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Abstract—The efficient management of a water supply sys-
tem requires precise water demand forecasts as inputs. This
paper compares existing prediction methods and improves their
performance by integrating human-related factors with water
consumption in an urban area. Furthermore, a framework for
processing and transforming mobility data into time-series is
presented. Results show that using human mobility data improves
forecasting accuracy reaching 87.6%.

Index Terms—urban water demand, human mobility, time-
series, machine learning

I. INTRODUCTION

Accurate water demand prediction ensures a reliable water
distribution system and provides users with water in adequate
volumes at an acceptable pressure. Furthermore, it allows
for the detection of leakages in a pipeline when observed
consumption significantly differs from the forecasted water
demand but also improves energy efficiency through lower
pumping energy consumption.

Human mobility is a significant factor for water demand
distribution in an urban area. One of the possible data sources
providing dynamic information on human behaviour in real-
time is geolocated mobile phone data. It consists of at least
geographic coordinates and a timestamp, which may be used
to reconstruct human movements and mobility patterns.

This paper studies how geolocated data can help to improve
water demand forecasting and compares the performance of
classical and machine learning algorithms. The selected meth-
ods are the auto-regressive integrated moving average model
(ARIMA) extended by a seasonal component, support vector
regression (SVR), random forests and extremely randomized
trees. To the best of our knowledge, this research is the first
attempt at utilising geolocated data for public utilities demand
forecasting.

II. APPLICATION

The study area is located in Wrocław. Historical water
consumption readings and mobile phone data records cover
the time range of 111 days for the period from the 1st of
September 2017 to the 20th of December 2017 and the spatial

extent of three residential district metering areas (DMA) - no.
10, 14 Z and 32 - which corresponds to 15,3% of the total
city hydraulic sectors area. Water consumption readings are
collected for each DMA sector and aggregated with one-hour
resolution.

In order to use geolocated data as an exogenous predictor,
transformation into time-series is required. For each DMA,
data are aggregated into one-hour periods where a number of
records is counted. This operation creates a time-series.

To maximise mobile and water data time-series correlation,
the mobility data are processed in three steps. First, both data
series are standardised and transformed into a typical week for
each of the studied DMAs. In the last step, the geolocated se-
ries are controlled by two parameters named decay and offset.
The former informs how long a single record is accounted for,
that is if a mobile phone logs at a specific time, for non-zero
decay values it will be still considered to be in an area for the
determined period. The offset parameter shifts the geolocated
series by a given value, so if the applications on people’s
mobile phones are logging just before they arrive home, that
would align mobile phone records with the water demand
series (Fig. 1). Those parameters are selected individually for
each DMA during the model training phase and allow to raise
the correlation level to 48% - 55%.

Fig. 1. Standardised geolocated and water consumption time-series after
applying offset and decay parameters.



1) Test and validation: The water consumption and pro-
cessed geolocated data are split into three datasets: 88 days
of learning and testing sets and 23 days of validation data
(80% and 20% respectively). Learning and testing data are
taken together and shuffled during the 10-fold cross-validation
process, whereas the validation dataset is used only once at
the end of the study.

2) SARIMA and SARIMAX model tuning: SARIMA and
SARIMAX model parameters selection is based on the auto-
correlation (ACF) and partial autocorrelation functions (PACF)
analysis. First, time-series are decomposed to remove season-
ality effects. Then, ACF and PACF are used to determine a set
of potential model parameters. Each combination is tested for
its performance using 3-fold cross-validated approach. Finally,
the selected parameters are p = 3, d = 1, q = 2, P = 3,
D = 1, Q = 4 and s = 24.

3) Machine learning (ML) methods tuning: Tested ML
methods have their initial parameters (called hyperparameters),
which have to be set up before running the algorithm. For each
of the algorithms, the best performing combination is selected
using a random search and a learning set with 3-fold cross
validation applied.

Tree-based models are tested for a number of trained trees
(from 10 to 2000) and a type of split evaluation criterion (mean
squared error and mean absolute error). These parameters are
selected to 590 trees and the mean squared error criterion for
random forests and to 680 trees and the mean squared error
criterion for extremely randomized trees. SVR model is tested
for various types of kernels (linear or radial basis function),
various epsilon values (from 0.001 to 5) and a penalty pa-
rameter C (from 0.001 to 5). Epsilon value determines the
threshold of acceptable error where no penalty is given during
the training process. Penalty parameter is used to control
the trade-off between bias and overfit. The best performing
combination is a linear kernel, ε = 2.831 and C = 1.661.

The machine learning methods were adapted for time-series
forecasting. This requires selecting of internal and external
lags parameters, which determine the number of previous time-
series records considered during the prediction task. For water
consumption data (Fig. 2), root-mean-square error (RMSE)
drops for 168 lags, which is the length of the season (a week)
and this value is set. The same test is run for a number of
external lags. However, for this parameter, the solution does
not vary significantly, since the geolocated data are provided
in real-time. Hence, a low value of 5 lags is used.

III. RESULTS

Three types of prediction models are tested. First, denoted as
G(D,O) uses all the accessible data along with the modified
geolocated time-series. Second solution (G(0, 0)) neglects
decay and offset parameters. The third model (W ) is used for
comparison and is based only on historical water consumption.
Models performance is expressed by RMSE calculated as an
average root mean square error from 10-fold cross-validation
in each of the three DMA sectors. The results are included in
the Tab. I.

Fig. 2. Number of considered lags and model RMSE computed in 5-fold
cross-validation.

TABLE I
RMSE FOR FORECASTING MODELS

Method W G(D,O) G(0,0)
Random forests 0.138 0.130 0.149

ExtraTrees 0.132 0.129 0.124
SVR 0.207 0.175 0.166

SARIMA / SARIMAX 0.199 0.167 -

The results indicate the superiority of ExtraTrees and ran-
dom forest methods above SVR and SARIMA in terms of pre-
diction accuracy. It can also be noted that the implementation
of geolocated data with decay and offset parameters increased
the performance of the prediction models.

IV. CONCLUSIONS

The aim of this study was to use mobile phone data to
1) indicate dependencies between water usage in a highly
populated urban area and its citizens’ mobility patterns; 2)
investigate the potential of using mobility-related exogenous
variables to forecast water demand. A complete forecasting
framework was presented.

The best performing algorithm was extremely randomized
trees, reaching 87,6% prediction accuracy at an average for
a two-weeks ahead forecast. It has also been shown that a
moderate (over 50%) correlation of the geolocated time-series
and water demand data can be achieved through introducing
decay and offset parameters, used for the human mobility data
modification.
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