
This work was written as part of one of the author's official duties as an Employee of the United States 
Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 
105, no copyright protection is available for such works under U.S. Law.

Public Domain Mark 1.0

https://creativecommons.org/publicdomain/mark/1.0/

Access to this work was provided by the University of Maryland, Baltimore County (UMBC) 

ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD‐SOAR) platform. 

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks‐group@umbc.edu and 

telling us what having access to this work means to you and why it’s important to you. Thank you. 



Enhanced Deep Learning Super-Resolution for
Bathymetry Data

Xingyan Li
Department of Information Systems

University of Maryland, Baltimore County
Baltimore, MD, USA

xingyanli@umbc.edu

Jian Li
NASA Goddard Space Flight Center

Greenbelt, MD, USA

jian.li@nasa.gov

Zachary Williams
NASA Goddard Space Flight Center

Greenbelt, MD, USA

zachary.w.williams@nasa.gov

Xin Huang
Department of Information Systems

University of Maryland, Baltimore County
Baltimore, MD, USA

xinh1@umbc.edu

Mark Carroll
NASA Goddard Space Flight Center

Greenbelt, MD, USA

mark.carroll@nasa.gov

Jianwu Wang
Department of Information Systems

University of Maryland, Baltimore County
Baltimore, MD, USA

jianwu@umbc.edu

Abstract—Spatial resolution is critical for observing and
monitoring environmental phenomena. Acquiring high-resolution
bathymetry data directly from satellites is not always feasible
due to limitations on equipment, so spatial data scientists and
researchers turn to single image super-resolution (SISR) methods
that utilize deep learning techniques as an alternative method
to increase pixel density. While super resolution residual net-
works (e.g., SR-ResNet) are promising for this purpose, several
challenges still need to be addressed: (1) Earth data such as
bathymetry is expensive to obtain and relatively limited in its
data record amount; (2) certain domain knowledge needs to
be complied with during model training; (3) certain areas of
interest require more accurate measurements than other areas.
To address these challenges, following the transfer learning
principle, we study how to leverage an existing pre-trained super-
resolution deep learning model, namely SR-ResNet, for high-
resolution bathymetry data generation. We further enhance the
SR-ResNet model to add corresponding loss functions based on
domain knowledge. To let the model perform better for certain
spatial areas, we add additional loss functions to increase the
penalty of the areas of interest. Our experiments show our
approaches achieve higher accuracy than most baseline models
when evaluating using metrics including MSE, PSNR, and SSIM.

Index Terms—deep learning, super-resolution, bathymetry
data, transfer learning

I. INTRODUCTION

Accurate determination of water depth is one of the most

basic yet important Earth information products, especially

bathymetry, and its spatial and temporal variation near coastal

areas are essential for much thematic processing of remote

sensing data. Most physical and optical environmental quan-

tities derived from satellite observations rely on some prior

knowledge of surface topography and depiction of the land and

water, without such reliable information there will be areas

of water to which terrestrial algorithms will be applied and

conversely areas of land to which water algorithms are applied.

Some retrieval algorithms utilize information on water extent

to promote accuracies in the physical measurements, such as

land surface temperature, aerosol retrievals, cloud detection,

etc. [1], [2]. Applying bathymetry to a land-water mask as an

additional decision criterion also aids to screen out any invalid

retrievals and improve the quality of environmental products

[3].

In the recent few years, remote sensing techniques on

Earth’s data with water-land masks, especially in coastal areas,

have provided important information for economic develop-

ment and ecological restoration. Remote sensing images with

higher resolution feature higher pixel density, and thus capture

more details and are more beneficial for further analysis.

However high-resolution images with no blur are not always

available due to limitations on equipment, therefore spatial

data scientists and researchers turn to deep learning based

computer vision techniques to generate high-resolution images

from low-resolution ones. However, there are still three chal-

lenges remaining for the current super-resolution model to be

used on bathymetry data. First, Earth data such as bathymetry

is expensive to generate and relatively limited in terms of data

records. We need a way to train a good deep learning model

without requesting too much training data. Second, because

Earth systems and data are governed by physics laws, domain

knowledge should be complied with during model training.

Third, the accuracy of bathymetry data for coastal areas is

more important than that for deep ocean areas because of a lot

of human activities in coastal areas, which requires studying

how to adjust a super-resolution deep learning model to have

better performance for certain areas.

In the light of above related research, we introduce a

bathymetry data super-resolution network based on Super-

Resolution-ResNet (SR-ResNet) to recover a global terrain

image with under-ice topography information of both ocean

and land. This study aims to train deep learning based residual

neural network utilizing bathymetry data to generate high-

resolution images with comparatively high accuracy in coastal

areas, and evaluate deep learning based super-resolution for
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bathymetry datasets. We have open-sourced our work at

GitHub 1 and published with Zenodo 2. Our major contri-

butions are as follows.

• To deal with the data record shortage challenge, following

transfer learning principle, we propose to leverage an ex-

isting pre-trained super-resolution deep learning models

such as SR-ResNet for bathymetry data. Our experiments

show leveraging a pre-trained model can greatly improve

model performance.

• To comply with domain knowledge, we enhance the SR-

ResNet model to add corresponding loss functions. Our

experiments show these knowledge-based loss functions

can help improve some model performance.

• To train the model to pay more attention to certain areas,

we add additional loss functions to increase the penalty

of the areas of interest. Our experiments show these

knowledge-based loss functions can help improve model

performance for these areas.

The rest of the paper is organized as follows. Background

and related work is introduced in Section 2 and Section 3,

respectively. Section 4 explains the datasets we work with.

Our proposed method is shown in Section 5 and its evaluation

is described in Section 6. Section 7 concludes the paper.

II. BACKGROUND

This section introduces the background on super-resolution,

transfer learning and knowledge-based loss function. As men-

tioned in the previous section, most of the current SISR models

are trained by digital image databases containing RGB images.

However, there are no such benchmark datasets of bathymetry

for both training and testing. The ordinary real-world RGB

images have pixel values ranging from 0 to 255, while the

bathymetry data we use has a global pixel range from -10802
to 6787. Although theoretically, any digital image database

(e.g., ImageNet [4], LSUN [5], MC COCO [6]) can be used

to train a SISR model, we cannot ignore the differences

between ordinary RGB images and bathymetry on pixel value

ranges and surface texture. The lack of training samples means

there will not be enough knowledge to train our model by

bathymetric images. Therefore transfer learning is used in this

study to deal with limited training samples.

A. Super Resolution

Single image super-resolution (SISR) aims to reconstruct

a high-resolution (HR) image from a low-resolution (LR)

observation [7]. Assume that LR image is represented by Y ,

HR image is represented by X , then the relationship between

LR image and HR image can be represented by a degradation

function D(·)as below

Y = D(X, θD)

Reversely, in the problem of SISR the HR image is the

target. Assume that X̂ represents the prediction of HR image,

1https://github.com/big-data-lab-umbc/bathymetry super resolution
2https://zenodo.org/badge/latestdoi/429226154

R(·) represents the SR function and is the set of parameters,

the SISR problem can be defined as

X̂ = R(Y, θR)

The super-resolution process R(·) can be divided into two

categories including reconstruction-based and learning-based

algorithms (Siu, et al., 2012) [8]. Some early works adopt

the former methods, which means using prior knowledge to

invent data fidelity algorithms to implement on LR images

directly. The examples include example-based methods, sparse

representation-based method, and regression-based method

[9].
Reconstruction-based SISR features low computational in-

tensity on each image pixel. However the learning-based

super-resolution methods with knowledge from training sam-

ples are proved to be more effective and robust, especially

those utilizing deep learning techniques. LeCun et al. [10]

show in their work how convolutional neural network archi-

tecture downscales images to establish non-linearity between

outputs and hidden layer outcomes, and extract feature maps

from images. These show a promising approach to designing

an end-to-end mapping function from LR image and HR

image, and SR-CNN [11], which is constructed on top of

this architecture, achieves higher PSNR and SSIM scores on

benchmarking datasets Set5, Set14 and BSD200. Later, Ledig

et al. proposed the Super-Resolution Generative Adversarial

Network (SRGAN) [12] by adopting a GAN (Goodfellow.,

2014) [13] pipeline to produce finer images. The proposed

model SR-GAN has a perceptual loss function including a

VGG-based content loss for the generator and an adver-

sarial loss for the discriminator. In the evaluation results,

incidental model without using the adversarial module SR-

ResNet achieves higher PSNR and SSIM than interpolation

method, SR-CNN, and even SR-GAN, and moreover, cost

less training time and computational resources. However SR-

GAN has better experiment results evaluated by MOS, and

thus the authors believe it outperforms other models. In the

same year, the Enhanced Deep Residual for Single Image

Super-Resolution [14] is proposed by deleting unnecessary

modules in the residual networks [15] and the proposed models

EDSR and MDSR produce results with higher PSNR and

SSIM than interpolation algorithms, SR-CNN and other super-

resolution methods. These results prove that residual network

is an effective basis to build SR models on.

B. Transfer Learning
Transfer learning is a machine learning technique that

focuses on learning knowledge from one domain (task) and ap-

plying it to a different but related domain (task). For example,

knowledge learned from training to recognize pedestrians in a

large-scale simulated environment could apply when trying to

recognize pedestrians on real street scenes in self-driving. This

area of research bears some belief in reusing or transferring

information from previously learned tasks for the learning

of new tasks as the relationship or mapping structure in the

previous task persists in the new task.
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One of the challenges in learning remote sensing data is the

limitation of label information for newly collected RS data.

It is very difficult to construct a large-scale well-annotated

dataset due to the expense of data acquisition and the costly

annotation. With the development of modern satellite sensors

and the collection of new remote sensing data, processing

such a large amount of data becomes even more challenging.

A straightforward approach is to transfer existing knowledge

to help understand unknown new data. To achieve this pur-

pose, deep transfer learning-based frameworks can be used

to overcome the semantic gap between different datasets. In

recent years, many deep transfer learning models have all

been successfully applied to analyzing remote sensing data

[16]–[18]. Using pre-trained models (features) and fine-tuning

on the target dataset is the most widely used way to exploit

transfer learning. A recent study found fine-tuning pre-trained

CNN models achieves the best performance for optical remote

sensing change detection [19].

C. Knowledge-Based Loss Functions for Deep Learning

Loss function is a mathematical representation of the cost

of algorithm output and the ground truth, and the loss is

minimized to optimize the algorithm. Customizing loss func-

tions is one of the methods to frame the problem of model

optimizer into a special target. For super-resolution problems,

the loss functions of the model optimizer should gauge the

model performance by calculating the error between generated

images and ground truth. In addition to that, we also specialize

our problem by focusing more on coastal areas. Therefore,

knowledge-based functions are necessary to exert a bigger

penalty on wrongly-predicted pixels in coastal areas than

in deep ocean area or land area. For environmental science

applications, there is a guide to custom loss function for neural

networks [20].

III. RELATED WORK

Our study focuses on the application of super-resolution

on single-band bathymetry data, which is different from

three-channel RGB images commonly used as benchmarking

datasets in most of the state-of-the-art models (bathymetry

data is introduced in Section IV). Thus, the theoretical and

experimental guidelines on similar Earth data or environment

data would be essential. This section introduces the related

works of customizing loss functions for deep learning and

applying super-resolution models on Earth data.

In recent years, research on deep learning based super-

resolution for spatial science has never stopped because it is

a promising method to gain high-quality data. Vandal et al.

proposed DeepSD [21] based on SR-CNN to generate high-

resolution local-scale climate projections. The model is trained

by historical climate observations and shows better evaluation

results on Bias, Correlation and RMSE than SR-CNN and

other deep learning models. This work proves that deep

learning based super-resolution models can adopt earth data

for training and generate reasonable results. Tao and Muller

introduce a novel MSA-FAST-CNN-GPT-GAN (MAGiGAN)

[22] super-resolution system based on a photogrammetric

restoration approach as well as CNN to analyze Terra Multi-

angle Imaging SpectroRadiometer (MISR) red band images.

In 2020, Leong and Horgan proposed DeepBedMap [23]

based on EDSR to generate high-resolution images on bed

topography trained by scattered regions in Antarctica. The

DeepBedMap is evaluated based on the digital elevation

model (DEM) and surface roughness, and the model makes

predictions on fine-scaled details but high-gradient areas due

to lack of training data. In 2021, Han and Zhang et al.

proposed a novel modified generative adversarial nets with a

decoder (DeGAN) [24] combined with stochastic simulation.

This study aims to super-resolution in reservoir simulation.

Although this work does not analyze real-world images, it

demonstrates the effectiveness of balancing the contributions

of different neural networks to generate high-quality results.

There are also studies on how to do SISR for bathymetry

data without using deep learning based approaches. For in-

stance, Yutani et al. [25] improved linear sparse coding super-

resolution (ScSR) to study ocean bathymetric maps and use

visualization methods including residual images and distribu-

tion of clusters to show the efficiency of the model.

From the research above, we can see that deep learning

based SISR methods for Earth data are constructed based on

two neural networks: convolutional neural networks (CNN)

and generative adversarial networks (GAN). On the other

hand, the current study on SISR models for bathymetric data

has not given rise to much attention, and there are no deep

learning based approaches published yet. These works suc-

cessfully adopt knowledge of Earth data into super-resolution

approaches and show a promising research area of super-

resolution specialized for spatial science.

However, there are still three limitations and challenges

remaining to study super-resolution methods for bathymetry.

1) Although there have been a few studies on bathymetric data

using conventional sparse representation-based methods, we

still lack experience in deep learning based super-resolution

models or improvements for bathymetric data. 2) The study

of super-resolution for bathymetric data would be a multi-

disciplinary study of spatial science and computer vision, so

there is no conventional evaluation and visualization metric

specialized for bathymetry. 3) Some of the studies are local-

focused, which means the model is tested partially or only on

images representing the same areas used as training data. This

may cause a large bias when the model is tested in other areas.

IV. DATA

In this study, we created 2000 data tiles for training and

testing, where each tile composes a stack of one high-

resolution image, low-resolution image, and a corresponding

binary water mask. High-resolution tiles are 15-arc seconds

spatial resolution, derived from the General Bathymetric Chart

of the Oceans (GEBCO) Grid, supported by the International

Hydrographic Organization (IHO) and the Intergovernmental

Oceanographic Commission (IOC) published in July 2021 and

accessed in September 2021 [26]. Low-resolution tiles are
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1-arc-minute spatial resolution and derived from ETOPO-1

Global Relief Model, published in June 2011 by the National

Oceanic and Atmospheric Administration (NOAA) and ac-

cessed in September 2021 [27].

The bathymetric data contained within both GEBCO and

ETOPO1 are amalgamations of the best available data sources

compiled from both US and International agencies and aca-

demic institutions. Data collections were then re-gridded to

common vertical and horizontal datums to create seamless,

continuous global terrain models. Where no direct obser-

vations were available, interpolation was used. Pixel values

within the GEBCO and ETOPO1 datasets represent 16-bit

signed integer values depicting elevation ranging from -

7,818 to 5,840 meters within the GEBCO and -10,898 to

8271 meters within ETOPO-1. Both datasets feature global

coverage (180W, 180E) (90N, 90S) within the WGS 1984

geographic coordinate system. The corresponding water masks

were derived from the MOD44W C5 global binary water mask

[28], reprojected and downsampled to match the horizontal

resolution of GEBCO.

The training and testing tiles were generated using a GIS

approach. Coastlines were determined from ETOPO-1 data

and buffered 1 degree on either side. This 2-degree global

coastal region ensures all data tiles will contain both land and

water pixels while capturing a diverse suite of bathymetric

profiles (i.e. canyons, island chains, and bays), including sev-

eral deeper water environments (greater than 300m in depth).

2000 random points were then generated within this buffered

area, with a minimum distance of 1.4 degrees between points

to minimize tile overlap, and used as center points to define an

extraction window. Each tile then represents an area of 2.13

decimal degrees on each side, equivalent to 512x512 pixels

in the GEBCO data and water mask, and 128x128 pixels for

ETOPO-1 (Figure 1).

V. METHODS

A. Overall Architecture

The bathymetry super-resolution model is based on a pre-

trained SR-ResNet model to generate remote-sensing images

with higher resolution than the original ones with a lim-

ited training dataset. First we pre-train a SR-ResNet model

by Large-scale CelebFaces Attributes (CelebA) [29] Dataset

which contains 202,599 JPEG images. Then we use transfer

learning to adapt our bathymetry dataset composed of 2000

Tiff images, with fine tuning on the last layer of the model.

Finally, the model is used to generate high-resolution images

for any Tiff inputs. Both the pre-trained model and bathymetry

model are developed using python API and libraries of Py-

Torch. Figure 2 illustrated the overall architecture of our

bathymetry super-resolution model.

B. Bathymetry Data Preprocessing

Transfer learning provides a solution to handle the shortage

of training datasets to train the SR-ResNet model directly.

However, most of the accessible images are in the format of

JPEG or PNG, which are different from TIFF images in the

(a) GEBCO (b) ETOPO-1

(c) GEBCO (d) ETOPO-1

Fig. 1: Examples of high-resolution GEBCO (left) and low-

resolution ETOPO-1 (right) data tiles used in this study. The

top row demonstrates a tile stack within a complex coastal

environment (near the mouth of the St. Lawrence River cen-

tered about 46.8 N, 59.9 W) and the bottom row demonstrates

a deep water environment (seamount chain north of Hawaii

centered about 23.5 N, 157.4 W).

number of bands and range of pixel values. Therefore we need

to preprocess our bathymetry data before feeding it into the

saved SR-ResNet model.

To feed our data into the SR-ResNet model which is pre-

trained by JPEG images, we separate the geographic coor-

dinates from bathymetry information layers and reshape the

training single-banded images from N×N to three-dimensional

images of N×N×3 by concatenating, where N represents

512 for high-resolution images and 128 for low-resolution

images. Then we customize Min-Max normalization on the

pixel values based on the maximum pixel values and minimum

pixel values of all training tiles. Finally, the pixel data type

should be transferred from integers to floats. The geographic

coordinates are attached to the generated image during output.

C. Transfer Learning

We propose a new method to enhance the resolution of

Bathymetry images by transferring the knowledge from the

large-scale CelebFaces Attributes dataset. The mapping be-

tween low/high-resolution CelebFaces images is similar to

that between low/high-resolution Bathymetry images. In our

proposed framework, the structure and relationship between

low and high-resolution images used in large-scale training can
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TABLE I: A comparison between ETOPO-1 and GEBCO

Data Vertical Datum Spatial Resolution Pixel value data type

ETOPO-1 Sea Level 1 arc-minute 16-bit signed integer
GEBCO Global Grid GSea Level 15 arc-seconds 16-bit signed integer

Fig. 2: Overall architecture of the bathymetry super-resolution model. In the pre-training model, a benchmark RGB-banded

dataset CelebA is utilized. The original images are HR training tiles and they are downscaled by bicubic interpolation to be LR

training counterparts. During training, the content loss from SRResNet penalty on errors. In our bathymetry training model,

our datasets are pre-processed to be training tiles. This bathymetry model is then trained based on the pre-trained model with

knowledge-based loss functions (water loss, weighted loss and edge loss) and content loss. The trained model is saved to

generate HR images for any LR inputs.

be learned by deep convolutional neural networks (SR-ResNet)

and be transferred to Bathymetry images by exploiting the idea

of transfer learning. To implement the transfer learning based

super-resolution for Bathymetry data, we use a pre-training

and fine-tuning approach. First, the SR-ResNet network is

pre-trained on a Large-scale CelebFaces Attributes (CelebA)

Dataset containing 202,599 JPEG images, and then the pre-

trained model with updated parameters is used as an input into

our model to give the model some ’knowledge’ of training.

In particular, transfer learning with the help of a large-scale

CelebFaces Attributes dataset is performed for the external

learning of backbone structure and mapping. We propose a

new method to enhance the resolution of Bathymetry images

by transferring the knowledge from the readily available

dataset CelebA with a different task. The weights and pa-

rameters of convolutional layers in SR-ResNet are optimized

during pre-training, and the outputs of pre-training are used as

starting parameters to train on a similar network that requires

a smaller dataset. This smaller network only needs to learn

the relations and differences for our specific problem having

already learned about patterns in the data from the pre-trained

model.

D. Loss Functions

In our study, we use two categories of loss functions: content

loss functions and knowledge-based loss functions.

The content loss represents the error between image content

features of generated images and targeted images, and it is

calculated by Euclidean norm, or L2 norm [30]. For super-

resolution problems, the content loss can be calculated based

on the images’ pixel values directly, or high-level image

features extracted from the original images. In the SR-ResNet

model proposed by Ledig et al., the content loss function

is based on image features [31] extracted by a VGG neural

network. Although a pixel-wise loss function can be an alter-

native, the author argues in the paper that pixel-wise losses

may give rise to a lack of high-frequency content. However,

in our study, we use both pixel-wise losses and VGG-based

loss in our content loss function lContent,.

The knowledge-based loss functions are combined with the

content loss to improve accuracy based on different areas in
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Earth images. To be more specific, two pixel-wise and VGG-

based knowledge-based loss functions are implemented in the

bathymetry SR model and the loss functions in different ex-

periments are their combinations. The different loss functions

are water loss lWater and coastal loss lweighted. In the above

equations, lMSE is a pixel-wise loss function of mean square

error, while lV GG is an MSE loss function based on feature

maps extracted by a VGG neural network.

Assume that r is a scaling ratio (the value is 4 in this

study) W and H are the width and height of input images,

IHR
x,y is the pixel located at (x, y) in a high-resolution image,

GθG(I
LR)x,y is the pixel at the same location in a generated

image, and φ(I) is a function of VGG-19 feature extractor.

Content loss is lContent = lMSE+lV GG, then the components

of the content loss function are calculated as below.

lMSE =
1

r2WH

rW∑
x=1

rH∑
y=1

(IHR
x,y −GθG(I

LR)x,y)
2

lV GG =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(φi,j(I
HR)x,y−φi,j(GθG(I

LR))x,y)
2

Water loss is used to penalize the generated images only

on ocean areas to minimize wrong predictions on ocean area

(where the pixel values are negative) and land area (where

the pixel values are positive). Since bathymetric data is used

in conjunction with water masks, it is essential to maintain

information about water masks in the generated images, and

mistakes in predictions of ocean and land areas may be

fatal in future applications of the generated high-resolution

images. The water loss is calculated similarly to content

loss, but adding an binary water mask E on top of the

generated image before calculating loss. In other words, the

high-resolution image IHR
x,y will be E ·IHR

x,y , and the generated

image GθG(I
LR)x,y will be E · GθG(I

LR)x,y . Water loss is

a summation of a pixel-wise loss and a VGG based loss:

lWater = lMSEwater
+ lV GGwater

. The components are as

below.

lMSEwater =
1

r2WH

rW∑
x=1

rH∑
y=1

(E · IHR
x,y − E ·GθG(I

LR)x,y)
2

lV GGwater =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

φi,j((φi,j(E · IHR)x,y−

φi,j(E ·GθG(I
LR))x,y)

2

Coastal loss is used to give higher penalties for wrong predic-

tions on pixels in coastal areas (where water depth is larger

than -160 meters). A weight map M is used to weigh each

pixel in the loss function according to the pixel value. Pixels

with smaller magnitude values have higher weights when re-

ciprocal pixel values are utilized, and thus pixels with smaller

magnitude in the ocean area (coastal area) gain higher penal-

ties. The weight map is calculated by Mi,j = 1
||IHR|| · Ei,j .

Coastal loss is lweighted = lMSEweighted
+ lV GGweighted

, and

the components are as below.

lMSEweighted
=

1

r2WH

rW∑
x=1

rH∑
y=1

Mi,j ·Ei,j(I
HR
x,y −GθG(I

LR)x, y)
2

lV GGweighted
=

1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

φi,j(Mi,j · Ei,j)x,y·

(φi,j(I
HR)x,y − φi,j(GθG(I

LR))x,y)
2

We conduct different experiments using models constructed

by different combinations of the loss functions and compare

the experimental results with three baseline models. Section VI

discusses the description and results of baseline methods and

our experiment models.

VI. EXPERIMENTS

The experiment consists of two processes: training and

testing. The training process refers to pre-training with CelebA

dataset and training with our dataset consisting of 1,600 tiles

of high-resolution and low-resolution images. Over the testing

process, the trained mode generates 400 images from the

test set, and we evaluate the generated images by evaluation

metrics. We refer to the evaluation results as experiment

results.

In this section, we first investigate the experiment results

of different methods. Then we analyze the performance of

knowledge-based loss functions and inspect whether they

increase prediction accuracy in coastal areas. Finally, the

proposed model is selected by performance and compared

with baseline models. The experiment results are generated

from 400 tiles of low-resolution images in the test dataset

and are evaluated by frequently used metrics including mean

squared error (MSE), peaks signal to noise ratio (PSNR) and

structural similarity index metric (SSIM). The performance

of knowledge-based loss functions is presented by changes in

evaluation metrics on different areas: whole image, ocean areas

and coastal areas. To be more specific, the evaluation on ocean

areas represents the evaluation on generated images applied by

binary water masks; the evaluation on coastal areas represents

the evaluation on pixels with pixel values larger than -160.

As mentioned above, there are three baseline experiments

to compare with our models. In Table II, baseline 0 model is

bicubic-interpolation, baseline 1 is directly testing pre-trained

SR-ResNet with our data and baseline 2 is directly training

SR-ResNet using our data.

A. Evaluation Metrics

In this study, model performance is evaluated by three

frequently used metrics including mean squared error (MSE),

peak signal to noise ratio (PSNR), structural similarity index

(SSIM), and one novel metric introduced by ourselves, wrong

pixel ratio (WPR). This section concludes the mathematical

fundamentals of these metrics.
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TABLE II: Three baseline models and corresponding evaluation results by MSE, PSNR and SSIM on the whole area, ocean

area and coastal area, respectively

Evaluation on whole area Evaluation on ocean area Evaluation on coastal area
Models MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM WPR

Bi-cubic interpolation 1,303 49.654 0.988 7,853 47.401 0.989 1,771 52.996 0.995 0.011
Pre-training 58,574,684 -0.846 0.004 57,881,520 -0.7663 0.220 37,101,514 1.817 0.481 0.284
Direct training 59,753,964 -1.027 0.023 60,407,267 -1.0263 0.240 40,019,392 1.440 0.484 0.302

Content loss 62,357 34.096 0.782 62,137 34.136 0.808 24,248 37.825 0.867 0.135
Content + water loss 612,187 38.994 0.927 611,307 39.613 0.946 31,449 44.752 0.978 0.084
Water loss 4,081,509 13.841 0.236 3,813,084 14.786 0.511 2,090,382 17.871 0.621 0.354
Water + coastal loss 3,310,707 14.3676 0.264 2,992,009 15.448 0.544 1,589,616 18.736 0.642 0.347
Coastal loss 142,761 36.039 0.898 102,043 37.294 0.940 21,555 42.317 0.963 0.133

MSE: Mean squared error is a commonly used metric in

supervised machine learning and deep learning areas. For spa-

tial data or images, it compares differences between generated

images and the test data on a pixel basis. Assume I is an

original image (ground truth), K is a generated image, m and

n are the height and width of the images, respectively; then

the MSE value should be:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2

PSNR: Peak signal-to-noise ratio is an engineering term for

the ratio between the maximum possible power of a signal

and the power of corrupting noise that affects the fidelity

of its representation. Mathematically it is proportional to the

reciprocal of MSE, and thus larger PNSR indicates better

results.

PSNR = 10 · log10
(
MAX 2

I

MSE

)

SSIM: The structural similarity index is used for measuring

the similarity between two images based on image luminance,

contrast and structure, and a larger value of SSIM indicates

better results. Assume that where x,y are samples; σ is the

standard deviation of pixel values; μ is the mean of pixel

values.

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)

WPR: The wrong pixel ratio is a knowledge-based evalua-

tion metric. WPR is introduced to calculate the percentage of

generated pixels with an opposite sign to the ground truth. In

other words, if a pixel sign changes from positive to negative,

or negative to positive after prediction, then it is collected as a

pixel with the wrong sign. This evaluation metric is invented

because the positive or negative value of pixels represents land

or water area in the bathymetry images, and the correct water

mask is essential for gaining geographic information from the

images. Therefore it would be problematic to have wrong

signed pixels in generated images.
∑j=0

i=0 NK(i, j) is the total

number of pixels in the generated image, and function g equals

1 if the pixels I(i, j) and K(i, j) have opposite signs.

WPR =

∑j=0
i=0 g(I(i, j),K(i, j)∑j=0

i=0 NK(i, j)

B. Models and Experiment Results

Based on our proposed model in Figure 2, the models

are trained starting from a pre-trained model to recover

low-resolution images directly from a size of (128,128) to

high resolution images with height and width (512, 512) by

upsampling. Different models under this architecture utilize

different loss functions. There are 7 different combinations

of loss functions implemented in the models. Among the

seven experiments, Model 6 and Model 7 produce pixels with

extraordinarily large values and the image patterns totally

change from the ground truth. Since these two models cannot

produce reasonable images, we exclude them from Tabel II

and only keep records of the other five experiment models.

• Model 1: content loss

• Model 2: content loss + water loss

• Model 3: water loss

• Model 4: water loss + coastal loss

• Model 5: coastal loss

• Model 6: content loss + water loss + coastal loss

• Model 7: content loss + coastal loss

The evaluation results of three baseline models and five

experiment models are shown in Table II and the visual

comparison is shown in Figure 3. We evaluate the whole area,

ocean area and coastal area respectively to verify whether

our knowledge-based loss functions improve accuracy in the

coastal area. By observing this table and comparing different

models, we analyze model performance and draw conclusions

as below.

By comparing the pre-trained model and model 1 (the

experiment model with content losses), we verify our hy-

pothesis that the knowledge of ordinary RGB images do not

provide SR-ResNet with adequate information to reconstruct

high-resolution bathymetric images. Both of the two models

utilize content loss functions, while model 1 undergoes another

200 epochs of training by bathymetric images based on the

pre-trained model. Even though SR-ResNet has already been

trained by 202,599 images over 200 epochs, the generated

bathymetric images from the pre-trained model have high MSE

values and bad image patterns. Therefore it is essential to train

the SISR model on datasets of the same image genre as the

target.

By comparing the directly-trained model and model 1,
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(a) LR image (b) Interpolation (c) Pre-training (d) Direct training (e) Content loss

(f) Content + water loss (g) Water loss (h) Water + coastal loss (i) Coastal loss (j) HR image

Fig. 3: The visual comparison among different experiments and ground truth at the same location. From (a) to (j) are original

low-resolution image, bi-cubic interpolation (baseline 1), pre-trained model (baseline 2), directly-trained model (baseline 2),

model 1 (content loss), model 2 (content + water loss), model 3 (water loss). model 4 (water + coastal loss), model 5 (coastal

loss) and original high-resolution image (ground truth). Among all the experiments, model 5 (coastal loss) is the best model

we have. The area in white color has positive pixel values and represents the land area, the black area represents the deep

ocean and the area in grey around land area represents the coastal area.

we demonstrate that transfer learning improves model per-

formance significantly. The directly-trained model is an SR-

ResNet model directly trained by our bathymetric dataset,

while model 1 transfers pre-trained knowledge from the pre-

trained model. From the changes in values of four evaluation

metrics, we can safely conclude that transfer learning leads to

improvement in the performance of the SR-ResNet model to

be implemented on bathymetry.

We can also indicate from a comparison among five ex-

periment models that model 2 (utilizing content loss and

water loss) and model 5 (utilizing coastal loss) perform the

best. Predictions from Model 1 show the lowest MSE results

on the whole area and ocean area, however Model 2 is the

most accurate according to values of PSNR, SSIM and WPR.

Besides model 2, we cannot ignore that model 3 also produce

results with relatively low MSE, high PSNR, high SSIM and

low WPR for all the selected areas.

Since model 2 and model 5 have been chosen as the best

models, we move to analyze these two models by comparing

different areas (whole area, ocean area and coastal area) to

inspect the performance of knowledge-based loss functions.

From Table II we can see the evaluation results of model 2

and model 5 experience a steady decrease in MSE and increase

in PSNR and SSIM when the evaluation area changes from the

whole to deep ocean and coastal. Model 5 with coastal loss

implemented shows the best results in coastal area because

the weight map assigns higher weights to coastal pixels than

deep ocean pixels, and thus drive the model to achieve higher

accuracy on the coastal area of generated images.

By comparing the bi-cubic interpolation method and our

experiment models, we have to admit that our models based on

SR-ResNet cannot exceed interpolation methods on evaluation

metrics including MSE, PSNR, SSIM and WPR. However,

these quantitative evaluation results are not fully reliable for

super-resolution, which is also a conclusion drawn by Ledig

et al. in SRGAN [12]. Actually, if we compare the generated

images (b) and (i) in Figure 3, our experiment models with

coastal loss distinguish more details in the coastal area (grey-

colored area). For our deep learning based models, to achieve

higher accuracy in quantitative results, a pre-training dataset

with pixels of deeper bit depth (e.g. 16-bit) will help instead

of RGB images (8-bit). As mentioned in Section II, most of

the current SISR models utilize RGB images whose range

of pixel values (0 to 255) are far different from bathymetry

images (-10802 to 6787), so a pre-trained model using images

with deeper bit depth (16-bit signed integer) would likely

yield higher fidelity in the output maps. Moreover, the surface

textures of real-world RGB images and bathymetry have

different features. In RGB images, there are sharp edges to

distinguish different items, while bathymetry values always

change continuously and follow the change of topography. In

other words, if we use the interpolation method, the generated

pixel values are calculated using values of adjacent pixels,

and thus the predictions cannot be far from the ground truth.

Oppositely, the generated pixels value by a deep learning

model is random and regulated by loss functions, so some
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of them may differ from the ground truth. However, since

we use VGG neural network to extract high-level features

from images, the deep learning based model can capture image

patterns better than the interpolation method. Hence our model

shows better visual results while the interpolation method

produces better evaluation results.

To summarize, our conclusions drawn from the analysis

of experiment results are: 1) Transfer learning improves

the performance of SR-ResNet in dealing with limitations

in bathymetry data. 2) Our knowledge-based loss functions

improve prediction accuracy in coastal areas. 3) Among our

five experiment models, the model using coastal loss and

the model using content loss with water loss is the best

according to evaluation metrics and visual comparison. 4) We

enhance SR-ResNet models for bathymetry data. The models

fail to outperform the interpolation method by evaluation

metrics, although our best model (the model using coastal loss)

generates better visual results than the interpolation method

does. The reason is that bathymetry images have a very special

range of pixel values and image textures.

C. Spatial Model Performance Analysis: Direct Observations
vs. Interpolated input data

The bathymetric data contained within the GEBCO Grid

is an amalgamation of several direct and indirect measure-

ment sources, including interpolated data (source). In order

to accurately present the accuracy results of our model, we

must demonstrate that model results do not perform better

over interpolated data than direct observations. We use the

GEBCO Type Identifier grid to parse GEBCO bathymetric

data from five validation tiles into regions of direct observation

and interpolated data and take the absolute difference between

GEBCO pixel values and modeled pixels (Figure 4). We then

compared the normalized mean and standard deviation of these

areas to determine if there is preferential performance within

the model between either pixel population. Similar mean and

standard deviation values for the direct observations (0.48 and

0.12) and the interpolated data (0.41 and 0.10) indicate that

the model performed similarly across all data inputs.

VII. CONCLUSION

The Enhanced Bathymetry Super-Resolution model presents

a data-driven approach to reconstructing the ocean bathymetric

data using SR-ResNet-based model trained by GEBCO and

ETOPO-1 dataset. We enhance the SR-ResNet by knowledge-

based loss functions (water loss and coastal loss) and transfer

learning to train the model with limited bathymetry data and

generate high-spatial-resolution bathymetry that recovers more

accurate details in the coastal area where pixel values are

larger than -160. The generated images are adaptable for

future studies on water masks. Unlike other current bathymetry

super-resolution models relying on sparse coding algorithms,

the model uses a deep learning based approach to find suitable

neural network parameters via an iterative error minimization

approach. From the visual comparison of generated images,

we can see this makes the resulting model properly recover

(a) (b) (c)

Fig. 4: An example of the GEBCO Tile Identifier grid (a)

where dark colors represent direct observations, such as ship

tracks, and light gray regions represent regions of interpolated

data. The black region in the bottom right corner represents

land and is excluded. The absolute difference between GEBCO

data and model results for either region is shown for the direct

(b) and interpolated (c) regions.

image details and the generated images show better image

patterns than the interpolation method. This is because a VGG

neural network is used to extract features from bathymetry

data. However, the results of experiment models evaluated by

MSE, PSNR, SSIM and a self-introduced metric WPR show

that our best experiment model cannot beat interpolation. By

analysis, we find the reason is that bathymetry has a very huge

pixel value range and special surface texture features.

There are still limitations to our study. This study shows

that the evaluation of bathymetric data cannot only relies on

metrics PSNR and SSIM, although these two methods are con-

ventional evaluation metrics in super-resolution studies [7]. In

future studies, we will work on reliable evaluation metrics for

bathymetry super-resolution. Furthermore, we should enlarge

the dataset by collecting more samples for training and testing.
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