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Abstract—Providing a promising pathway to link the human
brain with external devices, Brain-Computer Interfaces (BCIs)
have seen notable advancements in decoding capabilities, pri-
marily driven by increasingly sophisticated techniques, especially
deep learning. However, achieving high accuracy in real-world
scenarios remains a challenge due to the distribution shift
between sessions and subjects. In this paper we will explore the
concept of online test-time adaptation (OTTA) to continuously
adapt the model in an unsupervised fashion during inference
time. Our approach guarantees the preservation of privacy by
eliminating the requirement to access the source data during
the adaptation process. Additionally, OTTA achieves calibration-
free operation by not requiring any session- or subject-specific
data. We will investigate the task of electroencephalography
(EEG) motor imagery decoding using a lightweight architecture
together with different OTTA techniques like alignment, adaptive
batch normalization, and entropy minimization. We examine two
datasets and three distinct data settings for a comprehensive
analysis. Our adaptation methods produce state-of-the-art re-
sults, potentially instigating a shift in transfer learning for BCI
decoding towards online adaptation.

Index Terms—BCI, Deep Learning, Cross-subject, Transfer
learning, Motor imagery, EEG, Test-time adaptation

I. INTRODUCTION

In the dynamic intersection of neuroscience and technol-
ogy, researchers explore electroencephalography (EEG) motor
imagery decoding as a promising avenue for connecting the
human brain to external devices. This non-invasive and ver-
satile approach enables the translation of mental simulations
of movement into direct commands. It offers individuals
with motor impairments, like those from spinal cord injuries
or neurodegenerative diseases, a transformative pathway to
restore functionality and improve quality of life through Brain-
Computer Interfaces (BCIs). In recent years, there has been
a substantial increase in research focused on deep learning
methods for BCIs [1], [2] as deep learning methods are able
to implicitly extract intricate patterns from EEG signals to
improve the decoding performance. The usability in real-world
scenarios, however, remains limited as conditions change
between development and deployment of the system [3]. It
is therefore often necessary to record additional calibration
data before deployment in order to adapt the model to the
setting or subject which is both time and cost-intensive. For
BCIs, the most common change of conditions is a change
of subject also referred to as the cross-subject scenario. In
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Fig. 1: Methodology for the (a) cross-session and (b) cross-
subject setting.

this particular setting, data from multiple (source) subjects is
used to train a model which is then tested on data from an
unseen, sometimes called hold-out, (target) subject (see Fig.
1). Due to the high inter-subject differences, there is a large
distribution shift and therefore a large drop in performance [4],
[5]. While this drop in performance is particularly large in the
cross-subject scenario, it is also present in the cross-session
setting where train and test data are recorded from the same
subject in different sessions. Therefore, the BCI community is
actively developing solutions which minimize the amount of
calibration data while maximizing the performance [6]. Most
approaches focus on the common cross-subject scenario but
there has also been work on cross-dataset [7] or even cross-
task solutions [8].
Approaches targeting the transfer of knowledge from a source
domain or task to a distinct (but related) target domain or
task fall under the umbrella of transfer learning. As the task,
the method, the learning scenario and the data properties
vary between approaches, different methods can be broadly
categorized in different sub-categories. Two well known ma-
jor concepts are domain generalization (DG) and domain
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adaptation (DA). The objective of DG is to train a model
using one or more source domains, enabling it to generalize
effectively to any unseen (related) target domain. DA on the
other hand learns a model that generalizes to a specific, known
target domain. The major advantage of DG is that the model
is only trained once on the source domain and the target
domain can be unknown during training. The limitation of DG
is that it can’t compensate large and especially unexpected
distribution shifts between source and target domain as it
does not leverage the target data. The most common DG
approaches for EEG are data augmentation methods [6], [9]
and alignment strategies [5], [10], [11]. The basic idea behind
data augmentation is to manipulate the existing data to create
new artificial samples in order to increase the amount of
data without recording new data to make the model more
robust i.e., invariant to certain transformations. The major
challenge with data augmentation is to find a transforma-
tion that manipulates the samples while retaining the spatio-
spectral-temporal information. Finding such transformations
is extremely difficult for EEG and therefore most simple
transformations underperform the baseline [6]. Data alignment
ensures that the covariance matrix of each trial is aligned
using a reference matrix. Importantly, both, the source and
target data needs to be aligned using one reference matrix per
domain. This makes data alignment a special case of DG, as
the target domain is only arbitrary as long as the reference
matrix is known at inference time. In comparison to DG, DA
does compensate distribution shifts by leveraging the target
data at the cost of needing additional labeled or unlabeled
target data for adaptation. The most popular approach in DA is
to finetune a pre-trained model using target data. Importantly,
such finetuning approaches require enough target data to avoid
overfitting [5]. Additionally, many DA methods, especially
unsupervised ones, need to access the data from the source
and target domain simultaneously which is often not possible
due to privacy regulations.
Overcoming these limitations, the field of (source-free) online
test-time adaptation (OTTA) emerged [12]–[20]. OTTA distin-
guishes itself from DA in that no source data is required during
adaptation. Further, the adaptation is done online during infer-
ence, by using unlabeled test-time samples only, eliminating
the need for additional calibration data from the target domain
[20].
As we are the first to apply OTTA to EEG motor imagery
decoding, there are only very few approaches [7], [21]–[25]
which are partially comparable to our work. [21] and [22]
are classic DA methods which employ few-shot learning i.e.,
they use a few labeled target samples together with labeled
source data to adapt their model. [7] uses a source-free cross-
dataset scenario and compensate the distribution shift with
offline alignment and Adaptive Batch Normalization (AdaBN)
[26]. [23] and [24] are offline, cross-subject, source-free un-
supervised DA approaches for EEG motor imagery decoding
and intracranial EEG epilepsy detection, respectively. [25] is
the only online source-free approach for EEG decoding. In
contrast to our work, they use a very large dataset and perform

seizure prediction instead of motor imagery decoding. The size
of their datasets allows them to use a mean teacher [15], [17]
for the adaptation.
In this study, we will explore the applicability of source-free
online test-time adaptation methods for EEG motor imagery
decoding on two different datasets. We will examine three dis-
tinct scenarios: cross-session, cross-subject and the continual
cross-subject setting. Our adaptation approaches demonstrate
cutting-edge performance without requiring calibration data
while preserving privacy. These advancements enhance the
usability of BCIs and could potentially instigate a paradigm
shift in transfer learning for BCI decoding, transitioning from
offline adaptation to online adaptation. The source code is
available at https://github.com/martinwimpff/eeg-otta.

II. METHOD

In this section, we will first describe the task, datasets and
settings of our approach. Then the different aspects of our final
adaptation method will be explained.

A. Task and Datasets

The decoding task in this work is single-trial EEG motor
imagery decoding. The specific settings we will investigate are
described in the next session. We use the BCI Competition IV
2a [27] and 2b dataset [28] to evaluate our methods. Both
datasets consist of data from 9 subjects recorded at 250Hz.
The 2a dataset contains four different classes (feet, left hand,
right hand, tongue) whereas the 2b dataset only contains two
classes (left hand, right hand). The 2a dataset was acquired
using 22 electrodes, the 2b dataset only uses three electrodes.
The 2a dataset was recorded in two sessions on different
days with 288 trials per session. The 2b dataset contains five
sessions of which the first three (400 trials) form the training
set and the last two (320 trials) form the test set. The only
preprocessing we use is a 40Hz lowpass filter.

B. Settings

We investigate three different settings with three different
data splits. The first two are visualized in Fig. 1. For simplicity,
we will describe the splits using the terms of the 2a dataset.
The first session and second session from the 2a dataset
correspond to the first three sessions and the last two sessions
of the 2b dataset, respectively. In all three settings, the reported
results refer to the second session.

1) Cross-session setting: In this setting we train one model
per subject using the data from the first session for source
training and the data from the second session for online
adaptation and evaluation. This setting is also known as
the within-subject setting and should have a relatively small
distribution shift.

2) Cross-subject setting: In the cross-subject setting the
first sessions of eight source subjects are used for source
training. The second session of the remaining unseen hold-
out subject is used for online adaptation and evaluation. In
this case, we expect a remarkably larger distribution shift than
in the first setting.



3) Cross-subject continual setting: The source training and
evaluation of this setting is similar to the previous cross-
subject setting. However, the adaptation is done on the first
and second session of the target subject to investigate whether
the continuous adaptation improves the performance.

C. Model and Source training

As a deep learning model we will use BaseNet [29] which
is a lightweight architecture combining the advantages of
EEGNet [4] and ShallowNet [30] into a powerful and versatile
architecture. As in [29], all models are trained for a fixed
number of epochs (1000) using a learning rate scheduler with
a linear warmup (20 epochs) and a cosine decay. Additionally,
we investigate the use of label smoothing [31]. We run each
experiment with five different random seeds and report the
average test accuracy and standard deviation of these five runs
across all subjects.

D. Input buffer

One particular challenge for single-instance OTTA is that
the model has to make a prediction immediately after receiving
a new input sample. As we are using online alignment and
online batch statistics it is necessary to keep previous target
samples in an input buffer to reliably estimate the current
reference matrix and batch statistics respectively. The size of
this input buffer, i.e., how many samples to keep, is a trade-off
between performance, memory, and how fast the distribution
shift occurs. Even with large memory capacities one should
keep in mind that the target data distribution changes over
time and it therefore can be detrimental to keep a large input
buffer. We use a buffer size of 32 samples in our experiments
and update the buffer using the first in first out principle.

E. Alignment

Covariance alignment is a common transfer learning strat-
egy in EEG decoding because of its simplicity and effective-
ness [5], [10], [11]. The main assumption is that the difference
between two sessions or subjects can be captured in a reference
state which can then be used to reduce the distribution shift
between sessions or subjects. The basic idea for alignment is
to estimate a mean covariance matrix R per domain using the
b samples in the buffer. For euclidean alignment that means
computing the arithmetic mean of all covariance matrices [10]:

R =
1

b

b∑
i=1

γi ·XiX
T
i , γi = 1∀i, Xi ∈ RC×T (1)

For riemannian alignment (RA) [11], the riemannian or geo-
metric mean of all covariance matrices is computed instead.
The current trial Xb is then aligned by:

X̃b = R
−1/2

Xb (2)

Equation 1 can additionally be manipulated using a linear
or exponential weighting factor γi. Both approaches weight
current trials stronger than older samples in the buffer. We
use exponential weighting with a momentum of 0.1 in our
experiments.

F. Batch Normalization

Batch normalization (BN) was originally developed to re-
duce the internal covariate shift due to the change in network
parameters during training [32]. During training, BN layers
normalize each feature channel using the statistics of the
current batch:

y =
x− E[x]√
Var[x] + ϵ

· γ + β, ϵ = 10−5 (3)

γ and β are learnable affine parameters. During training, each
batch normalization layer keeps a global estimate for the mean
µ and variance σ2 of the whole training set which is updated
using an exponential moving average. These global training
statistics are then applied to normalize the test data during
inference. This makes the model decisions deterministic but
might also cause troubles under distribution shifts [12]. [26]
developed AdaBN which simply replaces the global training
statistics by global statistics of the test set to reduce the
distribution shift. However, those global statistics are estimated
offline. [12] proposed an online version of AdaBN which
only uses the available samples from the test data. In our
experiments we will use a similar approach where we estimate
the statistics using all samples in the buffer. If the number of
samples in the buffer is very small, it can be useful to employ
the source statistics µs, σ

2
s as a prior [12], [16]:

µi = (1− α)µs + αE[x] (4)

σ2
i = (1− α)σ2

s + αVar[x] (5)

where x represents the test-time samples in the buffer. Another
option is to use an exponential moving average [19] of the
target statistics which are initialized with the source statistics.
We will refer to these variations as BN-α and BN-EMA.
Consequently, BN-1 denotes that only the target statistics are
used.

G. Entropy Minimization

So far, the model parameters θ of our deep learning model
fθ remained untouched during the adaptation. However, keep-
ing the parameters learned on the source domain is not ideal.
Therefore many approaches use an unsupervised loss to adapt
the network parameters to the target domain. In this work we
will minimize the entropy H(ŷ) = −

∑
c p(ŷc) log p(ŷc) of the

model predictions ŷ = fθ(x). Minimizing the entropy drives
the model to make more confident predictions during test-time
without requiring labeled target data. As we do single-instance
OTTA, the loss is only calculated and backpropagated every b
samples, i.e., whenever the buffer is completely renewed. We
use the Adam optimizer with default parameters and a learning
rate of 5 · 10−4 for adaptation.
Since the entropy objective and therefore the entire adaptation
process relies on the model’s initial confidence, we explore
the connection between label smoothing in source training and
entropy minimization during adaptation. Label smoothing [31]
simply replaces the original hard class label yc ∈ {0, 1} by
yLS
c = yc(1 − δ) + δ/C with C being the total number of



TABLE I: Results for the cross-session setting

method EM BCIC IV 2a (%) BCIC IV 2b (%)
source ✗ 76.16± 0.45 84.75± 0.24
EA ✗ 75.43± 0.35 81.25± 0.93
EA(linear) ✗ 75.32± 0.39 81.15± 0.89
EA(EMA) ✗ 75.32± 0.38 81.12± 0.96
RA ✗ 76.91± 0.46 85.32± 0.52
RA(linear) ✗ 76.81± 0.42 85.30± 0.56
RA(EMA) ✗ 76.77± 0.39 85.37± 0.29
BN-1 ✗ 77.72± 0.69 85.54± 0.34
BN-0.5 ✗ 77.86± 0.47 85.84± 0.31
BN-EMA ✗ 77.81± 0.49 85.50± 0.43
RA(linear)-BN-1 ✗ 78.16± 0.70 85.47± 0.20
RA(EMA)-BN-1 ✗ 78.29± 0.61 85.47± 0.20
RA(linear)-BN-0.5 ✗ 78.19± 0.62 85.76± 0.41
RA(EMA)-BN-0.5 ✗ 78.33± 0.72 85.79± 0.40
RA(linear)-BN-EMA ✗ 78.09± 0.56 85.55± 0.32
RA(EMA)-BN-EMA ✗ 78.14± 0.53 85.54± 0.38
RA(EMA)-BN-1(δ=0) ✓ 78.22± 0.54 86.11± 0.41
RA(EMA)-BN-1(δ=0.5) ✓ 79.74 ± 0.57 86.59 ± 0.34

classes and 0 < δ < 1. Without label smoothing, the model
tends to learn sharp decision boundaries and produces over-
confident predictions. This leads to high confidences and low
entropy around the decision boundary. It is difficult to optimize
such boundaries using entropy minimization, as the model
already has a low entropy for most of the samples. With label
smoothing the model creates smoother boundaries that can be
easier optimized during adaptation.

III. RESULTS

This section is structured according to the different settings
introduced in the previous section and compares our OTTA
approaches against a source model without adaptation.

A. Cross-session

Table I shows the test accuracies for the 2a and 2b dataset in
the cross-session setting. The second column indicates the use
of entropy minimization (EM). Interestingly, euclidean align-
ment (EA) yields results below the source performance for
both datasets. Riemannian alignment (RA) on the other hand
results in test accuracies slightly above source performance.
For the 2a dataset, the adaptive BN approaches further improve
the results. Combining both methods leads to the best results
which are ∼ 2% and ∼ 1% above the source accuracy for the
2a and 2b dataset respectively.

Our method employing RA(EMA) together with entropy
minimization to adapt the model parameters further improves
the results to 79.74 ± 0.57% (δ = 0.5) and 86.59 ± 0.34%
(δ = 0.5). Without label smoothing (δ = 0) the results are
considerably lower (78.22± 0.54% and 86.11± 0.41%).

B. Cross-subject

The results for the cross-subject setting are shown in Table
II. Using online alignment leads to a 4 − 5% increase in
performance for the 2a dataset, with RA consistently out-
performing EA. For the 2b dataset the improvement is only
around 1% which might be due to the low number of sensors.
Applying the target statistics instead of the source statistics
during batch normalization outperforms all alignment methods
for both datasets. Consequently, combining both approaches

TABLE II: Results for the cross-subject setting

method EM BCIC IV 2a (%) BCIC IV 2b (%)
source ✗ 57.38± 0, 92 78, 75± 0, 95
EA ✗ 62.48± 0.68 79.21± 0.25
EA(linear) ✗ 62.74± 0.65 79.19± 0.22
EA(EMA) ✗ 62.45± 0.69 79.15± 0.18
RA ✗ 63.64± 0.41 79.96± 0.29
RA(linear) ✗ 63.86± 0.38 80.11± 0.23
RA(EMA) ✗ 63.68± 0.29 80.22± 0.24
BN-1 ✗ 64.32± 0.91 81.70± 0.26
BN-0.5 ✗ 64.18± 0.85 81.88± 0.16
BN-EMA ✗ 64.32± 0.97 81.78± 0.25
RA(linear)-BN-1 ✗ 65.16± 0.59 81.95± 0.46
RA(EMA)-BN-1 ✗ 65.40± 0.54 81.97± 0.47
RA(linear)-BN-0.5 ✗ 65.59± 0.71 82.18± 0.51
RA(EMA)-BN-0.5 ✗ 65.58± 0.64 82.22± 0.54
RA(linear)-BN-EMA ✗ 65.29± 0.48 81.99± 0.39
RA(EMA)-BN-EMA ✗ 65.09± 0.45 81.96± 0.57
RA(EMA)-BN-1(δ=0) ✓ 65.31± 0.57 82.77± 0.61
RA(EMA)-BN-1(δ=0.4) ✓ 67.31 ± 1.38 83.47 ± 0.36
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Fig. 2: Test accuracy and buffer size.

leads to the highest results which are ∼ 8% and ∼ 3% above
the source performance for the 2a and 2b dataset respectively.

Buffer size As BN adaptation plays a significant role in
mitigating potential domain shifts, we investigate different
buffer sizes in Fig. 2. As in our experiments in Table II, for a
buffer size of 32, the difference between the BN approaches is
neglectable. The same holds for larger batch sizes. Therefore,
we employ BN-1 for our method as it also resembles the
common setting during training. However, as BN-1 only relies
on the test statistics, small buffer sizes are not sufficient for a
reliable estimation of the BN statistics. In this case, exploiting
the source statistics, as in BN-0.5, or using an exponential
moving average, as in BN-EMA, is beneficial.

Entropy minimization In addition, we also investigate the
impact of the label smoothing hyperparameter δ during source
training together with entropy minimization. Fig. 3 displays
the results for both datasets with additional RA(EMA). For the
2a dataset there is a clearly visible trend that label smooth-
ing helps the optimization during OTTA. The best accuracy
(67.31± 1.38%) can be obtained for a label smoothing factor
δ = 0.4 which is significantly above the runs without label
smoothing (65.75± 0.57%). As expected, the differences are
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Fig. 3: Label smoothing and entropy minimization.
lower for the 2b dataset. The best result (83.47±0.36) is only
slightly better than the adaptation without label smoothing
(82.77±0.61). For both datasets, the results are 1−2% above
the results of their respective counterpart (RA(EMA)-BN-1)
without entropy minimization.

C. Continual setting

The continual setting leads to almost a two percent in-
crease in performance for the 2a dataset (67.31 ± 1.38% →
69.01± 0.96%) and a slight decrease in variance between the
runs. For the 2b dataset our first experiments yielded results
(82.12 ± 0.73) below the results in the cross-subject setting.
We believe that this is due to the fact that the training set
contains three sessions, of which two are recorded without
feedback (offline) and one with feedback (online). The test
set contains two sessions with feedback [28]. Therefore we
ran two additional experiments where we used either the first
two or only the third session for the first adaptation phase. That
resulted in test accuracies of 81.97±0.4% and 83.47±0.36%
respectively. This shows that the continual setting can be a
powerful tool to exploit additional data as long as the recording
settings between the different settings are similar enough.

Fig. 4 shows the results per subject for the 2a dataset. As
with all BCI experiments, the differences between the various
subjects are very high. 70% accuracy is often considered as
the threshold after which a BCI is usable. With this threshold,
our method enables 3 out of 7 subjects who were previously
below the threshold to use BCIs.

IV. DISCUSSION

Related work To validate our results, we tried to compare
them against the literature. However, as we are the first to
apply OTTA to EEG motor imagery decoding, such compar-
isons have only limited explanatory power. The only setting
comparable to our approach (cross-subject continual setting)
is the privacy-preserving offline unsupervised DA setting [23].
Their final test accuracy on the 2a dataset is 57.35% which
is at the level of our source performance. The two few-shot
approaches [21], [22] are difficult to compare to our setting
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Fig. 4: Results per subject for the 2a dataset.

as they use labeled target data. The zero-shot performance
(comparable to our cross-subject setting) of [22] is at the
level of our source model for the 2a dataset (∼ 10% below
our results with adaptation). With labeled target data, their
performance is higher (76.3%). [21] used the 2b dataset and
reported results (74.6%) below our source model despite using
labeled target data for adaptation. [7] operates in a cross-
dataset setting and report a test accuracy of 77.8% for the
2a dataset using only the left and right hand trials. This short
attempt to compare our approach to the literature highlights
how difficult it is to benchmark our approach due to the new
setting. Therefore we chose to compare our approach against
a strong baseline model [29] which is trained on the source
data. The improvements relative to this baseline can then be
directly attributed to the specific adaptation method because
the model, setting, hyperparameters, etc. remain constant.

Alignment Using online alignment improved the perfor-
mance of the model, especially for the cross-subject setting.
RA consistently outperformed EA which might be due to the
fact that the geometric mean is generally considered to be
more robust than arithmetic mean. The minor improvement
for the cross-session setting can probably be attributed to the
small change of reference states between the sessions.

Batch Normalization Replacing the source statistics in the
BN layers with target statistics outperformed all alignment
approaches across both datasets. This simple measure alone
leads to a ∼ 7% and ∼ 3% performance increase in the cross-
subject setting for the 2a and 2b dataset respectively. This
demonstrates the significance of the distribution shift as well as
the effectiveness of very simple OTTA methods for EEG motor
imagery. The combination of online alignment and adaptive
BN further improved the results.

Entropy minimization With entropy minimization, the test
accuracy was improved by ∼ 3.5% and ∼ 2% in the cross-
session setting for the 2a and 2b dataset respectively. For the
cross-subject setting the results are ∼ 10% and ∼ 5% above
the baseline. Incorporating label smoothing during source
training emerged as essential for the optimization during



adaptation. This technique prevents the source model from
generating overly confident predictions and creating sharp de-
cision boundaries, thereby preserving a smoother loss surface
for optimization.

Continual adaptation To investigate the use of our method
for situations where a model is continuously adapted for one
subject over multiple sessions we ran experiments using both
sessions successively. For the 2a dataset this improved the
results by almost two percent. For the 2b dataset, however,
this setting was more challenging as the training set consists
of offline and online sessions. The continuous setting worked
for the 2b dataset if only the online session (of the training
set) was used for adaptation. Using all three sessions or both
offline sessions resulted in lower performances. This suggests
that the continuous setting is only advantageous if the settings
between the sessions are similar enough. Otherwise the model
should be adapted to every sessions independently.

V. CONCLUSION

In this work we explored the use of online test-time adap-
tation for EEG motor imagery for three different settings on
two distinct datasets. We achieved state of the art results,
improving existing methods by a large margin (up to 12%)
while preserving the privacy of the source subjects. Our
method can be used cross-session within the same subject
or cross-subject, hence greatly improving the applicability
of BCIs in real-world scenarios where unknown distribution
shifts occur during deployment of the system.
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G. BCI Competition 2008–Graz data set A. Institute For Knowledge
Discovery (Laboratory Of Brain-Computer Interfaces), Graz University
Of Technology. 16 pp. 1-6 (2008)

[28] Leeb, R., Brunner, C., Müller-Putz, G., Schlögl, A. & Pfurtscheller, G.
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