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Abstract—Brain-to-speech technology represents a fusion of
interdisciplinary applications encompassing fields of artificial
intelligence, brain-computer interfaces, and speech synthesis.
Neural representation learning based intention decoding and
speech synthesis directly connects the neural activity to the means
of human linguistic communication, which may greatly enhance
the naturalness of communication. With the current discoveries
on representation learning and the development of the speech
synthesis technologies, direct translation of brain signals into
speech has shown great promise. Especially, the processed input
features and neural speech embeddings which are given to the
neural network play a significant role in the overall performance
when using deep generative models for speech generation from
brain signals. In this paper, we introduce the current brain-to-
speech technology with the possibility of speech synthesis from
brain signals, which may ultimately facilitate innovation in non-
verbal communication. Also, we perform comprehensive analysis
on the neural features and neural speech embeddings underlying
the neurophysiological activation while performing speech, which
may play a significant role in the speech synthesis works.

Keywords–brain-computer interface, deep neural networks,
electroencephalogram, generative adversarial network, imagined
speech, speech synthesis;

I. INTRODUCTION

Recently, there has been a growing interest in the field
of brain-computer interfaces (BCIs) which offer a way for
humans to interact with external devices or control their
surroundings by using brain signals [1]. Among the various
methods used for BCI research, electroencephalography (EEG)
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involves recording electrical activity by placing electrodes
on the scalp without the need for invasive procedures like
implanting electrodes. This makes EEG a valuable source of
information for applications involving brain signals [2], [3].
BCIs based on EEG have been explored for a wide range of
applications [4], including the control of motor functions,
communication, and cognitive assessment [5]–[7]. Despite
the challenge of low signal quality in non-invasive EEG
recordings, researchers have explored numerous applications
due to the ease of use and practical advantages offered by
EEG [8].

Brain-to-speech (BTS) is a new stream of intuitive BCI
communication which aims to generate audible speech from
human brain signals [9]. It provides non-verbal communication
facilitated by current domain adaptation and speech synthesis
technologies. Neural patterns are transformed into spoken
language by directly associating the speech-related features
with human language. In previous studies, the domain adapta-
tion framework established a natural correspondence between
the neural features and the speech ground truth [9], [10].
Therefore, audible speech could be generated from brain sig-
nals of silently imagined speech, demonstrating the potential
of brain signal-mediated communication. The preprocessing
procedures as well as the feature embeddings given as an input
to the model is known to play a significant role in the BTS
performance.

In this paper, we provide an extensive analysis of non-
invasive BTS technology, an innovative field that holds
promise for utilizing brain signals to synthesize speech di-
rectly. We provide an extensive analysis on the previous BTS
work [9], which could contribute in highly improving the
overall BTS performance. This advancement could introduce
a new era of non-verbal communication, transforming how we
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Fig. 1. Feature embedding for the spoken speech and the imagined speech is demonstrated. The feature matrix was constructed using the time-wise computation
of the CSP pattern, divided into 16 time points per each EEG segment. The size of the pattern for each time point was set to 104 since 8 patterns per class
were computed using the multi-CSP algorithm. The value under the mean of each column was ignored to display the temporal variations of the embedding
features.

interact with the external world via brain signals. Additionally,
we conducted an extensive and comprehensive examination of
the neural characteristics and underlying the neurophysiolog-
ical processes implicated in the act of speaking. Our research
aims to clarify the intricate mechanisms involved in speech
production and provide advancement in the field of neural
speech synthesis. The comprehension of these neural features
would enhance the understanding of human communication
and provides crucial insights for advancing BTS technology.

II. MATERIALS AND METHODS

A. Dataset

This research involved the use of EEG signals and voice
recordings from six participants as they engaged in speaking
tasks. The recordings were obtained by placing a 64-channel
electrode array on the subjects’ scalps to record EEG data,
and a microphone was used to capture their voices. The
microphone was synchronized with the EEG signals. The par-
ticipants were directed to speak in accordance with instructions
displayed on a screen. This experimental setup was consistent
with a previous study by [9], [11].

Participants were instructed to perform imagined speech
and spoken speech following the instructions displayed on
the screen. For the spoken speech session, the voice of each
participant was recorded via a microphone in alignment with
the EEG of spoken speech.

B. Preprocessing

EEG signals were segmented into 2-second intervals for
each trial. The EEG data underwent filtering, which included a

5th-order Butterworth bandpass filter within the high-gamma
frequency range of 30–120 Hz, a well-known frequency
band associated with speech-related information according to
Lachaux et al. [12]. Additionally, a notch filter was applied
to mitigate line noise at 60 Hz and its harmonics of 120
Hz. Independent component analysis, with references from
electrooculography and electromyography, was employed to
remove artifacts resulting from eye and muscle activity dur-
ing spoken speech. Baseline correction was carried out by
subtracting the average signal from 500 ms preceding the
beginning of each trial.

All the preprocessing steps were executed using a com-
bination of Python and MATLAB, BBCI Toolbox [13], and
EEGLAB [14]. Regarding the voice data, resampling was per-
formed, adjusting the voice signals to a 22,050 Hz sample rate,
while noise reduction was implemented using the noisereduce
library [15].

C. Feature Embeddings

Spatial, temporal, and spectral information are recognized as
vital components in speech-related brain signals, and vector-
based brain embedding features have the capacity to convey
the contextual meaning within these signals, as evidenced in
prior studies. The embedding vector was generated using a
combination of the common spatial pattern (CSP) to optimize
spatial patterns and log-variance to extract temporal oscillation
patterns. CSP, a technique for finding the most effective
spatial filters using covariance matrices, plays a crucial role
in deciphering brain signals associated with speech.
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Fig. 2. t-SNE plot of features before and after the adaptation process. Clusters of the imagined speech and the spoken speech have shown clear distance in
the original features. However, adapted features show relatively distributed aspects across same classes in different domain (blue and red samples show broad
clusters.)

To minimize the disparities between the data distribution of
spoken EEG and imagined EEG, we shared the CSP filters
between both EEG signals [9]. Notably, the CSP filters were
trained using imagined EEG, which exclusively contains pure
brain signals, as opposed to spoken EEG, which may contain
some level of noise. By sharing these CSP filters, the domain
of spoken EEG was effectively adapted to the subspace of
imagined EEG.

D. Spatio-temporal Analysis

To compare the brain activation while performing spoken
speech and imagined speech, temporal, spatial, and spec-
tral features were analyzed. For the spatial features, de-
synchronization in the central lobe and synchronization in the
temporal lobe was prominent. As for the spectral features,
the high-frequency range above 90 Hz was dominantly syn-
chronized. Both the imagined speech and the spoken speech
have shown similar aspects, mainly desynchronization patterns
around 500-1,250 ms dominantly in the high-frequency range,
which supports that the BTS framework aims to adapt the two
different domains of speech brain signal to each other [9].

III. RESULTS AND DISCUSSION

A. Feature Embeddings

Fig. 1 depicts the time points of activation during spoken
speech and imagined speech, displaying remarkably compara-
ble results. The results demonstrate that the feature embedding
of imagined speech follows the aspects of the spoken speech,
which implies that the encoding architecture can capture the
relevant time points from the imagined speech EEG, as well
as the spoken speech EEG. Since this indicates that the CSP
patterns and log-variances can represent several features of
spoken or imagined voices, we used these embedding vectors
as the input of the model to reconstruct user’s voice.

B. Embedding Vector Distributions

While the distribution of spoken features and imagined
features shows that they placed separately before sharing CSP
patterns, features adapted using shared CSP patterns are placed
in relatively closer latent space where classifier can be shared
or domain shift can be performed in a narrow range (Fig. 2).
Since our domain is mainly brain signal, which is very unclear
compared to the image or speech domain, the clusters of each
class show relatively soft margins.

C. Spatio-spectral Features

To explore disparities in brain activity during speech, we
conducted an investigation into spatial and spectral char-
acteristics, as depicted in Fig. 3. Our analysis of spatial
features unveiled noteworthy synchronization in the central
lobe and desynchronization in the temporal lobe, in line with
findings reported by Lee et al. [16]. In terms of spectral
features, we identified strong synchronization in the high-
gamma frequency range, specifically within the 30 to 120 Hz
interval, as substantiated previous studies [17], [18]. This high-
gamma frequency band was selected for further examination.
Furthermore, we noted distinct spatial characteristics for each
text, with each text displaying its unique brain activation
pattern. These observations suggest that various facets of
speech may engage separate neural networks, and the observed
brain activation patterns may mirror the motor processes that
underlie speech production [19].

D. Limitations and Future Works

In our study, we were constrained by a dataset comprising
only thirteen words. While we made every effort to prepare the
model to produce novel words by incorporating all phonemes
from those words, the outcomes did not meet our expectations.
Our forthcoming objectives consist of extending our investiga-
tion by utilizing a dataset that encompasses a more extensive



Fig. 3. Temporal-spatio-spectral analysis of imagined speech ’thank you’.
Changes of the power spectrum for (A) imagined speech and (B) spoken
EEG is plotted for every 20Hz frequency intervals in time shifts of 250ms.

range of phonemes within sentences. Recent breakthroughs,
such as the use of functional magnetic resonance imaging
to decode semantic thoughts, have demonstrated the potential
for brain signals to facilitate communication across language
boundaries, offering the prospect of direct translation of neural
signals. We anticipate that this enlarged dataset will permit us
to investigate the neural features underlying speech process
more precisely [20]–[22]. Additionally, we aim to implement
our suggested methodology to invasive measures since speech
BCI has both patient-specific and general applications. For
patients, invasive methods focus on decoding articulator move-
ments, which include acoustic and motor information. This
could potentially serve as a communication tool for individuals
faced with speech impairments [2].

IV. CONCLUSION

In this paper, we investigated the neural speech embeddings
for speech synthesis from brain signals. Neural representation
learning is an important issue in the field of non-invasive BCI
since learning the optimal feature from noisy non-invasive
brain signals plays a crucial role in the overall performance of
decoding and generating speech. While current technologies
are mostly limited in generating preliminary performance of
word-level speech from non-invasive brain signals of imagined
speech, further investigations on the neural representation
learning may facilitate the development of a robust BTS
system. The BTS framework can help disabled people who can
only speak out few sounds, or patients who may potentially
lose the ability to speak in the future (such as amyotrophic
lateral sclerosis patients). We hope that the BTS technology
to be positively used to improve the life for many people.
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