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Abstract—Decoding imagined speech from human brain sig-
nals is a challenging and important issue that may enable human
communication via brain signals. While imagined speech can be
the paradigm for silent communication via brain signals, it is
always hard to collect enough stable data to train the decoding
model. Meanwhile, spoken speech data is relatively easy and to
obtain, implying the significance of utilizing spoken speech brain
signals to decode imagined speech. In this paper, we performed
a preliminary analysis to find out whether if it would be possible
to utilize spoken speech electroencephalography data to decode
imagined speech, by simply applying the pre-trained model
trained with spoken speech brain signals to decode imagined
speech. While the classification performance of imagined speech
data solely used to train and validation was 30.5 + 4.9 %, the
transferred performance of spoken speech based classifier to
imagined speech data displayed average accuracy of 26.8 + 2.0 %
which did not have statistically significant difference compared
to the imagined speech based classifier (p = 0.0983, chi-square =
4.64). For more comprehensive analysis, we compared the result
with the visual imagery dataset, which would naturally be less
related to spoken speech compared to the imagined speech. As a
result, visual imagery have shown solely trained performance of
31.8 + 4.1 % and transferred performance of 26.3 + 2.4 % which
had shown statistically significant difference between each other
(p = 0.022, chi-square = 7.64). Our results imply the potential
of applying spoken speech to decode imagined speech, as well as
their underlying common features.

Keywords—brain—computer interface, imagined speech, speech
recognition, spoken speech, visual imagery

This work was partly supported by Institute for Information & Com-
munications Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No0.2021-0-02068, Artificial Intelligence In-
novation Hub; No. 2017-0-00451, Development of BCI based Brain and
Cognitive Computing Technology for Recognizing User’s Intentions using
Deep Learning).

Byung-Kwan Ko
Dept. Artificial Intelligence
Korea University
Seoul, Republic of Korea
leaderbk525 @korea.ac.kr

Young-Eun Lee
Dept. Brain and Cognitive Engineering
Korea University
Seoul, Republic of Korea
ye_lee@korea.ac.kr

Seong-Whan Lee
Dept. Artificial Intelligence
Korea University
Seoul, Republic of Korea
sw.lee @korea.ac.kr

I. INTRODUCTION

Brain-computer interface (BCI) is a technology of con-
verting user’s intention to an external output or action via
decoding brain signals. It accompanies the imagery of the
user, and the process of decoding user’s intention from the
brain signals. There are specific patterns of brain signals that
the BCI system aims to decode, which consists of external
stimulus or user’s spontaneous imagery including the user’s
intention [|1]. Exogenous BCI paradigms, such as event-related
potential or steady-state evoked potential, have been actively
invested, since it have shown effectiveness in conveying user’s
intention in a relatively high speed and accuracy [2]-[4].
However, current research stream on BCI is highly focusing
on the endogenous paradigms, such as motor imagery [5]-
[7], imagined speech [8|], or visual imagery [9], [10], since
they do not require external stimuli, therefore, may be a more
convenient way to convey user’s intention directly [11].

However, endogenous BCI paradigms yet hold limitations
of low decoding performance, and inferior degree-of-freedom
(DOD) [9].. In addition, it is relatively hard to acquire consistent
brain signal data per each class, since it is not a stimulus-driven
brain signals [[1]. Some users are known to be inefficient in
utilizing endogenous BCI paradigms, therefore, may need the
process of training the user beforehand. While endogenous
BCI paradigms are strong in convenience and intuitiveness,
limited amount of high-quality data and the lack of strong
features have always been a challenging issue to be addressed.

Imagined speech is an emerging endogenous paradigm for
intuitive BCI communication, which refers to the internal
imagery of speech, without emitting vocal sound nor moving
the mouth [[8]. It is easy to expand the DOI of imagined speech
since there are various words or sentences to be decoded,
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therefore, may be a strong BCI paradigm that can convey
unconstrained intention of the user. However, it is relatively
hard to collect imagined speech data compared to the exoge-
nous paradigms or other paradigms, since it is hard to collect
consistent imagery data to train the model from the user. Also,
the main limitation of the endogenous paradigms are that the
data collector cannot ensure if the user consistently imagined
the exact right thing, or just had thought of something else,
since we cannot check the imagined ground-truth by vision
nor hearing.

Spoken speech refers to the natural speech that we use
in the everyday life [12]. It is known that imagined speech
brain signals resemble the features of spoken speech brain
signals in some portion, therefore, holds potential to utilize
spoken speech data to improve or enhance the imagined speech
decoding performance [13], [14]]. Unlike imagined speech,
spoken speech data is relatively easy to be acquired, and is
able to check whether the user performed the speech correctly,
therefore, may be better to robustly train the decoding model.
Although spoken speech holds strength in terms of data
collection, decoding imagined speech is still the most crucial
point in the field of BCI, since the first aim for BCI systems
is to help patients who cannot move or talk [[15].

In this paper, we explored the possibility of utilizing the
spoken speech brain signal data to decode imagined speech
electroencephalography (EEG). This is a preliminary study of
simply applying the spoken speech-based trained model to
the imagined speech EEG data, to find out the potential of
transferring the robust model trained with spoken speech to
imagined speech data which has relatively weak features. We
first tested the imagined speech EEG with the spoken speech

Comparison of spoken speech and imagined speech based BCI communication system.

based trained model. Also we compared the imagined speech
result in the same method with the visual imagery dataset to
find out the difference between the two paradigms.

II. MATERIALS AND METHODS

A. Overall framework

As shown in the Figure |1} spoken speech data is relatively
easy to obtain in large number of trials and with consistency,
as it is a natural speech that most people perform in everyday
life. Additionally, training users is not necessary, and distinct
brain features have been identified in comparison to imagined
speech. However, it cannot coincide with the imagined speech,
since the usage of spoken speech is only limited to the people
who can speak out loud, and therefore, cannot establish silent
communication system that operates only with brain signals.
Therefore, our preliminary task was to utilize the strength of
both spoken speech and imagined speech, to further transfer
the spoken speech based pre-trained model to the imagined
speech EEG data.

B. Data Acquisition

1) Participants: Spoken speech, imagined speech, and vi-
sual imagery EEG dataset of 7 subjects were used in this
study. The dataset was acquired from the previous studies
(1], [8], [16], [[17]. The study was carried out in accordance
with the Declaration of Helsinki. The experimental protocols
were reviewed and approved by the Institutional Review Board
at Korea University [KUIRB-2019-0143-01] and all subjects
signed informed consent.



TABLE I
DECODING PERFORMANCE OF IMAGINED SPEECH USING IMAGINED
SPEECH AND SPOKEN SPEECH BASED PRE-TRAINED MODEL

Imagir(l)etc} speech Spoken speech | Spoken speech
-fold h .
[ full trials few trials
cross validation
Subject 1 30.0 23.4 25.0
Subject 2 35.6 26.6 25.2
Subject 3 38.1 28.6 29.1
Subject 4 28.7 29.5 23.2
Subject 5 23.7 26.4 31.4
Subject 6 27.3 25.9 34.3
Subject 7 30.4 26.8 28.0
AVG. 30.5 26.8 28.0
STD. 4.9 2.0 3.9

TABLE II
DECODING PERFORMANCE OF VISUAL IMAGERY USING VISUAL IMAGERY
AND SPOKEN SPEECH BASED PRE-TRAINED MODEL

Visual imagery Spoken speech | Spoken speech

10-fold . .
. full trials few trials
cross validation

Subject 1 339 25.0 24.5
Subject 2 253 24.1 259
Subject 3 333 27.5 31.8
Subject 4 334 29.1 26.6
Subject 5 352 22.7 23.2
Subject 6 26.4 28.0 243
Subject 7 35.1 27.7 22.7
AVG. 31.8 26.3 25.6
STD. 4.1 24 3.1

2) Experimental Setup: 64-channel EEG cap with active
electrodes placement following the international 10-10 system
were used for the recording. Reference and ground electrodes
were set to FCz and FPz channels, respectively. EEG sig-
nals were recorded via Brain Vision/Recorder (BrainProduct
GmbH, Germany) and operated by MatLab 2018a software.

3) Experimental Paradigm: Experimental paradigms are
explained in detail in the previous studies [1]I, [8]l, [16]. The
dataset of spoken speech, imagined speech, and visual imagery
consists of the same words/phrases from the same participants.
In this paper, 5-class words were selected from the dataset to
test the transfer scenario as a preliminary study.

C. EEG Data Classification

1) Imagined speech decoding: 10-fold cross validation was
performed using 90 % of randomly selected imagined speech
data as a training set and the remaining 10 % as a test set.
This was set as the baseline performance to compare with
the performance of spoken speech based transferred classifier.
Support vector machine (SVM) classifier was trained with
common spatial pattern (CSP) feature in all three modes of
classification, including the following subsections.

2) Imagined speech decoding with spoken speech based
pre-trained model: The model trained with spoken speech
dataset was transferred to the imagined speech data. Weights
for the CSP filters were first trained with spoken speech EEG
and applied to the imagined speech data. We tested in two
different sets of spoken speech dataset, as one was a model
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Fig. 2. Comparison of the classification performance of imagined speech(left)
and visual imagery(right).The blue bars represent the mean performance of 10-
fold cross validation results. The orange bars represent the mean performance
using full spoken speech trials based pre-trained model and the green bars
represents the mean performance of few spoken trials applied model.

trained with full spoken speech trials and another was the
model trained with only a small number of spoken speech
trials (10 trials per class).

3) Visual imagery decoding with spoken speech based
pre-trained model: Comparing the performance with visual
imagery dataset was performed to confirm the viability of
transferring spoken speech brain signals to imagined speech
brain signals. As same as the case of imagined speech, the
model trained with spoken speech dataset was transferred to
test the visual imagery data. Weights for the CSP filters were
first trained with spoken speech EEG and applied to the visual
imagery data.

D. Statistical Analysis

For the statistical analysis, we performed Kruskal-Wallis
test to compare the classification accuracy of the baseline per-
formance of non-transferred 10-fold cross validation, spoken
speech based transferred result using full trials, and few trials.
Non-parametric bootstrap analysis was applied as a post-hoc
analysis. Significance level was set to 0.05.

III. RESULTS AND DISCUSSION
A. Imagined Speech Decoding

As shown in the Table 1, the averaged classification perfor-
mance of imagined speech data solely used to train and test
was 30.5 = 4.9 %, and the transferred performance of spoken
speech based classifier to imagined speech data was 26.8 +
2.0 %. The spoken speech based transferred result trained
with only few spoken speech trials was 28.0 + 3.9 %. Based
on the statistical analysis, there was no significant difference
found between the imagined speech 10-fold cross validation
result with the spoken speech based transferred result (p =
0.0983, chi-square = 4.64). The result exhibits comparable per-
formance of the transferred model, which implies the potential
of applying spoken speech dataset to decode imagined speech.



Since spoken speech data is much simple and easier to acquire,
it would be more efficient to train and transfer models using
large spoken speech trials, provided that comparable results
can be achieved.

B. Visual Imagery Decoding

For more comprehensive analysis, we compared the result
with the visual imagery dataset, which would naturally be less
related to the spoken speech compared to the imagined speech
[18]. As shown in the Table 2, visual imagery have shown
solely trained performance of 31.8 + 4.1 % and transferred
performance of 26.3 + 2.4 % which had significant statistical
difference between each other (p = 0.022, chi-square = 7.64).
Since there was statistically significant difference only for the
case of visual imagery (Figure 2), this result confirms that
there may be common features between the two speech-related
paradigms (imagined speech and spoken speech).

IV. CONCLUSION

Our result implies the potential of applying spoken speech to
decode imagined speech, as well as their underlying common
features. Our experiments revealed that the imagined speech
may be more related to the spoken speech than the visual
imagery. Conclusively, decoding imagined speech via spoken
speech-based models may hold great promise in assisting
individuals with physical or speech impairments and represents
a valuable area of research as a state-of-the-art communication
technology that can produce actual vocalizations through the
imagined speech. Since we have just simply transferred the
pre-trained model to a different dataset, such method as fine
tuning would further improve the result. For the future work,
we would apply advanced deep learning model to pre-train the
model with spoken speech dataset, and fine tune the model
using small amount of imagined speech data for better results
[19]-[22]].
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