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Abstract—Brain-computer interface (BCI) has garnered the
significant attention for their potential in various applications,
with event-related potential (ERP) performing a considerable role
in BCI systems. This paper introduces a novel Distributed Infer-
ence System tailored for detecting task-wise single-trial ERPs in a
stream of satellite images. Unlike traditional methodologies that
employ a single model for target detection, our system utilizes
multiple models, each optimized for specific tasks, ensuring
enhanced performance across varying image transition times
and target onset times. Our experiments, conducted on four
participants, employed two paradigms: the Normal paradigm
and an AI paradigm with bounding boxes. Results indicate that
our proposed system outperforms the conventional methods in
both paradigms, achieving the highest Fβ scores. Furthermore,
including bounding boxes in the AI paradigm significantly
improved target recognition. This study underscores the potential
of our Distributed Inference System in advancing the field of ERP
detection in satellite image streams.

Index Terms—event-related potential, target detection, deep
learning, electroencephalogram, satellite images

I. INTRODUCTION

Brain-computer interface (BCI), also known as brain-
machine interfaces, represents a direct communication path-
way between the brain and external devices. This technology
has been at the forefront of neuroscience and engineering
research, aiming to restore lost sensory and motor functions,
enhance human capabilities, or even create new forms of
interaction with the world. BCI decodes neural signals, trans-
lating them into commands that can control various devices
or software applications [1]–[4]. They have been employed
in medical settings to assist patients with severe motor dis-
abilities, allowing them to communicate or control prosthetic
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limbs using only their brain activity [5], [6]. In the realm
of rehabilitation, BCI aids in restoring motor functions for
stroke victims or individuals with spinal cord injuries [7],
[8]. Beyond medical applications, BCI has ventured into the
entertainment industry, enabling users to play video games or
operate virtual reality environments using their thoughts [9],
[10]. Furthermore, in the domain of defense and aerospace,
BCI is being explored for piloting drones or even potentially
controlling advanced machinery [11], [12]. The integration
of event-related potential (ERP) within BCI, especially in
tasks like satellite image analysis, underscores the potential of
this technology in rapidly processing vast amounts of visual
data, capturing the brain’s instantaneous reactions, and making
timely decisions.

In the realm of ERP detection, various methodologies have
been proposed and explored over the years. The conventional
approaches primarily relied on theory-driven methods, where
the extraction of ERP components was based on predetermined
temporal and spatial filters [13]. These methods, such as
independent component analysis and time-frequency repre-
sentations, have been instrumental in isolating specific ERP
components from the background EEG activity. Their strength
lies in their ability to leverage prior knowledge about the
expected ERP waveforms and their temporal dynamics.

However, with the advent of deep learning, the landscape of
ERP detection has witnessed a paradigm shift. Deep learning-
based methods, particularly convolutional neural networks and
recurrent neural networks, have shown promise in automati-
cally extracting intricate patterns from raw EEG data without
the need for manual feature engineering [14]–[16]. These
models are trained on enormous datasets, enabling them to
capture the subtle nuances of ERP signals, even in noisy en-
vironments. Recent studies have demonstrated the superiority

ar
X

iv
:2

31
2.

09
44

6v
1 

 [
ee

ss
.S

P]
  1

0 
N

ov
 2

02
3



of deep learning techniques over the conventional methods,
especially in scenarios with high inter-subject variability or
when dealing with single-trial ERP detection [17].

Detecting single-trial ERP presents a unique set of chal-
lenges. The inherent variability in neural responses, even to
identical stimuli, could lead to the significant differences in
ERP features across trials. This variability is further increased
when considering the transition times between images. As
the brain processes rapidly changing visual stimuli, the ERP
elicited by one image can be influenced by the preceding
image, leading to a temporal smearing effect. This effect
complicates the task of isolating the ERP corresponding to
a specific image, especially when the transition times between
pictures are inconsistent.

In recent years, several methods have been proposed to
address these challenges. Techniques such as adaptive fil-
tering and advanced artifact rejection algorithms have been
introduced to enhance the clarity of single-trial ERP [18].
Furthermore, deep learning architectures incorporating tem-
poral attention mechanisms have been developed to focus on
relevant time points in the ERP, mitigating the effects of
varying transition times [19]. However, while these methods
have shown promise, they often require extensive training
data and may not generalize well across different subjects or
ERP paradigms. The investigation for a robust and universally
applicable single-trial ERP detection method remains an active
area of research.

We have developed a novel approach, the Distributed In-
ference System, to address the inherent difficulties faced
by the conventional single-trial ERP detection methods. Our
proposed strategy diverges from the conventional approaches
that attempt to process all diverse scenarios, such as varying
image transition times and ERP stimuli, and tasks, like target
recognition and target onset time inference, within a single
model. Such an approach often restricts the model’s ability to
learn features from the data effectively. Our system adopts
a strategy where each task is learned and inferred inde-
pendently. By segmenting the learning process, each model
in the system could learn about specific features relevant
to each task, enhancing its overall accuracy and efficiency.
This methodology has proven particularly effective in tasks
involving the detection of targets within a stream of satellite
images compared with the conventional methods.

II. METHODS
A. Subjects and Experimental Environment

We collected data from a total of four healthy subjects,
comprising three males and one female. Our experiment
received approval from the Institutional Review Board at
Korea University [KUIRB-2022-0373-01]. Before the actual
experiment, all participants were thoroughly briefed on the
experimental paradigm and underwent practice sessions to
familiarize themselves with the procedure. For EEG signal
acquisition, we utilized a signal amplifier (BrainAmp, Brain
Products GmbH, Germany). The EEG signals were sampled at
a frequency of 250 Hz, and a 60 Hz notch filter was employed
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Fig. 1. Experimental paradigm applied in the target recognition. (a) and (b)
indicate the normal paradigm with the image transition time of 0.5 sec. and
0.1 sec., respectively. (c) indicates the AI paradigm containing a bounding
box at images.

to eliminate DC noise. The EEG data was acquired using
32 channels positioned on the subjects’ scalps following the
international 10-20 system. To ensure optimal signal quality,
we applied a conductive gel to the subjects’ scalps, reducing
the impedance of the EEG electrodes to 15 kΩ or below.

B. Experimental Paradigm

Our data acquisition paradigm centered on detecting targets
within a sequence of 10 consecutively displayed satellite
images. We conducted two distinct paradigms for this purpose.
In the first paradigm (Normal paradigm), participants were
presented with 16 trials, each comprising a series of satellite
images. These trials were divided into two categories based
on the transition time between images: 0.1 sec. and 0.5 sec.
Of the 16 trials, 8 had a transition time of 0.1 sec., while
the remaining 8 had a transition time of 0.5 sec. Targets
appeared a total of 8 times across these 16 trials, with their
appearance in the 0.1-sec. and 0.5-sec. trials being randomized.
The second paradigm (AI paradigm) also consisted of 16 trials
but with a consistent image transition time of 0.5 sec. across all
trials. Unlike the first paradigm, this one simulated a scenario
where the images had been processed by a computer vision
model. As a result, targets within the images were marked
with a red bounding box. However, considering the simulated
computer vision inference, some non-target areas resembling
the target were also mistakenly boxed in red. As with the
first paradigm, targets appeared 8 times across the 16 trials.
Each trial is separated by a beep sound that is inaudible to the
subject in both paradigms. For both paradigms, one session
consists of 16 trials, and four sessions are conducted in each
paradigm. During both paradigms, participants were instructed
to manually indicate the presence or absence of a target at the
end of each trial in 5 sec., ensuring an interactive and attentive
engagement with the presented images.
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Fig. 2. Overall flow to decide the decisions of target recognition using the proposed Distributed Inference System

C. Distributed Inference System

Our primary goal through the paradigm was to determine the
existence of a target within a given trial and, if present, to as-
certain the exact time of its appearance. While the conventional
methods employing a singular model for target detection share
the overarching goal of capturing the characteristics of the
ERP, our paradigm, which contains varying image transition
times (0.1 sec. and 0.5 sec.) and the inference of target onset
times, presents unique challenges. The differences in features
that each task-specific model could learn make it difficult
for a single model to optimize for all tasks simultaneously.
To address this issue, we developed the Distributed Inference
System to integrate the outputs of separated models tailored
for each task.

Our system is structured around three main components:
EEG data acquisition, Distributed target recognition, and Infer-
ence result aggregation. The EEG data acquisition component
is responsible for collecting data from a participant over a
session, which includes 16 trials. Following the previous part,
the Distributed target recognition part takes over, segmenting
the acquired EEG signals based on beep triggers, distin-
guishing between the 0.1-sec. and 0.5-sec. transition times.
The data split by trial and the original data before the split
are entered into the 0.1 sec. Target detector, 0.5 sec. Target
detector, and Appearance time detector, respectively, to get
the respective results. Each of these models independently
processes the data and generates its inference. Finally, the
Inference result aggregation component converges the outputs
from the models. It determines the existence of a target in
each trial using the results from each target detector model. In
addition, it detects the exact onset time of the target with the
Appearance time detector. By conducting all these processes,
we could facilitate the concurrent extraction of results for all
16 trials within the session.

To include the P300 feature, which occurs when the target
appears in the last image, each trial was split into one trial
by including an additional 0.5 sec. of data after the 10-
image stream. The 0.1 sec. Target detector and 0.5 sec. Target
detector were trained on their respective segmented data. In
contrast, the Appearance time detector utilized the entire EEG

data, employing a sliding window approach with a window
size of 1 sec. and a 0.5-sec. overlap for both training and
inference. The optimized DeepConvNet [20] architecture was
used for all detector models.

D. Performance Evaluation

Our evaluation was conducted in a subject-dependent envi-
ronment. Each of the four sessions was designated as test data
in turn, with the remaining three sessions serving as training
data. This process was repeated four times, ensuring each
session was used as test data once. The final performance
was determined by averaging the results from these four
evaluations. We conducted separate evaluations for the two
paradigms. To focus on the recall of target detection, we
employed the Fβ score as our evaluation metric, setting β
to 2. This choice emphasizes the importance of recall in our
task. The formula for calculating Fβ score is shown below:

Fβ = (1 + β2)
(precision × recall)

(β2 · precision) + recall
(1)

Additionally, to evaluate the variability across subjects, we
also computed the standard deviation of the Fβ scores for each
participant. For the training process, each model was trained
for 20 epochs with a learning rate of 0.001. AdamW optimizer
[21] was used for optimization with the weight decay of 0.01.
In addition, the cosine learning rate scheduler was utilized for
training stability.

III. RESULTS AND DISCUSSION
Our proposed method was evaluated against the conven-

tional methods including ShallowConvNet [22], DeepConvNet
[20], and EEGNet [23]. The evaluation method for the conven-
tional methods was consistent with the conditions applied to
the Appearance Time Detector in our system. The conventional
methods assessed the performances by sliding a window of 1-
sec. duration, moving in 0.5-sec. increments, and determining
whether the segment contained a target. If a target was detected
at least once within a trial by these methods, the entire trial was
classified as containing a target. For both the traditional models
and our Appearance Time Detector, a target score exceeding
0.5 was considered indicative of target presence.



TABLE I
COMPARISON OF PERFORMANCES AMONG THE CONVENTIONAL METHODS

ACROSS DIFFERENT PARADIGMS

Method
Normal paradigm AI paradigm
Fβ std. Fβ std.

ShallowConvNet [22] 0.5314 0.1314 0.6481 0.1421
DeepConvNet [20] 0.6328 0.1753 0.6899 0.1641

EEGNet [23] 0.6425 0.0928 0.6841 0.0881
Proposed 0.6875 0.1308 0.7266 0.1481

∗std.: standard deviation

Our proposed method, as shown in Table I, outperformed
the other comparison methods in both paradigms, achiev-
ing the highest Fβ scores of 0.6875 and 0.7266 for the
Normal and AI paradigms, respectively. We verified that
all methodologies generally achieved better performance in
the AI paradigm, where bounding boxes were present in
the images, compared to the Normal paradigm. We attribute
this performance enhancement in the AI paradigm to the
presence of the red bounding boxes, which likely made the
targets more conspicuous to the subjects, aiding in target
detection. However, when examining the standard deviation
value, a measure of variability, the EEGNet model recorded
the lowest values of 0.0928 and 0.0881 for the two paradigms.
Our proposed method achieved values of 0.1308 and 0.1481,
indicating the more significant performance variance across
subjects compared to other methods. The increased variance
in our method’s performance is attributed to notably enhanced
results in specific subjects rather than a lack of stability. Fur-
thermore, we won first place in the 1st BCI Target Recognition
Technology Competition using our proposed method.

IV. CONCLUSIONS AND FUTURE WORKS

In this study, we introduced the Distributed Inference Sys-
tem, a novel approach designed to address the challenges
of detecting single-trial ERP in a stream of satellite im-
ages. Our method, distinct from the conventional single-model
approaches, employs multiple models tailored for specific
tasks, ensuring optimized performance across varying image
transition times and target onset times. The results demonstrate
the superiority of our proposed system over existing methods
in both the Normal and AI paradigms. Notably, the inclusion of
bounding boxes in the AI paradigm enhanced target recogni-
tion, underscoring the potential benefits of visual aids in ERP
detection tasks. However, while our system excels in post-
session inference, it currently lacks the capability for real-time
analysis. In future work, a primary objective will be developing
a real-time inference system. Such an advancement would not
only elevate the practicality of our approach but also pave the
way for broader applications in real-world scenarios.
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