over
time and between subjects due to psychological or physiolog-
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ical changes. A disadvantage of this intra-subject variability is
that it requires subject-specific calibration each time a new
user uses the BCI [19]. In addition to collecting subject-
specific data and tuning the model, calibration takes approxi-
mately 20-30 minutes [20]–[22]. BCI requires a reduction or
elimination of this calibration procedure for practical applica-
tion.

With the rise of deep learning, from a domain shift perspec-
tive, many previous studies have proposed transfer learning-
based approaches [23]–[26]. In this context, the problem of
training generalized BCI models for an unknown subject,
known as subject-independent BCI, falls under the domain
generalization (DG) problem.

Previous subject-independent studies for DG purposes, ei-
ther explicitly or implicitly, have been proposed in the direc-
tion of eliminating or ignoring subject (domain) information.
It is possible, however, that in a transfer learning process, data
from other subjects may have negative effects. In light of this,
it may be beneficial to learn subject-specific features simul-
taneously, i.e., to give the network the ability to distinguish
which individuals a sample belongs to.

In [27], this issue was addressed by jointly training an
auxiliary network that performs an open-set recognition (OSR)
task to learn subject-specific style features and to impart
invariance between instances of the same subject. OSR aims to
provide a system capable of identifying known and unknown
classes for real-world scenarios in which unknown classes
might be encountered. The main objective is to lower both
the closed-set classification risk associated with labeled known
data as well as the open space risk associated with unknown
data at the same time [28]. Despite the fact that existing
closed-set methods (i.e. softmax) are good at distinguishing
classes, their ability to distinguish between known and un-
known classes is limited. Therefore, several methods [29],
[30] employ prototype learning as a means of forcing training
features to resemble the corresponding prototypes, making the
distinction between known and unknown easier.

In this study, we validated the effectiveness of the OSR
task for learning subject-specific style features in a prototype-
based domain generalization framework based on [27]. Various
OSR methods, which we refer to as open-set subject recogni-978-1-6654-6444-4/23/$31.00 ©2023 IEEE
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tion (OSSR), were compared against various combinations of
subject pools.

II. METHODS

OSSR task utilizes the subject labels to impose cross-
instance style (subject-specific information) invariance and
to learn subject discriminative features, rather than remove
user information. A basic framework configuration consists
of the following. Style encoder and semantic encoder follow
convolutional neural network (CNN). CNN is employed to
extract common features between the encoders. This style
encoder serves as a tool for supporting the classification of
subjects by enabling the feature extractor to recognize them.
Using the OSR method as an auxiliary task to classify subjects
reduces the open space risk of potentially unknown subjects
and trains a more generalized model. We also use OSR
methods to classify tasks based on semantic features that are
derived from the semantic encoder. An overview of the OSSR
framework is shown in Fig. 1. It should be noted that the OSSR
framework’s goal is not to classify the subjects accurately, but
rather to use knowledge from the subjects in order to assist in
task classification.

A. Prototype Learning for EEG Decoding

In this section, we describe the prototype learning methods
we used in our experiments. The prototype learning used in our
experiments was originally proposed for open-world problems
and open-set recognition. In this study, we compare various
combinations of OSSR frameworks using the convolutional
prototype learning (CPL)-based OSR [29] used in [27] and
the following prototype learning-based OSR methodologies re-
ciprocal points learning (RPL) [31] and adversarial reciprocal
points learning (ARPL) [32].

A prototype is an average or representative example of each
class that expresses the characteristics of the entire instance
of each class. In contrast to traditional CNNs, prototype
learning does not use a softmax layer but instead learns
prototypes based on a data set. Here, prototypes are learnable
representations formed by one or more latent features. The
following sections provide a detailed description of the three
methodologies described above.

1) Generalized Convolutional Prototype Learning: Yang et
al. [29] proposed the Generalized Convolutional Prototype
Learning (GCPL). In GCPL prototypes are trained in con-
junction with a feature extractor and instances are classified
according to the most similar prototype. Additionally, a pro-
totype loss (PL) is proposed as a regularization for enhancing
the intra-class compactness of the representation.

In [27], they used hybrid loss with distance-based cross-
entropy loss (DCE) loss and PL, just like GCPL. At this time,
the GCPL loss was also used for the semantic encoder (Lclf ).
Following that, we add an experiment with a framework in
which the semantic encoder is trained with cross-entropy loss,
i.e., the semantic task is a closed-set classification.

In this approach, the distance between the samples and
the prototypes is considered the probability of that sample

Fig. 1. The overview of the proposed framework. Our framework consists of
two encoders, one for style and one for semantic. In feature space, different
colors denote different subjects, and different shapes denote different classes.

belonging to the class of that prototype. Let’s assume there
are C classes and each has one prototype. Considering the
training sample (x, y), let Mi represents the prototype where
i ∈ (1, 2, ..., C). The prototypes M = {mi|i = 1, ..., C} are
learned during training.

The probability that the sample x belongs to class k is
related to the probability that the extracted feature belongs
to the prototype m. The probability for the prototype m is
measured by the corresponding distance and softmax as:

p(y = k|x,M) =
e−γ(‖f(x)−mi‖22)∑C
k=1 e

−γ(‖f(x)−mk‖22)
, (1)

where f(x) is the CNN-based feature extractor and γ is a
temperature parameter that controls the probability assignment
hardness. DCE is the cross-entropy loss calculated using this
probability. As a regularizer, PL is added as follows:

lp =‖ f(x)−mi ‖22 . (2)

As a result, the combined loss function is as follows:

lgcpl = ldce + βlp. (3)

The weight of the PL is controlled by β.
2) Reciprocal Points Learning: The RPL [31] introduced

a new concept, Reciprocal Point, which represents the extra-
class space corresponding to each known class. As with GCPL,
the learnable parameter reciprocal point M is calculated by
using the following loss function.

p(y = k|x,M) =
eγ(‖f(x)−mi‖22)∑C
k=1 e

γ(‖f(x)−mk‖22)
, (4)

lrp = − log p(y = k|x,M). (5)

RPL introduced a regularization term that limits the distance
between the closed-set sample and reciprocal point to some
extent.

lo(x;M
k, Rk) =MSE(‖ f(x)−mk ‖22, Rk), (6)

where Rk is the radius (learnable margin) initialized to 1. The
combined loss function is as follows:

lrpl = lrp + γlo, (7)



where γ is a hyperparameter to control the weight of reducing
open space risk module.

3) Adversarial Reciprocal Points Learning: ARPL [32]
is based on RPL, but the distance and constraint functions
have been changed. The distance d(f(x),Mk) between x
and reciprocal point Mk can be obtained by combining the
Euclidean distance de with the dot product dd:

d(f(x),Mk) = de(f(x),M
k)− dd(f(x),Mk). (8)

The classification probability can be expressed as follows:

p(y = k|x,M) =
eγd(f(x),M

i)∑C
k=1 e

γd(f(x),Mk)
. (9)

In ARPL, the regularization term was changed as follows:

lo(x;M
k, Rk) =MAX(de(f(x),M

k)−R, 0). (10)

Margin R is also initialized to 1.

B. Open-Set Subject Recognition framework

As shown in Fig. 1, in order to separate subject information
from class information, we employ two encoders referred to as
style and semantic encoders. In our framework, each encoder
can be trained by various types of Loss. We train the style and
semantic encoder using the hybrid loss function as follows:

L = Lclf + αLossr, (11)

where Lclf means the loss function calculated for semantic
encoder, and Lossr means the loss function calculated for style
encoder. α controls the weight of the OSSR task.

III. EXPERIMENTS

A. Dataset and Data-Split

OpenBMI dataset [33]: The dataset includes 54 subjects and
two motor imagery classes (left hand, right hand). Data for
each subject consists of 4 sessions: offline and online sessions
for two days. There are 100 trials in each session. Each
trial consists of 4 seconds of EEG recorded at 62 channels,
1000Hz, and we downsampled to 250Hz for this experiment.
We used Leave-one-subject-out cross-validation. Data from the
source dataset was divided into two parts, 8:2, and used as
training and validation data, respectively. For evaluation, only
the fourth session of the test subject was considered [34].
We experimented on datasets consisting of four different sizes
of subject numbers. There were 11 subjects, 21 subjects, 31
subjects, and 54 subjects. The runs contain different sets of
subjects. However, for each method, the same sets are used.
Five runs are conducted with 10 subjects, three runs with
20 subjects, two runs with 30 subjects, and one run with 53
subjects. The procedure of all training follows the data split
configuration of [27].

TABLE I
MOTOR IMAGERY CLASSIFICATION PERFORMANCE (ACCURACY (%)).

RESULTS ARE AVERAGED AMONG RUNS.

Method # subject

10 20 30 53

Baseline [27] 72.83 (±14.22) 80.65 (±13.02) 82.81 (±12.83) 84.98 (±12.18)
GCPLclf [27] 72.67 (±14.04) 80.30 (±12.45) 82.22 (±12.11) 84.80 (±11.84)
GCPLclf+GCPLossr [27] 74.17 (±14.19) 81.61 (±12.83) 84.07 (±12.25) 85.22 (±12.24)
CEclf+GCPLossr 73.67 (±12.78) 79.99 (±12.88) 82.97 (±12.11) 84.48 (±12.41)
RPLclf+RPLossr 70.00 (±12.64) 77.39 (±13.99) 81.81 (±12.89) 84.06 (±12.44)
CEclf+RPLossr 71.96 (±12.99) 79.73 (±13.19) 82.86 (±12.11) 84.57 (±12.17)
ARPLclf+ARPLossr 73.34 (±13.73) 80.35 (±13.64) 82.39 (±12.89) 85.33 (±11.73)
CEclf+ARPLossr 72.71 (±12.71) 80.08 (±13.34) 82.96 (±12.16) 84.72 (±11.71)

B. Experimental Details

Following previous studies [27], [34], DeepConvNet [12]
was used as a shared backbone feature extractor. In both style
and semantic encoders, a fully connected layer (1400 × 2)
was used. We set the case where Lclf is cross-entropy loss
and Lossr is not used as the baseline, and the case where lgcpl
is used for both Lclf and Lossr is marked as [27]. β was
set to 0.001 and the weight of Lossr (α) was set to 0.1. We
experimented with cases where cross-entropy or lrpl or larpl
was used for Lclf and lrpl or larpl was used for Lossr. When
lrpl was used,γ was set to 0.001. In all cases, The weight of
Lossr (α) was set to 0.1. Adam was used as the optimizer
and trained at a learning rate of 0.005, and a cosine annealing
learning rate scheduler was also used.

IV. RESULTS AND DISCUSSION

Various OSSR results were compared with existing subject-
independent methods. In total, we experimented with five
different methods in subject-independent settings. The first is
that the semantic encoder is trained with CE, while a style
encoder is trained with GCPL and the second is the RPL
is used for both the semantic encoder and style encoder.
Thirdly, semantic encoders use CE, and style encoders use
RPL. Fourth, ARPL is applied to both semantic and style
encoders. Lastly, CE is applied to semantic encoders while
ARPL is applied to style encoders. Comparing the results can
be found in Table I.

CEclf+ GCPLossr achieves 73.67% average accuracy on 10
subjects. RPLclf+ RPLossr and CEclf+ RPLossr showed poor
performance in 10 subjects, but good performance compared
to the baseline in 30 and 53 and showed that reciprocal
points can be used as a classifier. ARPLclf+ ARPLossr and
CEclf+ ARPLossr showed similar performance to the baseline
in all cases and was higher than RPLs in most cases. To
summarize, ARPLclf+ARPLossr achieved the highest perfor-
mance in 53 subjects, and GCPLclf+ GCPLossr showed the
highest performance in the other cases. However, the proposed
OSSR framework showed good performance compared to the
baseline in the settings of 10 and 30 subjects and showed a
slight difference even with 20 subjects. As mentioned in [27],
performance increased as the number of subjects increased,
but the gap between methods narrowed.



V. CONCLUSION

In this paper, we proposed an open-set subject recognition
framework for subject-independent BCIs. In our framework,
open-set recognition was used as an auxiliary task to encode
subjects’ information. The proposed framework has, to the
best of our knowledge, achieved the best performance on the
OpenBMI dataset using subject-independent settings. In the
future, we intend to introduce a framework for subject-adaptive
classification (domain adaptation). We also plan to apply the
OSR framework, which classifies previously unseen classes,
to real-world BCIs.
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