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Abstract—Recent advances in brain-computer interface (BCI)
technology, particularly based on generative adversarial networks
(GAN), have shown great promise for improving decoding
performance for BCI. Within the realm of Brain-Computer
Interfaces (BCI), GANs find application in addressing many
areas. They serve as a valuable tool for data augmentation,
which can solve the challenge of limited data availability, and
synthesis, effectively expanding the dataset and creating novel
data formats, thus enhancing the robustness and adaptability of
BCI systems. Research in speech-related paradigms has signifi-
cantly expanded, with a critical impact on the advancement of
assistive technologies and communication support for individuals
with speech impairments. In this study, GANs were investigated,
particularly for the BCI field, and applied to generate text from
EEG signals. The GANs could generalize all subjects and decode
unseen words, indicating its ability to capture underlying speech
patterns consistent across different individuals. The method has
practical applications in neural signal-based speech recognition
systems and communication aids for individuals with speech
difficulties.

Keywords–generative adversarial network, brain-computer
interface, electroencephalogram, imagined speech;

I. INTRODUCTION

In recent years, brain-computer interfaces (BCIs) have
emerged as promising new areas of research, providing a
means for humans to interact with external devices or control
environments via brain signals [1]. Electroencephalography
(EEG), which captures electrical activity by non-invasively
attaching electrodes on the scalp, stands out among the several
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approaches for BCI research [2]. EEG offers an electrical
measurement of cerebral activity without any surgical process
of implanting electrodes, making it a significant source of
information for applications involving brain signals [3]. BCIs
based on EEG have been investigated for a variety of uses,
including the control of motor activities, communication,
and cognitive assessment [4], [5]. Despite the low signal-to-
noise ratio of non-invasive EEG signals, several applications
employing EEG have been explored owing to their ease of use
and practical advantages [6].

Generative adversarial networks (GANs) have emerged as a
seminal framework in the field of machine learning, computer
vision, and BCI. Originally proposed by Goodfellow et al. [7],
GANs have revolutionized the generation of realistic data by
pitting a generator network against a discriminator network
in a minimax game, resulting in the generation of data that
closely mimics the underlying distribution. GANs have found
wide-ranging applications, including image synthesis, speech
synthesis, style transfer, and data augmentation, making them
a fundamental tool in contemporary artificial intelligence re-
search [8].

Furthermore, GANs have found notable applications within
the domain of EEG, where they are employed for both data
augmentation and signal reconstruction [9]. In the context of
EEG data, data augmentation techniques using GANs play a
pivotal role in expanding the size and diversity of available
datasets [10], [11]. By generating synthetic EEG recordings
that closely resemble real-world data, GANs enable improved
training of machine learning models, thereby enhancing the
models’ ability to generalize and perform robustly on un-
seen data. Additionally, GANs are leveraged in EEG signal
reconstruction tasks, where the goal is to restore corrupted
or missing segments of EEG recordings. This application is
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particularly valuable in scenarios where EEG data may be
affected by noise or artifacts [12], [13], such as in clinical
settings or during real-time monitoring [14]. GANs, through
their generative capabilities, can effectively reconstruct EEG
signals, contributing to improved signal quality and the extrac-
tion of meaningful information, which is crucial for various
neuroscientific and clinical applications [15], [16]. The dual
role of GANs in EEG data augmentation and signal recon-
struction underscores their versatility and growing significance
in the field of BCI.

BCI-based communication systems have been developed
in various ways, including exogenous paradigms such as
event-related potential and steady-state visually evoked po-
tential and intuitive paradigms such as spoken speech and
imagined speech. Recent studies have investigated the use
of brain signals including electrocorticography (ECoG) [17],
and stereoEEG (sEEG) to reconstruct text or speech using
machine learning and deep learning models. Willett et al.
[18] developed a novel handwriting communication system
based on intracortical BCI by reconstructing pen trajectories
of written alphabets using a recurrent neural network. ECoG
studies have explored speech synthesis from brain signals,
using linear and nonlinear regression approaches and recurrent
neural networks during spoken/mimed speech [19]. Studies
on sEEG have shown potential for reconstructing speech
using a multiple input convolutional neural network or a unit
selection approach [20]. However, invasive techniques like as
ECoG and sEEG entail risks and challenges to be applied
for non-patient users. Therefore, non-invasive signals such as
functional magnetic resonance imaging and EEG is gaining
attention to be investigated, despite their inferior performance
[15], [21]–[23]. Recently, Lee et al. [15] demonstrated the
potential of speech synthesis at the word level from EEG
during spoken and imagined speech. This study has yielded
promising findings; however, it is notable that the training
time required for the proposed model was considerable, and
a substantial amount of calibration data for each subject was
required for optimal performance.

In this study, our primary objective was to explore the
practical use of GANs within the field of BCI. Specifically,
we focused on the intricate task of reconstructing text-based
output directly from brain signals, aiming to advance the
capabilities of BCI systems in generating textual information
from neural data, thereby contributing to the broader domain
of human-computer interaction and assistive technologies.

II. MATERIALS AND METHODS
A. Generative Adversarial Networks

In the context of our GAN-based approach, a generator
network, denoted as G, learns to map input vectors z from a
latent space to synthetic data samples that resemble the target
mel-spectrogram from voice x. The discriminator network,
denoted as D, is simultaneously trained to distinguish between
real brain signals and those generated by G. Through a min-
max game, G aims to generate increasingly realistic signals
to deceive D, while D strives to become more proficient

at discrimination. This adversarial training process continues
until an equilibrium is reached, where G generates brain
signals that are indistinguishable from real ones.

B. Adversarial Loss

The central component of the GAN framework is the
adversarial loss, which comprises a generator loss (LG) and a
discriminator loss (LD). The generator loss encourages G to
create synthetic signals that are convincingly realistic, while
the discriminator loss guides D in effectively distinguish-
ing between real and synthetic data. The generator loss is
minimized when G produces signals that successfully fool
the discriminator, and the discriminator loss is minimized
when it accurately discriminates between real and generated
signals. This competitive interplay between LG and LD drives
the refinement of both networks, ultimately leading to the
generation of brain signals that closely mimic the underlying
distribution of real data. Here is the equation of loss:

LD = E[log(D(x))] + E[log(1−D(G(z))], (1)

LG = E[log(D(G(z))]. (2)

C. Dataset

This study involved EEG signals and voice recordings
of twenty-one subjects while they performed speech. The
recordings were captured using scalp EEG consisting 64-
channel electrode array placed on the scalp, in conjunction
with a microphone to record voices, which was synchronized
with the EEG signals. The subjects were instructed to speak in
accordance with the instructions displayed on the screen. They
spoke thirteen distinct words including “ambulance,” “light,”
“TV,” “water,” “pain,” “hello,” “toilet,” “clock,” “yes” “stop,”
“help me,” “thank you,” and rest, in the same manner as
the study [24]. Four trials were rhythmically given following
each random auditory cue indicating the word or phrase the
subject should speak. To minimize potential visual or auditory
artifacts, the experiment was designed to capture EEG signals
without any stimuli present. The study received approval
from the Institutional Review Board and was conducted in
accordance with the principles outlined in the Declaration of
Helsinki. Prior to commencing the study, all subjects provided
informed consent in adherence to ethical standards.

D. Text Generation from Brain Signals

Fig. 1 provides an overview of our proposed framework,
which receives EEG signals from multiple speakers as input
and generates corresponding text as output. It includes embed-
ding processes, a generator, and a discriminator.

For each subject, the dataset was split into five folds with
a fixed random seed used for training, validation, and test
sets. In order to make the unseen word for evaluating the
scalability of the model, the word, ‘stop’, was removed from
the training dataset because all the phonemes composing the
word were already included in the 11 words/phrases used for
training. Thus, the model was trained using 11 words/phrases
and a silent phase as the training set, while 12 words/phrases
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Fig. 1. Brain-to-text system translates the brain signals into text. The character embedding is generated from the brain signals, given the target text generated
from the voice. The overall framework of the GAN-based text generation model consists of a generator and discriminator with pretrained ASR. The generator
converts the embedding vector z of the EEG from multiple speakers into character embedding vector x. The discriminator distinguishes the character embedding
vector as real or fake based on adversarial learning.

including the unseen word and a silent phase were used for
validation and testing.

E. Preprocessing

Preprocessing methods were applied to the recorded raw
EEG data, including downsampling to 250 Hz, band-pass
filtering between 0.5 and 125 Hz, notch filtering at 60 and
120 Hz, and re-referencing using a common average reference
method. To eliminate potential noise from movement and
sound, automatic electrooculography and electromyography
removal methods were employed to remove ocular and mus-
cular artifacts [25], [26]. Moreover, the EEG signals in the
high-gamma frequency band were selected for training the
model and data analysis. The dataset was epoched into 2-
second segments and baseline correction was executed 500 ms
before speaking. Preprocessing procedures, as outlined in lee
et al. [27], were implemented using MATLAB-based toolboxes
including OpenBMI Toolbox [28] and EEGLAB [29].

The proposed framework employs embedding processes
to generate representative feature vectors from EEG signals.
This process involves using the common spatial pattern (CSP)
technique and log-variance functions to extract spatio-temporal
features from the EEG signals. CSP is a widely used math-
ematical approach in the area of BCI that separates a multi-
variate signal into subcomponents with the greatest variance
fluctuations across two windows [30]. Feature embedding was
performed through time-wise computing of CSP patterns, with
each EEG segment divided into 16 time points. The multi-CSP
algorithm was used to calculate eight patterns per class, with
the pattern size for each time point set to 104. The signals
from each channel were processed to mean normalization to
illustrate the temporal fluctuations of the embedding charac-
teristics.

Grand average topography of example words

Fig. 2. Spatial patterns of synchronization and de-synchronization of EEG
signals for six different words. The color indicates the power of each channel
across all trials.

III. RESULTS AND DISCUSSION

A. Results

We evaluated the performance of our generated text from
brain signals using the traditional metric: character error rate
(CER). The performance of seen words and unseen words
for generating text from brain signals was shown in CER.
The CER of seen words was 61.8 ± 8.5 and the CER of
unseen words was 83.3 ± 3.9. We observed that our model
was able to generalize to totally unseen subjects who were
not included in the training set, demonstrating its ability to
capture underlying patterns of speech that are consistent across
different individuals. The results show that our method has
the capacity to generalize to new subjects and speech patterns
when given a small amount of calibration data, where data
collection may be challenging due to limitations in sample



size or data variability. Our findings demonstrate that the
proposed model was able to learn global speech characteristics
using data acquired from multiple speakers. Furthermore, our
approach may have important practical applications, such as
in the development of speech recognition systems or commu-
nication aids for individuals with speech impairments.

B. Spatial Analysis

To investigate differences in brain activity during speech,
we conducted an analysis of spatial and spectral features, as
shown in Fig. 2. In the spatial characteristics, our analysis
revealed that prominent synchronization in the central lobe
and de-synchronization in the temporal lobe were observed
[31]. In terms of the spectral features, we discovered that
the high-gamma frequency range between 30 Hz to 120 Hz
was dominantly synchronized, which is selected to analyze. In
addition, we observed that the spatial characteristics of each
text revealed significant differences, with each text exhibiting
its distinct pattern of brain activation. These findings suggest
that different aspects of speech may engage distinct neural
networks, and the observed patterns of brain activation may
reflect the cognitive and motor processes underlying speech
production.

C. Limitation and Future Works

In our study, we employed a limited dataset consisting of
only thirteen words, which offers a challenge in generating
an extensive range of texts from brain signals. While we
attempted to train the model to generate the unseen word by
incorporating all the phonemes present in the unseen word,
the outcomes were not satisfactory enough. We plan to extend
our research in the future by employing a sentence-based
dataset that contains a large number of phonemes that should
be capable of generating various words. In addition, we will
utilize our proposed approach for generating text from the
brain signals during the imagined speech, which may serve
as a communication method for individuals who experience
speech impairments [32].

IV. CONCLUSION

In this paper, we investigated GAN for BCI, and presented
the generative adversarial networks for BCI, in particular,
for speech-related brain signals. Our approach employs em-
bedding processes, a generator, and a discriminator to learn
the underlying patterns of speech and generate text at the
word level with high fidelity. The model was able to learn
global speech characteristics, demonstrating that our approach
can generalize to unseen subjects and words, with a low
error rate. Additionally, our spatial analysis revealed signif-
icant differences in brain activity during speaking, indicating
distinct neural networks are engaged in different aspects of
speech production. Despite the limited amount of words in
the training dataset, our method has the potential to be applied
in real-world applications such as speech recognition systems
and communication aids for those with speech impairments.
Future research will focus on expanding our dataset to include

more words and sentences, further improving the framework’s
generalization ability.
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