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Abstract—The task of predicting future relationships in a social || ysTRATION OF DISAGREEMENT AMONG CURRENT METRICS USED TO
network, known aslink prediction, has been studied extensively in EVALUATE DYNAMIC LINK PREDICTION ACCURACY
the literature. Many link prediction methods have been propsed,
ranging from common neighbors to probabilistic models. Reent Method AUC PRAUC Max. Fl-score
work by Yang et al. [1] has highlighted several challenges TSAdj[6] 0.780 0.239 0.371
in evaluating link prediction accuracy. In dynamic networks TS-AA[7] 0777  0.065 0.144
where edges are bothadded and removed over time, the link TSKatz [§] 0.879  0.077 0.149
prediction problem is more complex and involves predictingooth SBTM lé] 0'799 O' 138 0'337

newly added and newly removed edges. This results in new
challenges in the evaluation of dynamic link prediction mehods,
and the recommendations provided by Yang et al.[]1] are no

longer applicable, because they do not address edge removal . . I
In this paper, we investigate several metrics currently use for removed at a future time, the dynamic link prediction proble

evaluating accuracies of dynamic link prediction methods ad 1S more pomplex and also involves Computing apredictecbsgor
demonstrate why they can be misleading in many cases. Wefor existingedges, because they may disappear at a future time.

provide several recommendations on evaluating dynamic li Evaluating link prediction accuracy involves comparing a
prediction accuracy, including separation into two categaes of o |apel (whether or not an edge exists) with a real-
evaluation. Finally we propose a unified metric to characteize . . .
link prediction accuracy effectively using a single number valued predicted score. There are a variety of techniques fo
evaluation in this setting, including fixed-threshold nusth
|. INTRODUCTION such as F1-score and variable-threshold methods such as the

The popularity of online social networking services hagrea under the Receiver Operating Characteristic (ROG@ggur
provided people with myriad new platforms for social intera or AUC, and the area under the Precision-Recall (PR) curve,
tion. Many social networking services also offer persaraali or PRAUC. Yang et al.[[1] provide a comprehensive study of
suggestions of other people to follow or interact with, asl weevaluation metrics for the traditional link prediction ptem.
as websites or products that a user may be interested inDae to the severe class imbalance in link prediction (bezaus
key component in generating these personalized suggsstionly a small fraction of node pairs form edges), it was
involves performindink predictionon social networks. recommended to use PR curves and PRAUC for evaluating

The traditional problem of link prediction on networks idink predictors rather than ROC curves and AUC.
typically defined as follows: given a set of vertices or nottes To the best of our knowledge, there has not been prior
and a set of edges or linksconnecting pairs of nodes, outputwork on evaluating accuracy in the dynamic link prediction
a list of scores for all pairs of nodes without edges, i.epaifs or forecasting setting we consider. Prior studies on dynami
(u,v) ¢ &£, where a higher score for a pgi,v) denotes a link prediction have typically used AUCT4].[5].[7].[8]dL0],
higher predicted likelihood of an edge forming between sod#g-likelihood [5], [10], [11], and maximum F1-score [103 a
u andv at a future tim@. Many link prediction methods haveevaluation metrics.

been proposed; seel [2].] [3] for surveys of the literature. The evaluation of several dynamic link prediction methods

In this paper, we consider a more complex dynamic nejsing current metrics is shown in Talfle I. (We discuss these
work setting where edges are batdded and removedver methods in further detail in Sectidn II=C5.) The table shows
time, which is often referred to adynamic link prediction a clear disagreemenibetween current metrics for dynamic
[4] or forecasting [[5]. For instance, in a social networlink prediction accuracy. TS-KatZ][8] has the highest AUC
with timestamped edges denoting interactions betweenl@eoput a low PRAUC and maximum F1-score, while TS-Adj
(nodes), an edge may appear at several time instances whgJehas highest PRAUC and maximum Fl-score, but lower
a pair of people are frequently interacting then disappftar a AUC. The SBTM [9] ranks second in all three metri¥ghich
interactions cease. Since existing edges between nodebenayf these four methods is most accuraid® seek to answer

. o o - this question in this paper. This type of disagreement among

Link prediction is also used to predict missing edges inigfytobserved . . . . .
networks, where the score denotes the predicted likelirafaah unobserved evaluation metrics has also been observed in prior studies,
edge betweem andv. including [10], but has not been investigated further.
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. . . TABLE Il
_ |n5p|r?d .by the_Work of Yar?g et al[1] in Fhe tr?d't'_onal SUMMARY STATISTICS FOR DATA SETS USED IN THIS PAPERTHE LAST
link prediction setting, we provide a thorough investigatbf FOUR ROWS SHOW MEAN STATISTICS OVER ALL TIME STEPS

evaluation metrics for the dynamic link prediction problem

Our aim isnot to identify the most accurate link prediction — NIPS Facebook
algorithm, but rather to establish a set of recommendatimms Directed No ves
; . . - Number of time steps 17 9
fair a}n(_j effectwg evaluation of the accuracy of dynamiklin = v\ = des 2,715 1,330
pred|ct|on.algor|th.ms: . Mean number of edges 321 3,714
Our main contributions are the following: Mean edge probability 17%10-3 92.8x10-3
« We discuss why currently used metrics for dynamic link Mean new edge probability 83x107% 1.4x 1073
prediction can be misleading (Section I11). Mean prev. observed edge probability  0.031 0.27

« We illustrate the importance of geodesic distance for the

dynamic link prediction task and the dominance of edges

at distancel (Sectior1V). conferences from 1988 to 2003. Nodes in the NIPS data denote
« We separate the dynamic link prediction problem into twauthors, and undirected edges denote collaborations betwe

different link prediction problems based on geodesic diguthors. Each year is used as a time step, and an edge between

tance and suggest metrics for fair and effective evaluatidfo nodes at a particular time step denotes that the authors

for each of the two problems (Sectibn V). co-wrote a paper together in the NIPS conference that year.
« We propose a unified metric that characterizes link préhe data set containg, 865 authors; we remove all authors

diction accuracy using a single number and demonstrau®o never collaborated with any other authors in the data set

that it avoids the shortcomings of currently used metridéaving2, 715 authors (nodes).

for dynamic link prediction (Section V1). The second data set is the Facebook data collected by
Viswanath et al.[[13]. Nodes denote users, and directedsedge
represent interactions between users via posts from orre use
A. Problem Definition to another user's Facebook wall. All interactions are time-

The dynamic link prediction or forecasting problem i$tamped, and we us®-day time steps (similar to the analyses
defined as follows. Given a set of nodesand a set of edges in [9], [13]) from the start of the data trace in June 2006 hwit
& connecting pairs of nodes, output a list of scores dthr the final completeé)0-day interval ending in November 2008,
pairs of nodes, where a higher score for a pairv) denotes resulting in9 total time steps. Viswanath et al. collected data
a higher predicted likelihood of an edge betweeandv at ©n over60,000 nodes. To make the dynamic link prediction
a future time. Again, the main difference in the dynamic linRroblem more computationally tractable, we filter out nodes
prediction task compared to traditional link predictiontie that have both in- and out-degree less thaim the aggregated
need to output scores for node pairs where an edgedady network over all time steps, leaving 330 nodes.
present because the edge may be removed in the future. ~ Summary statistics for the two data sets are shown in Table
We consider dynamic networks observed at discrete tifié The edge probability at each time step is given by the
steps1,2,...,T. A common prediction setting used in timenumber of actual edges divided by the number of possible
series forecasting is the rollintystep forward prediction: for €dges, i.e. the number of node pairs. We defineea edge
eacht = 1,...,T — 1, one trains a model using timasto ¢ at time ¢ as an edge that did not appear in any time step
then predicts time+1. In this paper, we perform dynamic linkt' < t. We define gpreviously observed edgs timet as an
prediction in the rollingl-step forward prediction setting. The€dge that appeared in at least one time ¢tep¢. Notice the
output of the link predictor contain — 1 sets of predicted large disparity between the new and previously observed edg
scores for times2 to 7' (trained using timesl to 7' — 1, Probabilities—we will re-visit this point in Sectidn] V.
respectively), which are then compared agaifist 1 sets of C. Methods for Dynamic Link Prediction
binary outputs denoting the actual states (edge or no edge) ¢
all node pairs at timeg to 7. Most methods for dynamic link prediction in the literature
To evaluate accuracy, we concatenate all of the predict@d into one of three classes.
scores into a single vector and all of the binary outputs into 1) Univariate Time Series ModelsPerhaps the most
second vector. This setting has been adopted in many paégightforward approach to dynamic link prediction is pply
studies including 4], [[5], [[10], [[11]. As noted in[1], we standard univariate time series models to each node pair.
exclude node pairs corresponding to newly appearing nodiigtoregressive Integrated Moving Average (ARIMA) models
at any particular time step, since the identities of thesg névere used for dynamic link prediction in studies [7] [8]. A

nodes are unknown at the time the prediction is computedspecial case, the ARIMA( 1, 0) model, is an exponentially-
weighted moving average (EWMA) model, which has been

B. Data Sets used in studies[[4],[16],[114],[T15]. Another approach is to
We use two data sets as running examples throughout thisdel the probability of an edge between a pair of nodes to

paper. The first is the NIPS co-authorship data collected bg proportional to the previous number of occurrences df tha

Globerson et al.[]12], consisting of papers from the NIP&dge 5], [10],[11],[14], i.e. a cumulative or growing wioa

Il. BACKGROUND



average, rather than an exponentially-weighted one. Dynlaformed conditionally independently of all other node pairs
et al. [14] referred to the EWMA as the collapsed weightegiven their feature vectors. These models have been adapted
tensor and the cumulative average as the collapsed tensorto dynamic networks by allowing the latent features to cleang

Univariate time series approaches treat each node pawer time [5], [10], [11]. Such models have tremendous
separately by ignoring the rest of the network altogether. flexibility; however, fitting these models typically reqed
doing so, the predictors based on univariate time serieetmodViarkov chain Monte Carlo (MCMC) methods that scale up to
are limited in their predictive ability; for instance, theyply only a few hundred nodes.

predict future occurrences of previously observed edges an Stochastic block models (SBMs) divide nodes into classes,
cannot predict new edge$hus these predictors are often usegihere all nodes within a class are assumed to have identical
as baselines for comparison purposes. In many cases, howesgtistical properties. An edge between two nodes is formed
these baselines have proven to be surprisingly competitiveindependently of all other node pairs with probability de-
accuracy as evaluated by existing metrics such as AUC [fkndent only on the classes of the two nodes, giving the
[5], which can be quite deceiving as we discuss in Se¢fidn djacency matrix a block structure where blocks correspond

2) Similarity-Based MethodsNode similarity-based meth- to pairs of classes. SBMs have been extended to the dynamic
ods have been among the earliest proposed methods for ile@vork setting by allowing the edge probabilities and las
traditional link prediction problem. These methods exiplibeé  memberships to change over timé [4]] [9].][16]. The models
large number of triangles that are observed empirically {sroposed in[[4],[[9] can be fit using an extended Kalman filter
networks such as friendship networks to predict new edgegd local search procedure that scales to a few thousand,node
Typically used methods include common neighbors, Adamign order of magnitude larger than methods for fitting dynamic
Adar, Jaccard coefficient, preferential attachment, antz Kaatent feature models.

[2]. The_se methods are often used @n a sFatic setting, Where4) Other Methods:Dunlavy et al. [14] proposed to use ma-
only a single snapshot of a network is available. trix and tensor factorizations, namely truncated singudue

In the case of dynamic networks, these similarity-baseg.,mnosition (TSVD) and canonical decomposition/parall
methng have been used in seve_ral different manners. HUaors (CANDECOMP/PARAFAC or CP) tensor models, re-
and L|_n [€] aggregated the dyqamlc_network over time to f‘?”%bectively. Tylenda et al.[17] proposed a “time-aware’siem
a static network then apply similarity-based methods. €ln,¢ 5 |5cal probabilistic model based on the maximum-entropy

et al. [7] computed node similarities at each time step thefinle. The approach involves weighted constraintsetas
model these similarities using ARIMA models. Dunlavy e}, ihe times at which edges occurred

al. [14] proposed a truncated version of the Katz predictor . . . .
based on a low-rank approximation of a weighted average of5) g/lethod; C(:jonf&dered 'r? -l;ht'ﬁ F;f”‘pte{‘; this ptaper,. W?
past adjacency matrices. From these studies, it appearmmacons' er methods trom each of the first three categones.

Adamic-Adar and Katz predictors have been the most accuratea TS-Adj [6]: a univariate time series model applied to each

among the similarity-based predictors. node pair.
Similarity-based methods have the opposite weakness ok TS-AA [[7]: a similarity-based method that extends the
link predictors based on univariate time series models;itha Adamic-Adar link predictor to the dynamic setting by

they ignore whether an edge has occurred in the past between applying a time series model to the Adamic-Adar scores

a pair of nodes. These methods are sometimes used together over time for a node p@r

with univariate time series models in practice [7], [8]. o TS-Katz [8]: a similarity-based method that extends the
3) Probabilistic Generative Models:An alternative ap- Katz predictor to the dynamic setting by applying a time

proach for dynamic link prediction is to fit a probabilistic series model to the Katz scores over time foranod@pair

generative model to the sequence of observed networks. A SBTM [9]: a probabilistic generative model based on

generative model for a dynamic network represents the net- stochastic block models.

W(.)rk (up to timet) by a set of unob_served para_\metdré e emphasize again that the objective of this papends

Given the values of the parameters, it then provides a mo¥c\)e/ identify the best prediction algorithm, thus this list is

for the probability of an edge between any pair of noles) '

at timet + 1, which is used as the link prediction score fornOt exhaustive. For simplicity, we use the EWMA, which

(u,v). Since the paramete® are unobserved, one tyloiCaIIycorrespondsto ARIMAQ, 1,0) with forgetting or decay factor

estimates them from the sequence of networks then uses %8'5 as the time series model for each of the methods with

. : o refix TS. Higher accuracy is likely attainable by better mlod
estimated parameters to compute the link prediction scofe.” ” . np .

. . ' ; S€élection for the ARIMA model parameters, but it is outside
The link prediction or forecasting accuracy is often used &

. . e scope of this paper.
a measure of goodness-of-fit for the generative model. P pap
Several classes of generative models for dynamic networks
have been proposed, including dynamic latent feature rsodel?Adamic-Adar is not applicable to directed networks so wet foanvert

and dynamic stochastic block models. In a latent featu?é Facebook network to an undirected network before appl¥iS-AA.
The approach is slightly different from what was proposed8hand is

mOdeL every node in a network has an unobserved (typ'ca:g}ﬁilar to the approach used inl [7] for TS-AA; we find this apgeh to be
binary) feature vector. An edge between two nodes is theimost universally more accurate than the approachlin [8].
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CONEUSION MATRIX FOR BINARY PREDICTION different predictors are often compared using a singleascal
measure, typically the area under the curve. In information
Predictedl’s (p) Predicted0’s (n) retrieval, the commonly used threshold curve is the Pratisi
Actual 1's (P)  True PositivesTP)  False Negatives{V) Recall (PR) curve. We denote the area under the PR curve by

Actual 0's (V)  False Positives{P)  True NegativesN)

PRAUC. Simply linearly interpolating between points on the

PR curve has been shown to be inappropriate for calculating

PRAUC; we use the proper interpolation approach as disdusse
I11. EXISTING EVALUATION METRICS in [18].

The currently employed evaluation methods discussed inPR curves consider only prediction of the positives and
the introduction and shown in Tablé | indicate the lack adre generally used for needle-in-haystack problems common
a principled metric, which makes it difficult to evaluate thén information retrieval, where negatives dominate and are
accuracies of dynamic link prediction methods. Most of theot interesting. For link prediction, PR curves give crddit
evaluation metrics used in link prediction have been boeaw correctly predicting edges but do not give credit for cotlsec
from other applications such as information retrieval angredicting non-edges. Due to the sparsity of most types of
classification. Hence these metrics are naturally biaséal/to  networks including social networks, the number of non-edge
certain aspects over others, which may result in either-ovés much greater than the number of edges, so Yang etlal. [1]
or under-representing the accuracy of a particular method. recommend the use of PRAUC for evaluation in the traditional

The output of a link predictor is usually a set of real-valuelihk prediction setting.
scores, which are compared against a set of binary labels]l) Uses in Dynamic Link Predictiontn the dynamic link
where each label denotes the preserigeot absence() of prediction setting, Kim et al! [10] proposed to use the max-
an edge. One technique for comparison is to threshold tineum F1-score over all possible threshold values, i.e.tiden
scores at a fixed value, transforming the real-valued scofgig the point on the PR curve that maximizes Fl-score. In
into binary predictions. These binary predictions can then this manner, it utilizes a single threshold that is detesdin
compared against the binary labels by computing the camfusiby sweeping the PR curve rather than choosing a threshold
matrix shown in Tablé Tl then using metrics based on the priori. This metric displays similar evaluation propestias
confusion matrix. A second technique involves sweeping tfRRAUC due to its dependence on the PR curve.
threshold over the entire range of predicted scores andmijot The normalized discounted cumulative gain (NDCG) over
a threshold curve displaying the variation of one metridragfa the top k& link prediction scores[[17] is another information
another. A third technique, applicable only to probakdist retrieval-based metric that been used for evaluating dymam
models, is to evaluate the likelihood of the model given thak prediction accuracy. It is a fixed-threshold metric ttha
set of binary labels. suffers from the same drawbacks as other fixed-threshold
metrics as discussed by Yang et al. [1].

2) Shortcomings for Dynamic Link Predictione argue

In information retrieval, one is typically concerned withthat the PR curve is inappropriate for dynamic link predicti
two metrics calculated from the confusion matrix in Teble Il because it only considers the edges (positives). Accurate
precision (%) and recall %) Precision and recall prediction of existing edges thdb not appeasat a future time
are often combmed into a single measure using their hamno(egatives), is an important aspect of dynamic link préaiict
mean, known as the F1-scor- (,feefj,'fgreecc'fs'%r) and is not captured by the PR cutv@hus the PR curve

The precision, recall, and F1-score all vary with the choicand metrics derived from the PR curve, such as PRAUC and
of threshold applied to the real-valued scores. As an ateten  maximum F1-score, may be highly deceiving in the dynamic
to choosing a threshold, one sometimes computes the mrecidink prediction setting. Notice from Tablg | that the most
at k, also known as the top predictive rate, which denotesaccurate link predictor according to PRAUC and maximum
the number of correctly predicted links from the tbscores. F1-score is the TS-Adj baseline predictor tdaes not predict
In the traditional link prediction setting; is typically chosen any new edgédNe expand on this discussion in Sectlon V-B.
to be equal to the number of actual new ed@ef2]. Relative
metrics are also used, such as the improvement ik foqedic-
tive rate as compared to expected rate of a random predictom classification, the commonly used metric is classifigatio
[2]. Yang et al. [1] discussed and empirically demonstrateatcuracy £+ for binary classification) over all data
several shortcomings of using fixed-threshold metrics @ tpoints, which are node pairs in the case of link prediction.
traditional link prediction setting, which led to unstabésults Classification accuracy is often deceiving in the case difliig
and disagreements as the threshold was varied. We obsémealanced data, where high accuracy can be obtained even
these shortcomings also in the dynamic link predictiorirsgtt by a random predictor.

An alternative to fixed-threshold metrics is to use threghol In binary classification, one is often concerned with the
curves, which work by shifting the threshold, computing thtsue positive rate TPR = 51 and false positive rate
confusion matrix for each threshold, and finally computingF" PR = W) which can be calculated from the confu-
metrics based on the confusion matrices. Threshold cupres $ion matrix in Tablé&Tll for a fixed threshold. By sweeping the

A. Information Retrieval-Based Metrics

B. Classification-Based Metrics



threshold, one arrives at the Receiver Operating Charsiiter 0.8 10°
(ROC) curve. Different ROC curves are typically comparec &, >
using the area under the ROC curve (AUC or AUROC). E 06 i= 10"
1) Uses in Dynamic Link PredictionThe AUC gives a 20.4 8 102
single value that can be used to compare accuracy agairmst ot! s =
models and is the most commonly used metric for evaluatin § 0.2 §10'3
dynamic link prediction accuracy[4].[5].[7].[8]._[10]1@].
The main difference compared to the traditional link prédit 0 10"
task is that the AUC is computed over all possible node pair: 0 2 4 6 8 o 2 4 6 8
Geodesic distance Geodesic distance

not only node pairs without edges. 5
Glnes et al.[]7] also evaluated AUC over smaller subsets of @ (b)

; ; ; jg. 1. [(@) Fraction of all edges formed at each geodesi@mfist in the
node pairs, such as node pairs with no edges over thegpaifacebook data. Each point denotes the number of edges fatmedertain

.time steps: SpIitting up .the ?Valuation into different stbs geodesic distance divided by the total number of edges fdmhell distances.
is a step in the right direction; however, Giines et [al. [Kb) Empirical probability of forming an edge at each geodefistance in the

chose the subsets in a somewhat ad-hoc fashion and still book data. Each point denotes the number of edges famedertain
. . . . ghe desic distance divided by the number of node pairs atdib&ince.

on AUC over all node pairs as an evaluation metric, whic

is problematic as we discuss in the following. We present a

principled approach for splitting up the evaluation of dyne  opservations correspond to the observed netviotine step
link prediction accuracy in Sectidnl V. forward, i.e. at timet + 1, while the parameters correspond
2) Shortcomings for Dynamic Link PredictionYang et o the generative model parameters at titmas discussed in
al. [1] claimed that AUC is deceiving for evaluation ofsectiod=C3. The log-likelihood has been used in studis [
accuracy in the traditional link prediction setting due he t [10], [11] as a metric for dynamic link prediction accuraRe-
locality of edge formation. They found empirically that thesearchers often also calculate the log-likelihood of a lrase
probability of forming a new edge between a pair of nodgfiodel, which is then used to measure relative improvement
decreases as the geodesic (shortest path) distance betveeegf a proposed model in terms of log-likelihood. For instance
node pair increases. We demonstrate in Sedfidn IV that thigidies[[5], [11] use a Bayesian interpretation of a cuniueat
problem is even greater in the dynamic link prediction agtti average as a baseline model.
where edges at distancei.e. edges that have been previously 2) Shortcomings for Dynamic Link Predictiomn general,
observed, are also considered in the evaluation. log-likelihoods may be very complex to calculate due to
One of the appealing properties of AUC is its interpretatiofhe effects of constant terms that are usually ignored when
as the probability of a randomly selected positive instanggaximizing the log-likelihood. Additionally it is not poise
appearing above a randomly selected negative instance [48] obtain likelihood values for link predictors that are not
In the traditional classification setting, where instanees pased on probabilistic models. Thus the scope of this metric

assumed to be independent and identically distributed, (iigs |imited both by its complexity and applicability to only a
this interpretation can be very useful. However, as we demagimall subset of link prediction techniques.

strate in Sectioh 1V, node pairs are certainlyt iid, and edge

formation probabilities vary greatly based on whether ageed V- THE EFFECT OFGEODESICDISTANCE ONDYNAMIC

has previously existed. Using only this information, one ca LINK PREDICTION

construct a predictor that achieves high AUC, as evidenged b One of the main differences between the typical machine

the TS-Adj predictor in Tablél I. Hence pooling together alearning setting and the link prediction setting is that eod

node pairs to evaluate AUC can be highly deceiving. pairs arenot independent and identically distributed (iid).

o , It has been shown that the probability of forming an edge

C. Likelihood-Based Metrics between two nodes is highly dependent on the length of the
Given a probabilistic model for observed data, the likeditio shortest path between them, often calleddkedesic distance

of a set of parameters is given by the probability of ther just the distance. In the traditional link prediction pplem,

observations given those parameter values. Since thelactnast edges are formed at geodesic distaticand the pro-

parameter values are unknown, one typically calculates thability of edge formation generally decreases monotdiyica

likelihood using optimal parameter estimates or the edgtha with increasing geodesic distance [1].

posterior distribution of the parameters given the obskrve In the dynamic link prediction problem, we also need to

data. It is often easier and more numerically stable to wodonsider node pairs at geodesic distahcee. pairs of nodes

with the log-likelihood rather than the likelihood itseffo the for which an edge has previously been formed, because these

log-likelihood of a model is usually reported in practice.  edges may or may not re-occur in the future. In the Facebook
1) Uses in Dynamic Link PredictionlLikelihood-based data set, we find that the majority (alm@t’%) of edges are

metrics are often used for evaluating link prediction acctiiermed at distance, as shown in Fid._1a. Additionally Fif. fLb

racy for generative models and are a natural fit given theihows the empirical probability that an edge is formed betwe

probabilistic nature. In the dynamic link prediction segtithe two nodes as a function of geodesic distance. Notice that the



e . . X TABLE IV
edge probability is ove30 times higher at distancecompared METRICS FOR NEW AND PREVIOUSLY OBSERVED LINK PREDICTION

to distance2 and over300 times higher than at distancgsand

above! Thus it does not make sense to pool over all node pairs (@) NIPS data
when evaluating dynamic link prediction accuracy (e.gngsi Method New Link ' Prev. Observed
AUC or PRAUC), because the overwhelming majority of AUC PRAUC x10~3 AUC PRAUC
positive instances occur at distante TS-Adj [6]  0.500 0.033 0.855  0.099
In the traditional link prediction problem, Yang et al] [1] TS-AA[] 0534 0.882 0.646  0.057
suggested to evaluate link prediction accuracy separately TS-Kaz [8] - 0.535 0.735 0.694 0049
) N SBTM [9]  0.531 0.055 0.713  0.066
each distance. However this is a cumbersome approach, so
they proposed also to use the PRAUC as a single measure of (b) Facebook data
accuracy over all d|stanc§s._As we have Q|sc.ussed in S.ect|on New Link Prov. Observed
[ PRAUC is problematic in the dynamic link prediction Method  \ \~  PRAUC x10-3 AUC PRAUC
setting because it ignores the negative class, so we cannot “Tsagj[g]  0.500 119 0.705 0417
use the same approach as [in [1]. Instead, recognizing that Ts.AA[7] 0.712 14.4 0.560  0.293
most edges are formed between node pairs with a previously TsS-Katz [§] 0.768 14.8 0.579  0.297
observed edge, we propose to separate the dynamic link SBTM[9]  0.700 4.41 0.649  0.326

prediction problem into two problems.

V. SEPARATION INTO TWO LINK PREDICTION PROBLEMS

Part of the difficulty in evaluating accuracy in the dynamifence, they should be expected to perform better than the
link prediction setting is related to the problem itself.iaynic SBTM for new link prediction, especially because the SBTM
link prediction combines two problems: prediction of neloes not consider geodesic distance. We see from Table IV
links (distancez 2) and prediction of previous'y Observedthat this is indeed the case in both data sets, although the
links (distance= 1). These two problems have very differenglifference is much more pronounced in terms of PRAUC.
properties in terms of difficulty, which primarily relates the Thus we support the recommendationlin [1] to use PRAUC to
level of class imbalance in the two problems. evaluate accuracy of new link prediction.

The difference in difficulties of the two problems can b
seen in TablE]I. Notice that the probability ohaw edgéeing
formed is tiny compared to previously observed edg&hus The second problem in dynamic link prediction involves
the new link prediction problem involves much more seveyedicting edges that are currently present or were prestent
class imbalance (i.e. difficulty) compared to the previgusk previous time. As shown in Tablé Il, the class imbalance
observed link prediction problem. By pooling together @itie is several orders of magnitudess sever¢han in the case of
pairs when calculating AUC or PRAUC, the evaluation igredicting new edges.
heavily biased towards the previously observed link ptamtic ~ Another major difference from new link prediction is the
problem. As a result, all of the metrics shown in Table felevance of negatives (non-edgeg)ccurate prediction of
are biased in this manner. Instead, node pairs corresppndiegatives isighly relevantoecause the removal of edges over
to possible new edges should be separated from node péiire contributes a significant portion of the network dynesni
corresponding to possible re-occurring edges, and acgur&or example, in the NIPS co-authorship network, we find that

%. Prediction of Previously Observed Edges

metrics should be computed separately. over 85% of edges observed at any time step are deleted at
o the following time step.
A. Prediction of New Edges A good evaluation metric for the task of predicting pre-

We begin by considering the prediction of new edgesgously observed links must provide a balanced evaluation
that have not been observed at any previous time. Actuabigtween the positive and negative classes. The metricsl base
this is simply the traditional link prediction problem, andn the PR curve are biased towards the positive class. We
the recommendations inl[1] apply here as well. The mahence propose to use AUC, which is based on the ROC curve
recommendation is to use PR curves rather than ROC cureesl doesaccount for negatives. Many of the shortcomings of
due to the abundance of true negatives as indicated by #gC pointed out by Yang et al. [1] for the new link prediction
extreme class imbalance shown in Table Il. By using PRsk are not present in the previously observed link prigict
curves, the overwhelming number of true negatives gengratask because the class imbalance is not nearly as significant
by link prediction algorithms are excluded from the evalat From the AUC and PRAUC values for previously observed

TS-Ad] is capable only of predicting previously observetink prediction in Table[1V, TS-Adj is the most accurate
edges, as discussed in Section JI-C. Thus its predictions faccording to both metrics on both data sets. This is not sur-
new links are random guesses, so it achieves the random bgsising because TS-Adj caonly predict previously observed
line AUC of 0.5 and PRAUC omeN. The similarity-based edges. However AUC and PRAUC do not necessarily agree
methods TS-AA and TS-Katz are extensions of the Adamiot general; for example, consider TS-AA and TS-Katz on the
Adar and Katz predictors for traditional link predictiomda NIPS data. TS-AA has higher PRAUC but lower AUC, and the



1 0.4
08 I TS-AA VI. A UNIFIED EVALUATION METRIC
< 0.3 TS-Katz ] o o .
Los ) 5 By separating the dynamic link prediction problem into two
F / 802 problems with separate evaluation metrics, we are able to
() . . n N m
204 x fairly evaluate different methods for dynamic link predict
202 E_ﬁAt 0.1 However one often desires a single metric to capture the
-Katz “ ” H
S overall” accuracy rather than two metrics, analogous ® th
%) 02 04 06 08 1 % 02 o4 os os 1 roleof Fl-score combining precision and recall.
False positive rate Recall In the dynamic link prediction setting, any such metric
(a) ROC curve (b) PR curve should capture both the predictive power in new link and

Fig. 2. Comparison df (8) ROC afid{b) PR curves for previoatigerved Préviously observed link prediction. In Sgcti V, we con-
link prediction on NIPS data. TS-AA performs better at lowak (TPR) and cluded that PRAUC is the better evaluation metric for new

worse at high recall, resulting in lower AUC but higher PRAUC link prediction and that AUC is the better evaluation metric

for previously observed link prediction. A unified evalweti
metric could thus consist of the mean of the two quantities.
Notice, however, from Table“lV that the two quantities have
very large differences in magnitude, despite both beindnén t
same rangé0, 1]. Thus the arithmetic mean is inappropriate
because it would be dominated by the AUC value for pre-
viously observed link prediction. The harmonic mean is also
inappropriate because it would be dominated by the PRAUC
for new link prediction, which has a much larger reciprocal.

TS-AA score

o
o
&

1 1.5 2 25 35 We recommend instead to use theometric mearof the
TS-AA score rank x10% two quantities after a baseline correction, which we debgte
(a) TS-AA
| ‘ PRAUGhew — 5o~
, 003 . GMAUC = : LN 9(AUCprey — 0.5),
g - PN
(2]
N 0.02 where P and N denote the number of actual edges and non-
i edges over the set of node pairs considered for new link
2 001 prediction. The baseline correction subtracts the PRAUE an
AUC values that would be obtained by a random predictor. The
OO 05 1 15 2 25 3 35 use of the geometric mean is motivated by the GMean metric
TS-Katz score rank < 10* proposed by Kubat et al[ [20] for evaluating classification
(b) TS-Katz accuracy in highly imbalanced data sets. The geometric mean

Fig. 3. Link prediction scores df (a) TS-AA arjd (b) TS-Katzrted in has Se_veral nice properties in this setting: ] ]
descending order (blue lines) corresponding to all nodesar which an « It is based on threshold curves and avoids the pitfalls of

edge was previously Qbsewed. Red vertical lines denote _paiis that form fixed-threshold metrics as discussed/ih [1]
an edge at the following time step. TS-AA correctly predigtsre edges at | for the diff | f the PRAUC f
high scores but misses many edges at low scores compared-KatfS « Itaccounts tor the different scales ot the or new

edges and AUC for previously observed edges without
being dominated by either quantity.
« It is 0 for any predictor that can only predict new edges

reason for this can be seen in the ROC and PR curves shown OF can only predict previously observed edges.

in Fig.[2. Fig.[2 can be further explained using Kiyj. 3, wheiEhe final point addresses an observation from several previ-
the sorted link prediction scores for TS-AA and TS-Katz areus papers[[4],[15],[T10] on generative models for dynamic
plotted with edges overlaid. TS-AA is more accurate than T8etworks: baseline methods (e.g. TS-Adj) that predict only
Katz at high scores but worse at low scores, missing mapsevious observed edges tend to perform quite competitivel
edges. This leads to higher precision and lower FPR for Iaw terms of AUC when evaluated on the entire network. The
values of recall (TPR) but lower precision and higher FPBMAUC for a baseline predictor of this sort would bedue

for high values of recall, which produces the disagreemetatits inability to predict any new edges at all.

between AUC and PRAUC. Since the PR curve is only focusedThe accuracies of several dynamic link predictors using the
on accurate prediction of positives, TS-AA is rewarded fagvaluation metrics proposed in this paper are shown in Table
being more accurate at high scores (higher precision) andvisAccording to the proposed GMAUC metric, TS-Katz is the
less harshly penalized for missing edges at low scores. Thiest predictor for both data sets due to its ability to adelya
we believe AUC to be a more balanced metric for evaluatimyedict both previously observed and new edges. Notice that
accuracy of previously observed link prediction. for the NIPS data, TS-Katz has the highest GMAUC despite



TABLE V
EVALUATION METRICS FOR NEW AND PREVIOUSLY OBSERVED LINK
PREDICTION AND PROPOSEBSMAUC METRIC FOR UNIFIED EVALUATION

4)

(a) NIPS data

Method PRAUCx10~3 (new) AUC (prev.) GMAUC
TS-Ad] [6] 0.033 0.855 0
TS-AA 7] 0.882 0.646 0.016
TS-Katz [§] 0.735 0.694 0.017
SBTM [9] 0.055 0.713 0.003
(b) Facebook data (1]
Method PRAUCx10~3 (new) AUC (prev.) GMAUC
TS-Adj [6] 1.19 0.705 0 [2]
TS-AA [[7] 14.4 0.560 0.040
TS-Katz [8] 14.8 0.579 0.047 3]
SBTM [9] 4.41 0.649 0.031

(4]

not being the most accurate in either task. This is due tp]
the balanced evaluation of new and previously observed link
prediction used in the proposed GMAUC metric.

The data set used to compute the metrics shown in Tabledl
is actually the same Facebook data used in Table Vb. Notice
that the least accurate method according to all three nsetric [7)
Table[, TS-AA, actually becomes the second most accurate
once the evaluation is properly split up into new and presipu 8]
observed links. This is primarily due to its strength in navk|
prediction compared to the SBTM, which does not consider
geodesic distance for new link prediction, and to TS-Adj,[g]
which does not consider new edges at all. [10]

VII. CONCLUSIONS [11]

In this paper, we thoroughly examined the problem of
evaluating accuracy in the dynamic link prediction settinig2]
where edges are both added and removed over time. We
find that the overwhelming majority of edges formed at anys;
given time are edges that have previously been observed.
These edges should be evaluasegaratelyfrom new edges,

i.e. edges that have not formed in the past between a pair]
of nodes. The new and previously observed link prediction

problems have very different levels of difficulty, with neink (15]
prediction being orders of magnitude more difficiNtone of

the currently used metrics for dynamic link prediction penfi  [16]
this separatiorand are thus dominated by the accuracy on the

easier problem of predicting previously observed edges. [17]

Our main recommendations are as follows:

1) Separate node pairs for which edges have previougiy]
been observed from the remaining node pairs, and evalu-
ate link prediction accuracy on these two sets separatqbé]
For node pairs without previous edges, i.e. the new link
prediction problem, evaluate prediction accuracy usirigl!
PRAUC due to the tremendous class imbalance.

For node pairs with previous edges, evaluate prediction
accuracy using AUC due to the importance of predicting
negatives (non-edges).

2)

3)

If a single metric of accuracy is desired, evaluate new
and previously observed link prediction using separate
metrics then combine the metrics rather than computing

5)

a single metric over all node pairs.

previously observed link prediction.
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