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Abstract—In this work, we study the problem of cross-
subject motor imagery (MI) decoding from electroencephalog-
raphy (EEG) data. Multi-subject EEG datasets present several
kinds of domain shifts due to various inter-individual differences
(e.g. brain anatomy, personality and cognitive profile). These
domain shifts render multi-subject training a challenging task
and also impede robust cross-subject generalization. Inspired
by the importance of domain generalization techniques for
tackling such issues, we propose a two-stage model ensemble
architecture built with multiple feature extractors (first stage)
and a shared classifier (second stage), which we train end-to-
end with two novel loss terms. The first loss applies curriculum
learning, forcing each feature extractor to specialize to a subset
of the training subjects and promoting feature diversity. The
second loss is an intra-ensemble distillation objective that allows
collaborative exchange of knowledge between the models of the
ensemble. We compare our method against several state-of-
the-art techniques, conducting subject-independent experiments
on two large MI datasets, namely PhysioNet and OpenBMI.
Our algorithm outperforms all of the methods in both 5-fold
cross-validation and leave-one-subject-out evaluation settings,
using a substantially lower number of trainable parameters. We
demonstrate that our model ensembling approach combining
the powers of curriculum learning and collaborative training,
leads to high learning capacity and robust performance. Our
work addresses the issue of domain shifts in multi-subject EEG
datasets, paving the way for calibration-free brain-computer
interfaces. We make our code publicly available at: https:
//github.com/gzoumpourlis/Ensemble-MI.

Index Terms—brain-computer interfaces, EEG, motor imagery
decoding, model ensemble, domain generalization

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) [35] are communication
systems that enable human users to interact with computers,
robotic limbs or wheelchairs, translating brain activity into
commands. BCIs have a wide spectrum of applications, includ-
ing post-stroke rehabilitation of limb motor impairments [4],
character typing through visual spellers [34] and interactive
image generation [29]. The operation of BCI systems leverages
neuroimaging techniques to collect brain signals, with the
most prevalent one being electroencephalography (EEG) [6].
Advancing EEG-based BCIs towards out-of-the-lab settings,
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requires equipping them with machine learning models that
have robust cross-subject generalization.

With the advent of deep learning (DL), significant steps
have been made in the exploration of training methodologies
and model architectures that can accommodate learning from
EEG datasets with increasingly large number of participants.
Inter-subject variability is one of the biggest challenges for
EEG-based BCIs, referring to the existence of differences
in the characteristics of EEG signals acquired from different
individuals (i.e., there are different data distributions for each
subject) [23]. In the literature, often the data of each individual
are considered as a separate domain [17], hence inter-subject
differences are treated as domain shifts.

In this work, we consider the problem of EEG-based motor
imagery (MI) decoding in subject-independent settings. Motor
imagery is a well-known paradigm for BCIs, involving the
imagination of motor acts, without overt motor execution or
muscle activation [22]. The usage of the MI paradigm is
based on the phenomenon of sensorimotor rhythms [36], i.e.
rhythmic oscillations over the sensorimotor cortex that are
modulated during motor imagery. There are several sources
of variation that lead to domain shifts in cross-subject MI
decoding problems, such as personality type, cognitive profile,
neurophysiological predictors, brain anatomy and familiarity
with BCI technology [14], [15]. These variations in turn lead
to spatial, spectral and temporal differences in the manifes-
tation of sensorimotor rhythms across individuals [27]. These
differences are the sources of domain shifts that we aim to
overcome in order to obtain robust performance in subject-
independent settings.

Domain generalization has been explored as a learning
paradigm for building convolutional neural networks (CNNs)
with strong cross-subject accuracy. A category of domain gen-
eralization techniques [31] that has been successfully applied
on EEG-based problems [3], [26] is ensemble learning [38]. A
resulting property of ensembling is the emergence of diverse
feature representations, leading to better generalization. How-
ever, existing ensembling works achieve this diversity at the
cost of increased computational complexity [10] and lengthy
model selection procedures [9] that cannot be implemented in
a single end-to-end trainable pipeline. Another line of works
explore multi-branch architectures, assigning a separate branch
per training subject [32] or per EEG frequency band [24]. Such
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approaches are compromised by the fact that they focus on
individual aspects of the feature extraction, model training or
model selection processes.

We argue that further unleashing the potential of ensem-
bling methods for representation learning on neural signals,
requires to jointly consider the design of network architectures
and training objectives. We frame our approach as a model
ensembling method combined with: (i) a curriculum learning
strategy to promote the diversity on individual models and
(ii) a collaborative training scheme to exchange knowledge
between the models through a distillation loss. We design a
training curriculum, such that each model of the ensemble is
trained on all the source domains (i.e. training subjects), yet
progressively specializes to a specific subset of subjects. This
leads each model to capture patterns that are mostly specific to
the EEG signal characteristics of a subset of training subjects,
rather than the entire training set. Training our architecture
under such a curriculum, equips it with strong generalization
capabilities, by covering a wide range of patterns through
several models that act as diverse feature extractors. To reg-
ulate the trade-off between diversity and generalization [7],
we introduce an intra-ensemble distillation loss that pushes
the predictions of each individual model close to the average
of the predictions of all the other models, thereby control-
ling the diversity between the models of the ensemble. In
essence, our collaborative training scheme leads to distillation
of knowledge across models, working complementary with
the curriculum that is applied within each model. The balance
between diversity and generalization is controlled through a
hyperparameter that weighs the contribution of the distillation
loss to the total loss.

Our contributions are the following:

• We propose a model ensembling architecture which we
pair with a novel curriculum learning scheme. Our cur-
riculum promotes diversity on the models of the en-
semble, driving each model to specialize to a different
subset of training subjects. To our knowledge, curriculum
learning has not been previously explored for cross-
subject MI decoding.

• We propose an auxiliary intra-ensemble distillation loss,
allowing the exchange of knowledge between the individ-
ual models of the ensemble. This balances the diversity-
generalization trade-off, leading to further performance
improvement. Our work is the first to propose a pseudo-
labelling scheme for EEG-based knowledge distillation.

• We conduct our experimental analysis on two large motor
imagery datasets (PhysioNet [11] and OpenBMI [21])
totalling more than 150 subjects. We compare our method
against four state-of-the-art techniques, namely TID-
Net [17], EEGSym [25], MIN2Net [2] and ATL [37],
showing superior results.

• We make our code publicly available1 to support repro-
ducibility.

1https://github.com/gzoumpourlis/Ensemble-MI

The rest of the manuscript is organized as follows. In Sec-
tion II we outline relevant previous works, while in Section III
we describe our proposed method. In Section IV we present
the results of our experimental analyses and ablation studies.
Lastly, in Section V we conclude the manuscript.

II. RELATED WORK

In this Section, we present an overview of the related work
on the topics of domain generalization, ensemble learning and
feature diversity.

Domain generalization: Several works building subject-
independent models for EEG data (which by nature is a
domain generalization problem), do not explicitly take care
of inter-subject variability [2], [25], [39]. Such methods
adopt approaches based on Empirical Risk Minimization
(ERM) [30] that simply minimize the training loss over all
source domains (i.e. training subjects). Other methods that
have been occasionaly used for multi-subject EEG training are
Euclidean/Riemannian Alignment (EA/RA) [12], [17], [33],
which are powerful baselines for learning domain-invariant
representations. In our work, we leverage the benefits of
RA, along with our proposed curriculum learning and intra-
ensemble distillation techniques.

Ensemble learning: A successful example of model en-
sembling using CNNs is the work of [3], where a k-fold cross
validation process results in k trained models, with each model
trained on data from all the available training subjects. [26]
leverage the power of available crowdsourced algorithms for
an EEG-based seizure prediction competition [18], explor-
ing the possibility of obtaining performance improvements
by combining them through model ensembling. The model
ensemble proposed by [9] requires multiple hyperparameter
tuning runs to train each base model. In IENet [10], an
ensemble of models with convolutional layers of varying
kernel length across multiple scales is utilized to extract rich
feature representations. However, each base model of IENet
has more than seventy convolutional layers, bringing into
question the practicality and interpretability of the proposed
architecture.

Feature diversity: One of the key properties of ensemble
learning, is the emergence of diverse feature representations
across the individual base models of ensembles. Feature diver-
sity can also be obtained through alternative techniques which
do not fall within the category of ensemble learning, as they
explore ways to obtain diverse features through a single model.
[24] propose a multi-branch network architecture where the
input EEG signal is divided in four frequency bands, with a
dedicated branch for each band. [1] introduce a multi-branch
network based on EEGNet [20], where each branch contains
a different number of temporal filters, as well as a different
temporal filter length. [32] propose a multi-branch Separate-
Common-Separate Network (SCSN) to tackle the issue of
negative transfer learning. Negative learning can appear when
training subject-agnostic feature extractors, i.e. when all the
layers of a single model are trained on all the training subjects.
As a remedy to this, SCSN has a separate feature extractor



for each training subject. However we claim that such an
approach leads to non-optimal solutions, as training subject-
specific layers compromises their generalization capability. We
propose a model ensembling approach that differs from these
two scenarios (i.e. subject-specific or subject-agnostic layers),
yet combines the best of both worlds. In contrast to SCSN,
we train multiple feature extraction models on all training
subjects, yet we guide each individual feature extractor to
specialize on a subset of multiple subjects.

III. PROPOSED METHOD

In this section we describe the proposed methodology,
which consists of a model ensemble architecture, a curriculum
training scheme and an intra-ensemble distillation loss. We
provide an overview of the training pipeline for our proposed
architecture in Fig. 1 and present its individual components in
the following subsections. Specifically, we begin by explaining
our ensemble architecture in Subsection III-A. Then, we
introduce the first loss term that materializes our curriculum
learning scheme in Subsection III-B, as well as the second
loss term that enables collaborative training across the models
of the ensemble in Subsection III-C.

A. Architecture

Single model: In this work, we use the well-established
EEGNet [20] architecture as our strong single-model baseline.
The selection of EEGNet is justified from the fact that it
achieves compelling performance, with a reasonably small
number of trainable parameters and a simple network design
(e.g. without streams of varying kernel lengths, or band-wise
processing streams). In the task of MI decoding, the time-
series signals x ∈ RC×T of an EEG trial with C electrodes
and T samples in the temporal dimension, are fed as input
to EEGNet. The class-wise scores ŷ ∈ RNC (where NC

is the number of classes) are obtained as output, while the
groundtruth label y ∈ RNC is represented in the form of a one-
hot vector. Thus, in the case of EEGNet the output scores are
computed as ŷ = EEGNet(x) and the network is optimized
by minimizing the cross-entropy (CE) loss LCE = CE(ŷ,y),
given by CE(ŷ,y) = −

∑NC

i=1 yi log
(
softmax(ŷi)

)
where yi

and ŷi are the i-th elements of y and ŷ respectively.
Model ensemble: Our model ensemble architecture (shown

in Fig. 1) consists of two stages and uses EEGNet as its ele-
mentary component. The first stage contains multiple models
in parallel, with all models having exactly the same architec-
ture design. These models act as feature extractors on an input
sample, with each model producing a feature vector. We use
Fk(·) and fk to denote the k-th feature extractor and its output
feature vector. The output feature vectors from the first stage,
are computed as [f1, f2, . . . , fK] = [F1(x),F2(x), . . . ,FK(x)].
The second stage has a single shared classification head G(·),
that computes the class-wise prediction scores for each feature
vector originating from the first stage. We use ŷk to denote the
scores corresponding to the k-th feature vector fk. The scores
are computed as [ŷ1, ŷ2, . . . , ŷK] = [G(f1),G(f2), . . . ,G(fK)].
In the simple scenario where no curriculum learning occurs,

this architecture is trained by minimizing the sum of the
individual losses for the predictions of each model. The
loss Lk

CE for the predictions ŷk of the k-th model, and the
total loss Ltotal

CE , are computed as Lk
CE = CE(ŷk,y) and

Ltotal
CE =

∑K
k=1 Lk

CE. In the inference phase, to classify an
input sample x we fuse the model-wise scores through a
simple average operation and obtain a final score vector ŷens

as ŷens =
1
K

∑K
k=1 ŷk. To this end, the described architecture

is purely subject-agnostic, having no subject-specific layers
in both stages. In the following subsection we propose an
ensemble curriculum learning scheme that is applied during
training and changes the nature of the first stage layers. Our
curriculum provides a strong alternative to the typical subject-
agnostic layers, that can be adopted in ensemble learning.

B. Ensemble curriculum learning

Our goal is to make each feature extractor to specialize on
a specific subset of subjects. That is, we want to induce local
(i.e. focused on a subset of the entire training set) feature
extraction power to each model in the first stage. Let D =
{D1,D2, . . . ,DN} be a dataset with the data of N subjects,
where Dn denotes the sub-dataset containing the trials of the
n-th subject. For an ensemble with K models (K ≥ 2), we
split D into K non-overlapping subsets S: D = {S1, . . . ,SK}.
We do this splitting process by randomly assigning the sub-
dataset of each subject to one of the K subsets, with a uniform
probability for all subsets. Therefore, we have

⋃K
k=1 Sk = D

and Si ∩ Sj = ∅ for i ̸= j. Each subset Sk corresponds to the
k-th model and contains the sub-datasets of the subjects on
which we drive the k-th model to specialize.

To achieve this specialization, we design a subject-weighted
loss function where we inject subject-specific coefficients to
weigh the contribution of each subject to the loss of each
model. Considering the subject-weighted loss Lk

subj that is
used to train the k-th model, the purpose of the subject-
specific coefficients is to linearly decay over epochs the
loss contribution of the subjects that do not belong to Sk.
Effectively, this makes the k-th model to focus more on the
subjects of Sk, which have a non-decaying loss contribution.
We scale the contribution of a training sample x to the loss
Lk
subj through the coefficient β(x, k). If trial x corresponds

to a subject that belongs in Sk (hence x ∈ Sk), then we
keep β(x, k) = 1 throughout the whole training process.
Otherwise (x /∈ Sk), we decay β(x, k) from 1 to 0 while
training progresses, that is:

β(x, k) =

{
1 , if x ∈ Sk

α , if x /∈ Sk
, (1)

where α = 1 − epoch
Nepochs

∈ [0, 1] represents the progression
of training, as Nepochs is the maximum number of training
epochs and epoch is the current epoch. The loss Lk

subj of
the k-th model and the total subject-weighted loss Ltotal

subj are
computed as Lk

subj = β(x, k) · Lk
CE and Ltotal

subj =
∑K

k=1 Lk
subj.
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Fig. 1: Our proposed architecture has K first stage feature extractors and a shared classifier in the second stage. Each feature
extractor is trained: i) on an ensemble curriculum learning objective (Lsubj) and ii) on a knowledge distillation objective
(Ldistill).

C. Intra-ensemble distillation for collaborative training

In this subsection we propose a collaborative training
scheme which helps to regulate the diversity-generalization
trade-off in our model ensemble. In order to classify a sample,
we extract its first stage representations, feed them to the
shared classifier of the second stage and average the individual
scores across models. The diversity between the first stage
representations of a sample can make the classifier to compute
inconsistent class scores across models. This, in turn, can
negatively affect the final prediction scores, as they will be
the result of fusing multiple contradicting predictions. We
observe that, although feature diversity is a desirable property
of our ensemble, it can also have an adverse effect on the
generalization capabilities.

To overcome this phenomenon, we introduce a loss term that
promotes consistency across the multiple model predictions,
in order to improve the performance of the entire ensemble.

We design our proposed intra-ensemble distillation loss to
operate on the predicted scores of the second stage, instead
of operating on the features extracted from the first stage.
An overview of our distillation loss is shown in Fig. 1.
Considering each prediction ŷk of the k-th model, our loss
pushes it closer to the softmaxed average of the predictions
from all the other models (which is the pseudolabel in our
distillation loss). Specifically, we compute the pseudolabel ỹk

for the k-th model as ỹk = softmax

(
1

K−1

∑K
i=1,i ̸=k ŷi

)
and minimize the cross-entropy loss between the prediction
ŷk and the pseudolabel ỹk. We note that we apply a stop-
gradient [8] operation on the pseudolabels, as shown in Fig. 1.
We do this to ensure that only the weights of the k-th model
are updated based on this loss term, while the other models
remain unaffected. For the k-th model, we opt to not apply
this loss on the samples of Sk. This is done through a binary



mask that zeroes out the distillation loss of these samples. We
do so, as our curriculum learning objective ensures that the k-
th model is sufficiently trained on the samples of Sk through
their groundtruth labels y.

We note that it is necessary to scale the contribution of
the intra-ensemble distillation loss to the total loss of the
architecture, in accordance with the progress of training. In
the beginning of the training process, the weights of the
architecture are randomly initialized. Hence, penalizing the
distance of individual model predictions from the derived
pseudolabels is not so meaningful in the early epochs. As train-
ing proceeds, each feature extractor progressively focuses on
a subset of subjects and feature diversity increases. As shown
later in the experiments, our distillation loss indirectly controls
this emerging feature diversity by bringing closer the class
scores computed from various first stage features. We linearly
increase the contribution of the distillation loss to the total loss,
across training epochs, by multiplying it with the scalar (1−α)
that quantifies the training progress. The distillation loss
Lk
distill of the k-th model, and the total distillation loss Ltotal

distill

are computed as Lk
distill = 1(x /∈ Sk) · CE(ŷk, ỹk) · (1 − α)

and Ltotal
distill =

∑K
k=1 Lk

distill. We compute the total loss Ltotal

of our architecture as Ltotal = λsubj · Ltotal
subj +λdistill · Ltotal

distill,
where we empirically set λsubj = K and λdistill = 0.7.

IV. EXPERIMENTAL RESULTS

A. Datasets

We apply our method on the problem of motor imagery
decoding and work on two large datasets: PhysioNet [11],
[28] and OpenBMI [21]. First we provide a brief description
of the datasets and then we describe the common signal
preprocessing pipeline that is followed for both datasets.

PhysioNet dataset: The dataset contains EEG recordings
from 109 participants, with trials that belong to 4 classes: left-
hand, right-hand and feet imagery, as well as rest. The data
are recorded with 64 EEG electrodes at a sampling frequency
of 160Hz. We choose to work on the two-class problem of
classifying left-hand versus right-hand imaginary movements,
discarding the data from the other classes. Similarly to other
works [5], [17], we also discard data from 6 participants
(specifically S088, S090, S092, S100, S104 and S106)
that have inconsistent sampling frequencies or trial lengths. In
our experiments we use the signals from all 64 electrodes.

OpenBMI dataset: The data of OpenBMI correspond to
trials of 2 classes (left-hand and right-hand imagery) collected
from the EEG recordings of 54 participants, with 62 electrodes
at a sampling frequency of 1000Hz. Each participant has
data from two sessions and each session has two runs. The
first run of each session is done in an offline manner, i.e.
without feedback. The second run is done in an online manner,
providing real-time visual feedback to the user. When not
otherwise stated, we use a subset of 20 electrodes and we
use the data from the two offline runs (i.e. the first run of the
first and second session) for each participant, following the
default settings of the MOABB [13] benchmark.

Preprocessing: Our preprocessing steps are the following:
(i) we remove powerline interferences through notch filter-
ing (ii) we perform bandpass filtering (4Hz-38Hz) (iii) we
resample the signals to 100Hz and (iv) for each trial, we
crop a temporal window of 4 seconds, starting from its onset
event. Upon obtaining the cropped trials, we use the session-
wise covariance matrices of the EEG signals and perform
Riemannian Alignment on the time-series of each trial, as done
in [40].

B. Comparison with other works and baseline

We compare our proposed method with four state-of-the-art
techniques that provide their source code, namely Adaptive
Transfer Learning (ATL) [37], EEGSym [25], TIDNet [17]
and MIN2Net [2]. In order to fairly judge the impact of
our proposed methodology, we also implement two additional
methods: a single model baseline and an ensembling technique
using the EEGNet architecture. The baseline method (men-
tioned as “EEGNet-Single”) is a single EEGNet model, that
serves as a reference for the performance of an EEGNet ar-
chitecture without ensembling. We implement the ensembling
technique by training multiple individual EEGNet models.
During inference, we fuse their predictions through a simple
averaging operation, to obtain the final prediction. In essence,
this method (mentioned as “EEGNet-Ensemble”) represents a
post-training model ensemble.

Evaluation settings: We perform evaluation in two ways: (i)
in a 5-fold cross-validation (CV) manner and (ii) in a Leave-
One-Subject-Out (LOSO) manner. In the 5-fold CV scenario,
we split the subjects of our dataset into 5 disjoint folds and run
5 experiments. In each experiment, we use a different fold as
our test set and then assign 3 folds to our training set and the
1 remaining fold to our validation set. In the LOSO scenario
for a dataset with N subjects, we run N experiments where
in the n-th experiment we use the data of the n-th subject as
our test set. In each experiment, we split the remaining N− 1
subjects into our training and validation set. Specifically, we
assign 80% of these subjects to the training set and the rest
20% to the validation set of the experiment. In both CV and
LOSO scenarios, the reported accuracy is the average of the
test accuracies across all experiments.

Training details: We train all models (i.e. our proposed
method, the single model baseline and the model ensembling
method) for 120 epochs with a batch size of 64. We use
a Stochastic Gradient Descent (SGD) optimizer, setting the
momentum to 0.9 and weight decay to 0.01. We initialize the
learning rate at 0.01 for the first 60 epochs and then decrease
it to 0.002 for the remaining 60 epochs.

C. Results (5-fold cross-validation)

In the first part of our experimental analysis we evaluate
against methods that provide source code, under a 5-fold cross-
validation scenario, without any model adaptation on test data
or pretraining on external datasets. We note that these exper-
iments are performed using exactly the same train, validation
and test splits, the same trial length and the same number of



TABLE I: Performance of various methods on the datasets of
PhysioNet and OpenBMI, under 5-fold CV evaluation settings.

Dataset Method Parameters Acc. (%)

PhysioNet

EEGNet-Single 2.5K 82.09
EEGNet-Ensemble

(8 models) 20.0K 84.56

EEGSym [25] 147.8K 83.91
TIDNet [17] 694.2K 82.19
Ours, K=7 15.7K 86.36

OpenBMI

EEGNet-Single 1.8K 78.31
EEGNet-Ensemble

(8 models) 14.3K 78.98

MIN2Net [2] 37.1K 69.44
ATL [37] 278.8K 77.52
Ours, K=3 4.6K 79.73

electrodes for all methods (except for the method of EEGSym
that has an architectural requirement of 16 electrodes). Having
the same experimental settings enables us to fairly judge the
performance of all methods. Table I shows the results of the
methods trained on the datasets of PhysioNet and OpenBMI
with 5-fold cross-validation. Regarding the reported results of
our proposed method, we note that the optimal number of first
stage feature extractors K is inferred from the accuracy on the
validation set. Similarly, regarding the reported results of the
EEGNet-Ensemble method, the optimal number of individual
EEGNet models within an ensemble is chosen based on the
validation accuracy.

PhysioNet: Our proposed method presents a substantial
boost of +1.80% over the standard ensemble scenario, reach-
ing an accuracy of 86.36% when we use seven first stage
models in our architecture. The model of EEGSym achieves an
accuracy of 83.91%, using ∼ 10× more trainable parameters
than the best performing architecture of our method. EEGSym
without pretraining on external data, performs worse than both
our method and the standard model ensemble. The accuracy
of TIDNet (82.19%) is similar to that of our EEGNet-Single
baseline model.

OpenBMI: Our proposed method performs superiorly to
our baselines, yielding an accuracy of 79.73% when using
three first stage networks. The method of MIN2Net has a
low performance, with an accuracy of 69.44%. Regarding the
method of ATL, the accuracy of 77.52% falls behind the results
of both our proposed method and our baseline, using ∼ 60×
more trainable parameters than our proposed method. Our
results show that a simple ensemble architecture trained with a
curriculum learning scheme and an auxiliary loss can achieve
high cross-subject generalization, without any adaptation on
test data or complex model architecture.

D. Results (Leave-One-Subject-Out)

In this experiment, we compare our method against other
state-of-the-art works that report LOSO results on PhysioNet
and OpenBMI. We note that we mention the results of these
methods as reported in their original works, ensuring that they
do not utilise labelled data from the test subjects. The results
are shown in Table II.

TABLE II: Comparison with other state-of-the-art methods
on the datasets of PhysioNet and OpenBMI with LOSO
evaluation settings. (*) denotes pretraining on external data.

Dataset Method Parameters Accuracy (%)

PhysioNet
Causal Viewpoint [5] N/A 83.90
EEGSym* [25] 147K 88.56
Ours, K=7 15.7K 85.82

OpenBMI

MIN2Net [2] 37.1K 72.03
TSMNet [16] 4.5K 74.60
ATL [37] 305K 84.19
EEGSym* [25] 147K 84.72
Ours, K=4 8.7K 85.07

PhysioNet: The method of EEGSym achieves state-of-the-
art performance reaching an accuracy of 88.56%. EEGSym
performs transfer learning by pretraining on four external
datasets, which proves to be highly valuable. Our proposed
method is the best performing model among the works that
do not train on external data. We outperform the method of [5]
that trains separate convolutional layers for each training sub-
ject. This indicates the existence of more efficient alternatives
to complex deep architectures and the incorporation of subject-
specific components.

OpenBMI: Our method presents state-of-the-art perfor-
mance, scoring an accuracy of 85.07% when using all 62
electrodes of OpenBMI and having K = 4 first stage models.
We outperform all other techniques, including the method
of EEGSym that employs pretraining on external data. The
geometric deep learning approach of TSMNet [16] presents
an accuracy gap of more than ∼ 10% from the methods of
ATL, EEGSym and our technique. This indicates that deep
architectures operating on covariance matrices of EEG time-
series (e.g. [16] and [19]), are generally less suitable for cross-
subject MI decoding.

E. Ablation studies

In our ablation studies we investigate the impact of three
components on the performance of our ensemble architecture.
The first component is the number of first stage models
K in the architecture. The second component is the loss
Ltotal
subj , that materializes our curriculum learning scheme. The

third component is the distillation loss Ltotal
distill that enables

collaborative training. We concurrently explore the effects of
all these component choices, performing a sweep over the
hyperparameter K and trying combinations of our loss terms.

Our first set of experiments (denoted as “LCE”) corresponds
to the scenario of training a model ensemble architecture as
described in Sec. III-A, i.e. without curriculum learning and
without our distillation loss. In our second set of experiments
(denoted as “Lsubj”) we train our architecture with ensemble
curriculum learning, as described in Sec. III-B, i.e. without
our distillation loss. In the third experimental run (denoted as
“Ltotal”) we apply our entire method, training our architecture
with the Ltotal loss. All experiments are performed with a 5-
fold cross-validation setting. The results of our ablation study
are shown in Table III.



TABLE III: Ablation study on the datasets of PhysioNet and OpenBMI with 5-fold CV evaluation settings. Rows correspond
to experiment sets done with different optimization objectives. Columns correspond to the number of first stage models (K)
in our architecture.

Dataset Loss terms Accuracy (%)
K=2 K=3 K=4 K=5 K=6 K=7

PhysioNet
LCE 83.34 84.70 84.97 84.93 85.53 85.34
Lsubj 84.38 84.72 85.10 85.40 85.62 85.68
Ltotal 83.76 84.78 85.02 85.48 86.04 86.36

OpenBMI
LCE 79.15 79.08 78.96 79.24 78.94 79.20
Lsubj 79.02 79.58 79.13 79.15 79.01 79.31
Ltotal 79.25 79.73 79.53 79.46 79.10 79.66

PhysioNet: We observe a general trend of increasing accu-
racy for all our experimental sets, as K increases up to the
value of 7 (further increasing K does not yield performance
improvements). The only exception is the case where we train
our architecture without curriculum learning (i.e. first row
in Table III), where the accuracy saturates at K = 6. This
indicates that training multiple feature extractors by equally
fitting them to the entire training set, is a suboptimal approach
of training on multiple source domains. Thus, applying our
curriculum learning scheme through Lsubj to induce diversity
in the feature extractors, is a straightforward step. The results
of the second row in Table III verify the positive impact of
curriculum learning in our ensemble architecture. When fur-
ther incorporating our distillation loss in the total optimization
objective of our architecture (i.e. third row in Table III), we
get additional accuracy boosts in most cases. The beneficial
effect of regulating the balance between feature diversity and
model generalization through our distillation loss, is higher in
the cases of K = 6 and K = 7 where the accuracy boosts are
+0.42% and +0.68% respectively. This finding is particularly
interesting, showing that the combination of our two loss terms
can increase the performance of model ensembles, even when
using many feature extraction models. On the contrary, an
ensemble architecture trained solely with the standard cross-
entropy loss, is more prone to performance saturation.

OpenBMI: The standard ensemble architecture trained
without curriculum learning (i.e. first row in Table III) achieves
a maximum accuracy of 79.24% when K = 5. By using our
curriculum learning scheme, we improve the accuracy of our
architecture in four out of six cases, achieving a maximum
accuracy of 79.58% when K = 3. The incorporation of our
distillation loss term in the total loss of our architecture (i.e.
third row in Table III) provides consistent improvements in
all cases. Our best model has an accuracy of 79.73% when
K = 3, with a boost of 0.65% over its corresponding standard
ensemble model.

V. CONCLUSION

In this work, we propose a method for cross-subject motor
imagery decoding that leverages the combined strengths of
model ensembling, curriculum learning and collaborative train-
ing. We design an ensemble architecture that is trained end-
to-end in a single phase. We show that our curriculum training
scheme can induce diversity to the feature extraction models
of our architecture, improving its performance over standard

ensembling. Our method also benefits from the exchange of
knowledge between the models of our ensemble, that occurs
through our auxiliary distillation loss. We conduct experiments
on the datasets of PhysioNet and OpenBMI, demonstrating
state-of-the-art results. Our proposed method outperforms
other approaches that try to tackle MI decoding using complex
networks [17], [37], multi-task learning [2], geometric deep
learning [16], subject-specific layers [5] or pretraining on
multiple external datasets [25]. Our work highlights the impor-
tance of feature diversity as a property of model ensembles,
paving the way for robust EEG-based domain generalization
techniques.
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