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Abstract 

Large, high-resolution displays (LHRDs) enable increased productivity over conventional 

monitors. Previous work has identified the benefits of LHRDs for Visual Analytics tasks, 

where the user is analyzing complex data sets. However, LHRDs are fundamentally 

different environments, presenting both usability challenges and opportunities, and need 

to be better understood. There is thus a need for additional studies to analyze the impact 

of LHRD size and display resolution on content spatialization strategies and Visual 

Analytics task performance. I present the results of two studies of the effects of physical 

display size and resolution on analytical task successes and also analyze how 

participants spatially cluster visual content in different experimental conditions. 

Keywords:  Visual Analytics; Large High-Resolution Displays; sense-making; 

spatialization; clustering; visualization  
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Glossary 

4K 

 

 

 

Analytical reasoning 

 

 

 

 

 

Bezel 

 

Big Data 

 

 

 

 

CAVE 

 

 

 

 

 

Chart 

 

 

Clustering 

 

Dashboard 

 

 

Sometimes called 4K resolution, refers to a horizontal 
screen display resolution in the order of 4,000 pixels. 
There are several different 4K resolution configurations. 
Displays used in this work use the 3840x2160 pixel 
configuration defined by the 4K resolution standard. 

 

Refers to the ability to look at information and discern 
patterns within the information. Analytical reasoning 
involves deductive reasoning with no specialised 
knowledge, such as: comprehending the basic structure 
of a set of relationships, recognizing logically equivalent 
statements and inferring what could be true or must be 
true from given facts and rules. 

 

The frame that surround conventional monitors.  

 

Data sets that are so voluminous and complex that 
traditional data processing application software are 
inadequate to deal with them. Big data challenges include 
capturing data, data storage, data analysis, search, 
sharing, transfer, visualization, querying, updating and 
information privacy. 

 

A cave automatic virtual environment (better known by 
the recursive acronym CAVE) is an immersive virtual 
reality environment where projectors are directed to 
between three and six of the walls of a room-sized cube. 
The name is also a reference to the allegory of the Cave 
in Plato's Republic in which a philosopher contemplates 
perception, reality and illusion. 

 

A chart is a graphical representation of data. A chart in 
DynSpace+ is a 2D representation of selected 
dimensions of a given data. 

 

Be or come into a cluster or close group; congregate. 

 

A “faceted analytical display”: a set of interactive charts 
that simultaneously reside on a single screen, each of 
which presents a somewhat different view of a common 
dataset and is used to analyze that information. 
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Display 

 

Embodiment 

 

 

Information visualization 

 

 

 

Insight (visual analytics) 

 

 

 

Latin square 

 

 

Powerwall 

 

 

Retina Display 

 

 

 

Semantic interaction 

 

 

 

Sense-making 

 

 

 

 

The aggregate visual output intended to be treated as a 
single contiguous space.  

 

Embodiment denotes a form of participative status. It is 
about the fact that things are embedded in the world, and 
the ways in which their reality depends on being 
embedded. 

 
It is the study of (interactive) visual representations of 
abstract data to reinforce human cognition. The abstract 
data include both numerical and non-numerical data, 
such as text and geographic information. 

 

Gained through interacting with the system, exploring 
possible connections, investigating hypotheses during 
interactive visual data exploration with large, complex 
datasets. 

 

An arrangement of letters or symbols that each occur n 
times, in a square array of n2 compartments so that no 
letter appears twice in the same row or column. 

 

A powerwall is a large, ultra-high-resolution display that is 
constructed of a matrix of other displays, which may be 
either monitors or projectors.  

 

A marketing term developed by Apple to refer to devices 
and monitors that have a high enough PPI so that a 
person is unable to discern individual pixels at a normal 
viewing distance  

 

Interaction that seeks to enable analysts to spatially 
interact with their visualizations directly within the visual 
metaphor, using interactions that derive from their 
analytic process.  

 

Sense-making is the process of searching for a 
representation and encoding of data in that 
representation to answer task-specific questions.  
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Spatialization 

 

 

Visual analytics 

(in a VA context) Two-dimensional view of high-
dimensional data such that similarity between information 
is represented by relative distances between data points.  

 

Visual analytics (VA) is the science of analytical 
reasoning facilitated by interactive visual interfaces.  
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Introductory Images 

 

The studies in this thesis have been conducted on a system called V4-

SPACE. Above is a picture of this 58-megapixel Very Large Ultra-High-

Resolution Display System. 

Below is a picture taken during a study, where a participant is working on 

a visual analytics (VA) task on V4-Space using DynSpace+, a VA tool built by our 

research lab.  
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Chapter 1.  
 
Introduction 

Ever-increasing volume and complexity of data is becoming the new standard. 

People are likely to encounter complex datasets more frequently when dealing with real 

world problems, especially since there is a strong trend towards automatizing the data 

collection processes. Millions of entries with dozens to hundreds of data dimensions can 

easily be found in many instances of Big Data sets. Such datasets can yield extremely 

powerful insights; yet need to be analyzed for understanding what the collected data 

means. We can categorize the analysis approaches for aforesaid data into two main 

groups; algorithmic analysis and human-in-the-loop. Current algorithms are not fully 

capable nor reliable for automatically analyzing data, also because they currently cannot 

understand the semantics of the data. The more practical alternative, human-in-the-loop 

processes, involves Visual Analytics; which is a basis for this thesis. 

Visual analytics (VA) is the science of analytical reasoning facilitated by 

interactive visual interfaces [30]. Other work defines visual analytics as a science-based 

activity supporting sense-making of large, complex datasets through interactive visual 

data exploration [97]. All definitions share that the user reasons and makes sense of the 

data through interaction with visualizations of the data. This gave rise to an industry 

around VA applications including Tableau and INSPIRE. 

In most VA applications, users interact with data through widgets, such as sliders 

and menus, that control the visualization through modifying the underlying model 

parameters. However, this is indirect interaction with the data. Endert et al. presented 

semantic interaction, which seeks to enable analysts to spatially interact with their 

visualizations directly within the visual metaphor, using interactions that derive from their 

analytic process [42]. Endert further showed that semantic interaction supports sense-

making better [45]. In a spatial workspace, users can directly arrange documents 

spatially into clusters to convey similarity or relationships in the data [44]. The familiarity 

and flexibility afforded by a spatial workspace with semantic interaction allows users to 

easily establish implicit relationships among data elements in a large dataset [67]. 
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When space is relatively limited, as it is on normal desktop monitors, existing 

visualizations must often be removed (at least temporarily) to make room for new ones, 

requiring additional cognitive effort from the user to remember such information. 

Increasing the display size changes this dynamic significantly, allowing the user to 

visually access more information at once. Comparisons can be made visually and 

directly rather than relying on memory and imperfect mental models, which is analogous 

to the traditional recognize vs. recall issue when comparing command line interfaces to 

Windows-Icons-Menus-Pointer (WIMP) interfaces. On a large display, a flick of the eye 

or turn of the head is all that is required to consult a different data source [2]. Moreover, 

compared to traditional desktop monitors, previous work [2,13,32] has found that large, 

high-resolution displays (LHRDs) improve productivity and we can expect this to hold for 

VA applications as well. With small monitors, we often face a trade-off between the level 

of detail and the number of different objects that can be displayed. 

From a data point of view, large display systems not only contribute positively to 

analytic processes, but also become a necessity with increasing volumes of data. 

Considering how datasets have changed over time in terms of volume and complexity, 

large displays will become increasingly necessary if a contiguous space is desired and 

users want to see a sufficient level of detail for analyzing their data. Huber’s taxonomy of 

large datasets [53] reflects the fact that we will not be able to analyze large datasets on 

traditional desktop monitors with context and details being available at the same time.  

When high-dimensional data is visualized in a 2D plane, users may wish to 

manipulate the layout of the data points to better reflect their domain knowledge or to 

explore alternative structures [43]. Spatialization in the VA context is defined as two-

dimensional view of high-dimensional data such that similarity between information is 

represented by relative distances between data points, where, e.g., a cluster represents 

a collection of similar information [101]. Other sources define spatialization as the 

transformation of high-dimensional data into lower-dimensional, geometric 

representations basing on computational methods and spatial metaphors [57]. 

Considering the formal definition in a VA context, I assumed LHRDs to support content 

spatialization better as the available space is much larger, so that the relative distances 

between data points are more distinct and clusters are represented more visibly. I 

wanted to verify that assumption in my thesis work.  
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Furthermore, the increasing volume and complexity of data suggest great 

potential to improve analytical task performance via LHRDs. However, the switch from 

conventional desktop monitors is much more than just an arbitrary change in size and 

resolution. As much larger screens, such as wall-sized displays, become available we 

face a new set of challenges and usability issues, despite their potential advantages 

over conventional displays. Users encounter a variety of usability problems with large 

displays, such as keeping track of the cursor [14], access to distal1 parts of the display 

and icons [17,58], and window management [16,84]. Those and probably more factors 

need to be considered when using LHRDs. Thus, more research is needed on all 

aspects of LHRDs to explore the spatialization of information and effects of semantic 

interaction on analytical task performance, as well as the impact of the increase in 

display size and resolution, which together form the main motivations for this work. 

My research goals are (a) to observe users’ spatialization strategies and 

semantic interaction with information in an analytical workspace on a very large display 

system, and (b) to identify the effect of size and resolution of the display system on 

visual analytics task completion success. In my study, I pose three general research 

questions (RQs). The RQs investigated in this thesis are as follows: 

RQ1: How do people use the (large) space of an LHRD to cluster items while 

trying to solve analytical problems that require re-organization of the content? What are 

the factors that users consider when clustering; topical relations, visual similarity, or 

common dimensions of charts? How much of the space do they use when clustering 

objects? How do these clusters look? How far are they from each other? What does the 

cluster distance symbolize? Are objects strictly separated or loosely grouped? Are there 

patterns for the space usage? Also, do different clustering approaches lead to significant 

differences in accuracy and/or task completion times?  

RQ2: Do larger displays help the user to do better in visual analytics tasks? How 

does task success change as screen size is increased? Task success is here defined as 

shorter task completion time and better accuracy in visual analytics tasks, such as 

answering fact-based questions or finding insights in relatively complex datasets among 

categorical, numerical or time data using scatterplots, bar charts and histograms. 

1 distal: situated away from the center of the body or from the point of attachment. 
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RQ3: How does task success change as resolution is increased? Does higher 

resolution improve task success in visual analytics tasks?  

To address RQ1, I conducted the first experiment. RQ2 and RQ3 were explored 

in a second experiment. 

In the first study, spatialization on LHRDs is not compared to conventional small 

monitors. Since LHRDs are characteristically different from small monitors, I wanted to 

explore how spatialization takes place on LHRDs. (Thus, there were no multiple 

conditions.) To observe clustering behavior on large displays, I gave users a VA task 

and 2D data charts to work with.  

In the second study, RQ2 was the prioritized research question and it was 

investigated within-subjects. RQ3, which explores how display resolution affects VA task 

success, used a between-subject design where subjects were randomly assigned to 3 

groups, where each group was given one of 720p, 1080p or 2160p (4K) resolution on 

the same underlying physical displays to investigate if higher resolution improves task 

success.  

In this thesis, several concepts will be made use of frequently. I define and 

explain them here to avoid any confusion and ambiguity in the rest of the document. 

Frequently used definitions, concepts and terms are given in Appendix A.  

This thesis presents: 

• V4-SPACE, a very large display space with high-resolution to perform VA 

tasks, 

• DynSpace+, a visual analytics tool built in the VVISE lab that runs on V4-

SPACE, and 

• two studies that analyze VA task success and explore users’ content 

spatialization approaches on LHRDs, using DynSpace+ running on V4-

SPACE. 

According to current standards in the field, my system qualifies as a “Very-Large 

Ultra-High-Resolution Display (VLUHRD) System”. The broad term for such systems is, 
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however, Large High-Resolution Display (LHRD). Although VLUHRD suits my system 

better, especially when comparing it to other similar large displays, I will also be using a 

common LHRD abbreviation in the following chapters of the thesis.   

The main contributions of this thesis are:  

1. Exploration of spatialization and manual clustering behaviours of users 

during VA tasks on large displays.  

2. Evaluation and analysis of VA task successes under different display size 

and resolution conditions.  

The rest of the thesis is organized as follows: Chapter 2 discusses related work 

with an emphasis on more closely related work in the end of the chapter. Chapter 3 

outlines the system design and specifications and discusses various design decisions 

made when extending the existing systems. The two studies conducted for this work are 

described in Chapters 4 and 5, along with their methodology, design, results and 

separate discussion subsections. Chapter 6 contains a general discussion. Finally, 

limitations and future work are presented in Chapter 7. 
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Chapter 2.  
 
Literature Survey 

This work explores visual analytics (VA) on LHRD systems. In this chapter I am 

discussing the research that took place in the literature in 5 sections. I start by defining 

the underlying concepts and explain the used terms. Next, I will discuss the need and 

the motivation for using large, high-resolution display systems in visual analytics 

research. I will introduce major large display systems constructed so far, followed by a 

separate discussion of work closely related to this thesis. Finally, I will talk about the 

methodology of similar research, to determine the vision to be adopted in this work. 

2.1. Defining Visual Analytics 

Visual analytics (VA), the science of analytical reasoning facilitated by interactive 

visual interfaces, combines techniques from information visualization, computational 

data analysis and other areas to support the analytical reasoning process [30]. It should 

not be confused with information visualization, which targets the conveyance of an 

understanding of data through interactive abstract visual representations [22]. Thus, a 

key aspect that distinguishes visual analytics from other related fields (InfoVis, SciVis, 

HCI) is the focus on analytical reasoning [73]. And indeed, the most widely accepted 

definitions of VA emphasize the analytical reasoning process as a crucial aspect of VA. 

Analytical reasoning processes are just as important as final products in visual 

analytics [73]. These processes generate information through discovered insights and 

how the users arrive at these insights (provenance). The visualization community’s 

definition of insight differs from that of the cognitive community [28]. The cognitive 

science community has used the term insight “to name the process by which a problem 

solver suddenly moves from a state of not knowing how to solve a problem to a state of 

knowing how to solve it” [65] and posits that it specifically refers to what is commonly 

called an “aha” or “eureka” moment [61]. In the visualization community, though, the 

communication of insights is considered as the primary purpose of a visualization [22]. 

Visual analytics is also defined as a science-based activity to support sense-

making in large, complex datasets through interactive visual data exploration. Through 
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interacting with the system, users can explore possible connections, investigate 

hypotheses, and ultimately gain insight. This complex and personal process is referred 

to as sense-making [78]. In short, sense-making is the process of searching for a 

representation and encoding of data in that representation to answer task-specific 

questions [88]. The relation between sense-making and insight is that insight constitutes 

a step in the sense-making process. The sense-making process is described by Peter 

Pirolli and Stuart Card as follows [78]: 

 

In their work, sense-making was explained through a process consisting of loops, 

among which two have special importance: the foraging loop, which focuses on the 

gathering and processing of data to create schemas, and the sense-making loop, which 

includes the processes involved in moving from schemas to finished products. Foraging 

refers to the process of filtering and gathering collections of interesting or relevant 

information. Then, using that information, users advance through the synthesis stages of 

the process, where they construct and test hypotheses about how the foraged 

information may relate to a larger structure, situation or problem. Semantic interaction 

combines foraging activities with spatial synthesis activities [43]. 
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Figure 2.1. Sense-making loop 

2.2. Motivation for Using Large High-resolution Display 
Systems in Visual Analytics 

In a spatial workspace, users can interactively organize documents into spatial 

(visual) clusters to convey similarity or relationships [44]. To accomplish this, analysts of 

course require a spatial workspace in which to spatially organize documents into clusters 

and other visual structures [44]. The familiarity and flexibility afforded by a spatial 

workspace allows users to identify and make explicit – through spatializing them – the 

implicit relationships within the dataset [67]. 

The trend noted in Chapter 1 towards larger display areas in work environments 

has been continual over the past few decades. In earlier times when cathode ray tube 

(CRT) monitors were widely used, increasing monitor sizes, and using additional 

monitors for dual desktop monitor configurations or similar, was common [51]. Users of 

such systems reported benefits for their work [19,32].  
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Recently, display technologies have enhanced, display sizes have increased and 

their configurations have become more complex. I am investigating VA on large high-

resolution display systems because I would like to improve VA task completion success 

and believe larger screens—LHRDs—can help. I also want to study how users exploit a 

large available space to organize their content since it is worthwhile to confirm whether 

the reported advantages of large displays extend to VA research. Display is defined here 

as the aggregate visual output intended to be treated as a single contiguous space [3]. 

This distinction is important because the display can be (and often is) composed of 

multiple tiled physical units, which could be projectors or monitors, possibly not 

contiguous. Several reports indicate that increasing size and resolution have positive 

effects on productivity in various tasks undertaken with such systems [2,13,32]. For 

example, powerwalls, high-resolution wall-size displays, can increase productivity [32] 

and LHRDs have been shown to support data analysis in comparison with normal sized 

displays [2]. Since the technology has improved and better configurations are becoming 

increasingly available, I was privileged to have available for my work a very large display 

system with uniform very high resolution.   

Such displays improve productivity [2,13,32]; because they allow the user to 

visually access more information at once. Thus, comparisons can be done visually, 

rather than relying on memory and imperfect mental models. This can be clearly 

exploited; since a 17” desktop monitor, for comparison, covers only about 10% of the 

visual field [51]. This goes down to 1%, if head rotation is also allowed for the user to 

keep track of displayed information. Therefore, theoretically, the size of any information 

can be kept the same and the available display area can be increased to very large 

fractions of the visual field to reduce the context switching effects of a single (smaller) 

screen which rely on mental resources (e.g. increasing the number of monitors in a 

display system without any further changes, to have more space to accommodate data). 

Maintaining a high resolution would also increase the amount of information that can be 

accommodated, at least at a perceivable level. For example, the amount of text at a 

perceivable level that could be accommodated in a high-resolution setting of a monitor is 

higher than a lower resolution mode of the same monitor. On small or low-resolution 

monitors, we often encounter the trade-off between level of detail and the number of 

different objects that can be displayed on screen. The “normal” or detailed view is one in 

which the details of the document can be directly perceived (e.g. text can be read 
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reasonably easily). While such a view depends on many factors, it generally takes a lot 

of space. Other representations include thumbnails, icons, and labels. Each of these 

requires progressively less room, but at the same time conveys less information [2]. 

While this is an issue on smaller monitors, on large display systems it is much less so.  

In addition to displaying more information, large displays provide increased 

freedom in the placement of such information on the display system. Users can more 

easily exploit the power of spatialization by using semantic interaction on large displays 

by organizing their visual objects in the larger available screen space. On traditional 

desktop displays, spatialization is much reduced and users must use virtual methods 

such as tabs or detail-in-context methods to switch between documents, which makes it 

harder to encode the relations between objects into the visual (tab) structure. Using 

constraint-free spaces on very large ultra-high-resolution displays allows objects to be 

freely moved and thus makes it easier for the user to spatially structure the visual, 

enabling them to more easily encode relations between objects by their position in the 

space.  

Larger displays have been proven to help user performance in various 

application areas, such as visualization [11,31,74,99,113] and geospatial tasks [98]. In 

addition, they have been shown to have a positive cognitive impact on their users, in 

terms of how users perceive and work with their information [2,18,99,106]. Users were 

reported to prefer larger displays, found them “convenient”, and thought that larger 

displays were useful when they were working with their information regardless of 

whether their task performances quantitatively improved or not. It seems clear that 

evaluating LHRDs is a much more complex issue than simply measuring performance 

with visualization tasks between subjects. 

2.3. Systems Constructed for Large Display Research 

To exploit the above-mentioned advantages of using large displays, many large 

display systems, targeted at a variety of applications, have been created so far. They 

have been built using different materials, with various design considerations and for 

different purposes. Here I briefly introduce some of the notable work in large display 

research.  
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In 2000, Bishop and Welch built a large display as a part of their project “Office of 

Real Soon Now” [19]. This very basic approach, shown in Figure 2.2, took no more than 

a few days to create and involves two mechanically adjusted parallel projectors throwing 

images onto the office wall. This approach eliminated two CRT monitors and freed up 

much desk space. Two projectors with 1024 x 768 pixels yielded a composite display 

with 2048 x 768 pixels. Images were projected on a flat display surface and were aligned 

approximately. No further details were considered. Even this simple change in their 

workspace was reported to provide better ergonomics and to improve social and 

technical interaction. They also reported that higher information content helped them in 

their work [19].   

 

Figure 2.2.  The “Office of Real Soon Now” [43] from back and front, showing 
display and parallel projectors. 

Czerwinski et al. presented “Dsharp” (Figure 2.3), a large surface created by 

using three XGA DLP projectors at 1024 x 768 resolution, projecting onto a curved 

Plexiglas panel for an equivalent of a 3072 x 768 resolution display [32]. This system 

yielded a 12” high by 48” wide screen with a 4:1 aspect ratio curving around the user to 

avoid attendant perspective distortion. It was reported that there was a visible but very 

small (under 1/32”) seam between each of the three projectors [32]. A Microsoft natural 

keyboard and Intellimouse were used as the input devices. Microsoft Internet Explorer v. 

6.0 and Microsoft Office XP Professional applications were used for the tasks. Their 

series of user studies demonstrated significant performance advantages of the large 

display system over 15” monitors [32].  
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Figure 2.3.  User working on experimental Dsharp display. 

In one of their studies Robert Ball and Chris North reported an observational 

analysis of the use of a large tiled display containing nine monitors in a 3x3 matrix, with 

a total resolution of 3840x3072 (11,796,480 pixels) [10]. The LCD flat panels formed a 

display area approximately 37” tall and 44.4” wide. They put the display on a standard 

desktop table approximately 30” off the ground. The tiled display was constructed from 

nine 17” Dell monitors affixed to a wooden frame (see Figure 2.4). A Dell Optiplex 

GX270 was used to drive all nine monitors. In addition to the dual head AGP video card 

that came with the computer, four additional PCI video cards were installed. All video 

cards were Nvidia GeForce FX 5200s. Figure 2.4 shows various aspects of the tiled 

display. 
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Figure 2.4. Ball and North’s [10] 3x3 tiled display. Top figure shows front view 
of display, with one monitor disconnected to show the underlying 
wooden frame. Bottom figure shows side view, and how monitors 
connect to the frame. 

In a study by Bi and Balakrishnan [18], a large high-resolution display was 

compared with conventional desktop monitors. The physical size of the display was 6’ 

high and 16’ wide. The display was created with 18 projectors with 1024 x 768 pixels-

resolution each, in a 3x6 tiling, building a total display resolution of 6144 x 2304 pixels. 

Color and brightness calibration among the images coming through different projectors 

was minimal. A single computer with several multi-headed graphic cards was used to 

run all the projectors concurrently. The Windows XP operating system and standard 

software applications were used on the computer. While the interaction was not 

explained explicitly, we can assume it involved traditional interaction with keyboard and 

mouse. While not mentioned explicitly, the user always sat at the desk in front of the 

display. The users’ distance to the display and visual angle were also not specified. A 

user working on the system is shown in Figure 2.5.  
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Figure 2.5.  User working on a large high-resolution display constructed with 
projectors. 

Tiling small monitors to construct a larger display system is a common approach 

when creating a LHRD. Shupp et al. presented a system with high pixel density and high 

pixel count (96 PPI, approximately 32 million pixels) that consisted of twenty-four 17” 

LCD flat panels and twelve GNU/Linux computers [99]. The monitors were paired, two to 

a computer, and set to their highest resolution of 1280×1024. Color, brightness and 

contrast were tuned to achieve close, though not perfect, matches between the 

monitors. The plastic casing around each monitor was removed to reduce the bezel gap 

between adjacent monitors to 2cm. Each column was mounted on a freestanding 

wooden support, allowing the columns to be moved independently. The twenty-four 

monitors were arranged in an 8×3 matrix approximately 9 feet wide and 3 feet high, with 

a total pixel count of 10,240×3072 = 31,457,280 pixels. It was a reconfigurable display 

system, that could be curved or kept flat, as seen in Figure 2.6. Although this is an 

effective way of building LHRDs with easily obtainable small monitors as building blocks, 

it has disadvantages such as many bezels, an issue that has been identified to create 

spatial distortion [3]. Moreover, the requirement for a cluster of machines to control all 

the monitors increases system complexity dramatically. 
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Figure 2.6.  24 panel, 31.5 megapixel display in the flat and curved 
configurations 

The 34.5 million-pixel display wall at the University of Calgary, built with 15 rear 

projection screens [82], offered a solution to eliminating bezels and provided seamless 

images. Display size was 4.95m by 1.85m. Each projector had a 1920 x 1200 resolution, 

for a total of 9600 x 3600 pixels. Pixel density of the system was 50 PPI. The wall was 

operated by a single PC with dual Xeon E5505 processors, 96 GB RAM, and four 

NVIDIA Quadro K5000 GPUs running a Windows 7 operating system. Interaction was 

through a wireless keyboard and a mouse on a desk. The physical environment was 

described as a “quiet working space like an office or research space”. The user’s 

distance to the display was said to be roughly one meter. Users had tasks from different 

disciplines. The configuration is shown in Figure 2.7. However, projection-based 

solutions have their own set of problems, such as specific lighting requirements and 

lower image quality than monitor-based display systems. Furthermore, projection-based 

units have higher purchase costs, maintenance costs for bulbs, larger space needs and 

more complex projector alignment requirements [72]. 
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Figure 2.7. The University of Calgary’s 34.5 million-pixel display wall  

“The hyperwall” designed by NASA was another significant approach in terms of 

extending large display usage in scientific visualization tasks [90]. The displays in the 

hyperwall are 18” Samsung 181T flat panel LCD monitors framed by a uniform black 

plastic bezel approximately ¾” in width. A custom designed mounting rack allows pitch 

and yaw adjustment of each monitor, as well as translational adjustment between rows 

and columns. In addition, each monitor can be moved independently up to 14 inches in 

“z”, i.e., perpendicular to the frame, which enables nonplanar arrangements of the 

viewing surfaces, such as spherical or paraboloid surfaces. The rack was designed to 

provide all these degrees of freedom and to accommodate different viewing distances. In 

practice, the Samsung monitors delivered 170-degree omnidirectional field of view, 

which enabled rotating in each direction, so a wide range of adjustments was effective. 

Each display is driven directly by an Nvidia GeForce 4 Ti4600 graphics card, at 

1280x1024 resolution. The aggregate pixel count for the entire display matrix is thus 64 

megapixels, distributed over some 55 square feet of screen real estate.  

Each graphics card is housed in a dual-CPU AMD Athlon MP2000+ rack-

mounted slave node. The slave nodes each have a 100GB IDE disk, thus providing 

aggregate storage of 5TB. The slaves are driven by a similarly configured master node, 

and all communication is via Fast (100 BaseT) Ethernet, coordinated by a pair of Cisco 

Catalyst 2950 G- 48-EI switches [90]. 

Improvements in technology are now so extensive that several LHRD systems 

around the world now exceed a hundred million pixels. Stallion (Figure 2.8), the display 
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wall in TACC ACES Visualization Laboratory at University of Texas at Austin consists of 

307 million pixels on seventy-five LCD monitors [72]. The machine contains a total of 

100 processing cores, 108 GB aggregate RAM and 46 render-node GPUs with 36 GB 

aggregate graphics RAM. The render nodes of Stallion are Dell XPS “gaming boxes”, 

each with two NVIDIA GeForce gaming cards. Of the seventy-five display tiles, fifty-eight 

share a GPU with another tile and seventeen have a dedicated GPU. These seventeen 

tiles are centrally located in the display, creating a “hot-spot” with increased rendering 

performance [72].  

 

Figure 2.8.  Stallion at the University of Texas at Austin 

CAVETM (CAVE Automatic Virtual Environment) is a projection-based Virtual 

Reality (VR) system that surrounds viewers in an immersive environment with four or 

more large display walls [75]. The Varrier display (Figure 2.9), a successor to this 

system is a 35-panel tiled system driven by a Linux cluster developed by Electronic 

Visualization Laboratory at University of Illinois at Chicago (EVL-UIC), the same group 

who developed CAVE as well. Two display panels are powered by one computation 

node via a dual-head nVidia Quadro FX3000 graphics card. One additional node serves 

as the master for the entire system. The 35-panel system is composed of 19 nodes, 

each containing dual Intel Xeon processors, connected by Gigabit Ethernet. Applications 

are built around the CAVELibTM platform. The display panels are mounted in a 

semicircular arrangement to partially encompass the viewer, affording approximately 

120° to 180° field of view. The number of panels is scalable so that coverage up to 360° 

is theoretically possible. The net resolution is approximately 2500x6000, or 15 

megapixels [89]. 
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Figure 2.9.  The Varrier display has 35 panels mounted in a semi-circular 
arrangement. 

The Reality Deck, the first gigapixel resolution display in a fully enclosed setting, 

is an example of an immersive system. The Reality Deck is a visualization facility 

offering state-of-the-art aggregate resolution and immersion. It is a 1.5-Gpixel immersive 

tiled display with a full 360-degree horizontal field of view [76]. Comprising 416 high-

density LED backlit LCD displays, it visualizes gigapixel-resolution data while providing 

20/20 visual acuity for most of the visualization space. The Reality Deck offers a 

massive workspace of approximately 33 × 19 × 11 ft. The creators considered 

resolution, bezel size, display size, image quality and stereo support while picking the 

material for building the system. They also reported that at the time of construction, no 

commercially available display satisfied all the criteria; however, the Samsung 

S27A850D provided a good balance. It is a professional 27” PLS panel with 2,560 × 

1,440 resolution with desired contrast, color saturation, and viewing angles. Unlike CCFL 

(cold-cathode fluorescent lamp) monitors, the S27A850D uses LED backlighting, which 

significantly reduces the weight and power requirements. Then, they modified the 

monitors with a custom mount to reduce the bezel to 14 mm. Figure 2.10 is a synthetic, 

to-scale view of the Reality Deck.  
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Figure 2.10.  View of the immersive gigapixel Reality Deck facility displaying a 
geometric model of future New York City 

 The progression of the systems outlined above demonstrates the improvements 

in display system performance over time. However, improved system specifications do 

not necessarily mean improved effectiveness or usability which remains a central 

concern. When it comes to a specific use-case, several questions arise for many LHRD 

systems: For example, if the user of the system has a fixed position, problems of field of 

view and distance to center and sides of the wall occur. If the user is expected to move 

around, then fatigue due to potentially excessive physical navigation [3] and losing the 

full context by physical zooming can become issues. For groups of users a LHRD offers 

a platform for collaboration through state-of-the-art aggregate resolution and immersion. 

However, for a single user an LHRD might not be as ideal, an issue we explore in this 

thesis. Due to such factors, building large display systems is not a straightforward 

process – there are many trade-offs involved in the design. LHRDs have many 

specifications that must be considered individually. I can safely state that building such 

systems is a challenging act of balancing costs, features, and feasibility. 

2.4. Closely Related Research  

Large displays have been used for many purposes of course, not only for VA. 

However, since my study focuses on VA research with large displays I have singled out 

the most closely related previous work to examine more in detail. I will examine each of 
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these in terms of their purpose in using large display systems and the tasks, physical 

characteristics of the system and the structure, research goals, and the results of the 

works.  

Spatial representations of data on large displays are expected to aid 

understanding, the basis for my research. However, the question what properties of a 

spatial representation significantly support cognitive processing is still open. In this 

context, Ragan et al. explored how spatial layout and view control impact learning, by 

investigating the role of persistent visibility when working with large displays [81].  

They described two experiments. In the first, they investigated how learning 

performance and learner strategies are affected by the spatial distribution of information 

in a visual presentation, and interactive control over information viewing. They 

hypothesized that a spatially distributed layout would support superior learning 

performance in comparison to a non-spatial one, i.e., a slideshow layout, and that 

interactive, user-controlled viewing would improve task performance over automatic 

viewing, where the users are looking at static images that are depicting information 

about certain activities. Surprisingly the results of the first experiment did not support 

their hypotheses. Learning scores were significantly lower in the distributed layout than 

in the slideshow-style presentations, even though the participants were better able to 

remember associated locations for event cards with the distributed layout [81]. Also, 

there were no significant differences due to the viewing mode. In the first experiment, 

where they focused on studying learning differences due to varying levels of spatial 

distribution, the researchers did not maintain persistent visibility of content, by making 

the images disappear after showing for a while. 

In the second experiment, the work studied how persistent visibility affects 

learning performance and learning strategies. The authors hypothesized that a 

distributed presentation (spatial layout) with persistent information visibility would allow 

learners to use the locations of the spatial layout to help organize information and aid 

recall [81]. This time, results confirmed that learning scores with the persistent-visibility 

distributed layout were superior to the automatic and interactive distributed 

presentations, as hypothesized.  
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In conclusion, the results of the study were quite surprising and different from the 

initial expectations. Interestingly, spatial distribution of the information did not help 

learning but persistent visibility did. My work uses a combination of both aspects, which 

will present an opportunity to compare my study outcomes with this research. Ragan et 

al. [81] planned to further study the effects of spatial information distribution with large 

display systems and future work includes considerations for the size of the data set, type 

of data representation, organization of information, and type of interactivity [81]. My 

study extends the results in visual analytics on large high-resolution displays (LHRDs) 

and contribute to spatial analysis of the information.  

Another study from Virginia Tech investigated the effects of information layout, 

screen size, and field of view on user performance in information-rich virtual 

environments [80]. The paper describes an experimental evaluation of Information-Rich 

Virtual Environment (IRVE) interfaces. “Information-rich” virtual environments consist not 

only of three-dimensional graphics and other spatial data, but also include information of 

an abstract or symbolic nature that is related to the space [21]. They designed and 

evaluated two information layout techniques to support search and comparison tasks. 

During the experiments, two groups were tested: Those experiencing a single monitor 

condition and those that used a tiled nine-panel large display. For the evaluation, users 

were timed, tracked for correctness, and asked to rate both difficulty and satisfaction on 

each task. The authors posed a set of research questions, including one in which we 

were particularly interested: “Do the advantages of a single layout space hold if the 

screen size is increased?” However, the differences in time to completion across display 

configurations were not statistically related to task performance. They also found no 

statistically significant effect of display configuration on user accuracy. The authors 

mentioned that a potential reason for this was the reduced rendering speed, i.e., 

reduced frame rates. When the browser that the users were working on was enlarged to 

1.5 x 1.5 screens or greater, the application switched to a software rendering mode 

which seemed significantly slower. Furthermore, changing the display mode did not yield 

the same results as the traditional single desktop monitor. Display size interacted with 

measured variables for accuracy. The best performing combination on a small display 

was the one called “Viewport Space”; however, it was outperformed by another called 

“Object Space” on the nine-screen display [80]. These results were not expected, and I 

will compare them with the results of my experiments in Chapter 7. I believe that the 



22 

conclusion of this study might have been affected by unexpected and/or uncontrolled 

conditions. Successful transfer of an interface to a larger display is not simply a matter of 

scaling; many factors such as software design, hardware construction, interaction types 

and ergonomics require consideration. 

2.4.1. Significance of Display Size and Resolution 

Arguably the closest work to this thesis is a paper from Ni, Bowman and Chen, 

which suggests that increased display size and resolution improve task performance in 

information-rich virtual environments [74]. They designed a controlled experiment to 

evaluate the individual and combined effects of display size and resolution on task 

performance in an Information-Rich Virtual Environment (IRVE). They had three systems 

that they used in their studies. The results show that among a high-resolution small 

monitor, rear-projected screen, and a tiled high-resolution display system, users were 

most successful at performing IRVE search and comparison tasks on large high-

resolution displays. In addition, users working with large displays became less reliant on 

wayfinding aids to form spatial knowledge [74].  

While these authors investigated 3D spatial performance, which is fundamentally 

different from the VA activities that are the focus of my thesis, the research questions 

are very similar. Thus, I follow a similar approach in terms of exploring the effects of 

physical screen size, display resolution and spatialization effects. In their work, the 

authors isolated display size and resolution as independent variables by using three 

different display technologies. A high-resolution desktop display (Figure 2.11, top left) is 

small and can be used at both low and high resolutions; a single projector (Figure 2.11, 

top right) provides a large, low-resolution display; and an array of projectors (Figure 

2.11, bottom) produces a large, high-resolution display.  
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Figure 2.11.  Apparatus used by Ni et al. [74] to study display size and resolution. 
Clockwise from top left: High-resolution IBM T221 LCD flat panel, 
Rear-projected screen, and VisBlocks tiled high-resolution display 
module. 

In their experiments, the authors tried to keep size and resolution as independent 

variables. As users were sitting at the same distance, the larger display size yielded a 

larger physical field of view (PFOV Consequently, they adopted a 2 (size) x 2 

(resolution) between-subjects experimental design, with eight participants assigned to 

each experiment condition (Table 2.2). To test the hypothesis that “users are more 



24 

effective on IRVE tasks, if they have a wayfinding aid”, half the users in each condition 

were provided a wayfinding aid in the form of a map that was on the displays, and the 

rest were not given. 

 

Table 2.1.  Experimental Design of Ni et al. [74].  

Ni et al.’s experimental findings demonstrated the advantages of increased size 

and resolution [74]. As a general guideline, the large high-resolution display was the 

preferred choice for IRVE applications, since it facilitates both spatial navigation and 

information gathering. Interestingly, in their experiment, a large low-resolution rear-

projected screen outperformed a regular-sized monitor with a higher resolution. 

However, I am not sure if this finding can be generalized and similar results might not be 

observed in our study, since the tasks in Ni et al.’s work differed from my proposed tasks 

and text was less legible in their case too.  

A noteworthy contribution of Ni et al.’s study is their generalizable and reusable 

experimental design, which seems highly useful for large high-resolution display system 

research. Their design allows researchers to evaluate the effects of size and resolution 

independently, and any interactions between these two variables, if present.  

Lastly, the authors also ask in their future work section, if there is an upper bound 

to content beyond which users will be overwhelmed by the displayed information. I 

investigate this aspect in my studies in terms of “information density”. 



25 

2.4.2. Significance of Spatialization of the Content 

In the first part of my study, I encourage users to cluster the information, then I 

observe and analyze how they spatialize the available content on large displays during 

their problem-solving session.  

Previous research indicated that clustering information reduces the amount of 

visual search needed to find the elements required for problem-solving inference [88], 

which then translates to better performance in analytical tasks. Another study shows that 

a spatial contiguity effect applies to how deeply a user learns [97], i.e., that students 

learn more deeply when extraneous material is excluded rather than included, and when 

related content is placed near the item being considered rather than far from it. This 

learning effect needs to be considered, since training is required of participants using a 

system for the first time [92], especially for analysis tasks that require tool understanding 

and analytical thinking patterns [66].  

Endert et al. presented the results of a study, where users were asked to perform 

a spatial sense-making task on a large, high-resolution display in the LightSPIRE system 

(shown in Figure 2.12). Their study has also much common ground and shares 

methodology with the work presented in this thesis. The purpose of Endert et al.’s study 

was to analyze users’ spatial clustering of information in a sense-making task. Study 

participants analyzed a textual dataset to understand and uncover a fictional terrorist 

activity using a simple spatial document organizational tool called LightSPIRE [44]. I am 

primarily interested in the analysis of spatial layout of information and in their research 

question about what structure exists within the user-generated clusters.  

 

Figure 2.12.  Endert’s LightSPIRE [44], a large-display spatial workspace for 
organizing text documents. 
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For the study, Endert et al. used a large display system consisting of ten 17” LCD 

monitors in a 5x2 grid with a 13.1-megapixel workspace. The intelligence analysis 

training dataset used for this study consisted of 50 textual documents containing a 

hidden fictitious terrorist plot (VAST 2007 contest problem). The study involved 15 

participants, which were all male undergraduate computer science students. The 

analysis of spatial layout on session completion consisted of characterizing the primary 

spatial layout and examining cluster structures, as both measures identify interesting 

aspects of users’ clustering approaches.  

The analysis of overall spatial layout revealed three distinct patterns of spatial 

organization by users: Topical clustering, temporal clustering and hybrid clustering [44]. 

Most participants chose to organize their workspace primarily based on clusters of 

topically related documents; while a third of the users considered temporal information 

when organizing their workspace. A single participant used hybrid clustering to balance 

temporal awareness and understanding of topical relations.  

Additionally, Endert’s study kept track of the total number of clusters created and 

the number of documents contained in each cluster [44]. Going beyond their work, there 

are other interesting characteristics of clusters that could be investigated, such as intra-

cluster co-occurrences and transitivity. Transitivity expresses how connected different 

clusters are. I would like to observe if different clusters are independent from each other, 

or whether their positioning or the distance between symbolizes any relation. The 

experimental work in this thesis will consider those as well. 

I believe it is important to observe how users interactively organize their 

information (unaided by any algorithm). Thus, my experimental designs do not provide 

any algorithmic clustering to users. 

Spatial organization does not necessarily take place the same way on large 

displays [4]. One argument for this is that the required type of navigation is different as 

compared to conventional monitors. Previous work has shown that users organized 

content quite differently in a spatial way when there was a physical workspace (which 

requires more physical navigation then virtual navigation) such as a LHRD, as compared 

to a virtual workspace, where the users need to navigate through using virtual navigation 

techniques [4].  
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Andrews and North [4] explicitly examined the use of spatial sense-making 

techniques within two environments; one being a 33-megapixel large, high-resolution 

display and the other a small desktop monitor. Their study task used a basic analytic tool 

relying on manual spatial organization as the primary evidence marshaling technique2. 

The results demonstrate that the two approaches for providing a sense-making space, 

physical and virtual workspaces, are not equally effective, and that the greater 

embodiment afforded by the physical workspace changes how the space is perceived 

and used.  

Dourish explains the discussed concept as follows: “Embodiment denotes a form 

of participative status. (It) is about the fact that things are embedded in the world, and 

the ways in which their reality depends on being embedded. So, it applies to spoken 

conversations just as much as to apples and bookshelves; but it’s also dividing a line 

between an apple and the idea of an apple. [37]”  

The following quote summarizes Endert et al.’s findings [44]: 

We did indeed observe behavioral differences between the two groups that 
ranged from low-level behavior such as how many documents were open 
and how they were spread across the space to high-level differences in 
approach to the task. … Users of the large display made use of more of the 
available space, treated the workspace as a more coherent whole, and 
created more complex structures. The environment also biased the users 
into adopting a spatial view, a perspective dropped by most of the small 
display users…. (W)e showed evidence that users were coupling with the 
documents in the physical space, conscripting them into their cognitive 
process in a way not evident in the virtual space condition.  

2.5. Methodology  

Ball et al. [10] reported an observational analysis of the use of a large tiled 

display over the course of six months, which provides insightful feedback on how users 

do and do not use a large high-resolution display. They summarize the advantages and 

disadvantages of using tiled high-resolution displays and presented recommendations 

and guidelines for application designers [75].  

2 which was the same basic text analysis task that they used in their previous explorations of large 
displays for sense-making [2], and Robinson used in his studies [85]. 
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In contrast to this qualitative approach, Tan et al. [105,106] conducted two 

studies to quantify benefits of physically large displays for individual users. They used 

controlled experiments, identifying independent and dependent variables explicitly while 

holding constant other factors. The angular visual field for each of two displays in their 

experimental design was the same. Participants performed spatial orientation tasks 

involving static 2D scenes. A significant performance gain was observed on the large 

display, even though the two displays created identically-sized retinal images.   

My research benefits from both methodologies as discussed in the following 

chapters. 
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Chapter 3.  
 
System Design 

The system consists of physical displays (V4-Space), a software tool 

(DynSpace+), and datasets to be analyzed. Naturally all factors within the system that 

the user interacts with should be well understood and carefully designed. 

3.1. Considerations for Designing the Display System: V4-
SPACE 

Transitioning to very large displays is not just a matter of adjusting the size of the 

monitors. Very large displays are a fundamentally different environment, for which 

technical aspects and usability considerations must be reassessed [3]. Using such a 

display system creates a new collection of design opportunities, issues, and challenges 

[3]. Tackling those is one of the side goals of my work. 

There are many design aspects to consider when building a large display 

system. Different kind of systems have been constructed to meet different needs and 

design decisions. Surely, every system was expected to satisfy certain criteria for 

researchers. What advantages or disadvantages did previous systems have over each 

other? When we are aiming to build our own system with a specific purpose, what 

should we base our design decisions on? I will briefly discuss major design related 

questions to exemplify trade-offs when building a system for large display related 

research. 

• How should we decide whether projections or monitor displays should be 

used? Projectors have advantages, such as seamless images that tiled 

monitor displays cannot provide. However, they have higher purchase 

costs, maintenance costs for bulbs, larger space needs and projector 

alignment requirements [72]. The screen material raises even more sub-

questions. Rear projection or front projection technology? For display-

based systems, should CRT, LCD, LED or OLED monitors be used? 

What should the size of each unit in the display system be? Small, 

traditional monitors can be obtained and carried around more easily, and 
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smaller building blocks would make it easier to match desired physical 

dimensions. Yet this introduces an increased number of bezels, which 

would cause several problems such as spatial distortion [3], and a less 

coordinated system due to higher number of uneven display units since 

each unit is individually different from each other and cannot be expected 

to match exactly in terms of color, contrast and brightness. Moreover, a 

larger number of individual monitors increases system complexity. 

• What degree of virtual and physical navigation techniques will be used? 

Will the user sit in front of the display and control the system remotely or 

will they be free to walk around and control the content more directly, e.g., 

through touchscreen interfaces? What will the input devices or navigation 

interfaces be? Physical navigation has advantages, such as better 

engagement with the system, immersion with the task, uses more intuitive 

ways of interaction, and ensures a focus by physical movements towards 

the display. However, drawbacks include increased fatigue and lack of 

generality of the cases it can be used in [11]. A moving user performing 

physical navigation faces the risk of not being able to have all the content 

within the field of view, and thus may not get a good overview. 

• Physical attributes of the designed systems can vary greatly. A curved or 

a flat display surface? A curved display can bring all the displayed content 

to the same visual distance but can also be harder to build. If it is a 

display wall, how large should it be? Larger displays could be argued to 

bring extra power to visualize the content, though it might require 

additional degrees or amount of physical navigation, which potentially 

could slow the analytics process and hinder productivity. Fully enclosed, 

CAVE-alike systems would have advantages in cases where multiple 

users use the systems at the same time, though might affect one-person 

tasks negatively due to inefficient distribution of the content over the 

space.  

All such design considerations are associated with trade-offs for system builders, 

and the decisions should be made carefully by evaluating all aspects and comparing 
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those with the intended use cases. The motivation behind the design decisions for our 

large display system is shown in section 3.1.2. 

After setting design goals in alignment with the expectations for the system 

regarding the tasks, the system gets designed and built. I prepared the following list of 

questions to be answered to aid in developing the system specifications. Specifications 

for our system, V4-SPACE, are then given in section 3.1.1.1. 

• What is the physical size including the total dimensions in height and 

width?  

• What is the resolution, and the aspect ratio?  

• Is there a lower limit for desired pixels per inch (PPI) in the display?  

• What is it made of; projection surfaces or monitors?  

• What are the requirements for contrast, brightness, color?  

• How many individual units does the display system consist of?  

• If it is not a single display, how are the units separated?  

• Are there any bezels or apparent joints, how large are those and is that 

distractive?  

• What is the organization; flat, curved, fully enclosed?  

• How are the monitors driven; by a single computer or a cluster of 

machines?  

• What are the requirements for the machines that run the displays?  

• What software is used?  

• What are the means of interaction?  

• Does the user have a fixed position relative to the display system?  
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• If yes, what is the distance to the displays and what is the angular field of 

view?  

• Does the system require physical navigation and what degree, if it does?  

• Does the system qualify as a retina display? While the answer to this 

question can be inferred from the above information, it is useful to directly 

list this criterion as it qualifies when the content becomes pixelated.  

There are also various limitations that should be addressed when designing a 

large display system. Limitations can be technical, technological, physical, cost related 

and so on. For example, an nVidia Mosaic display system run by a computer is currently 

limited to 16384 horizontal and vertical pixels by current nVidia drivers and hardware. A 

MS Word file cannot currently be opened in full screen mode on displays with more than 

8k pixels. A 4K image, which would be considered as a high definition image on 

traditional monitors, takes up a very small amount of display on a LHRD, and thus 

occupies a relatively small field of view (FOV), if the user is at distance to the display 

system that enables him/her to see the whole display at once.  

Such examples show that the underlying technology is still not very supportive of 

large display systems to for various tasks including visual analytics. These limitations 

also determine what could be realistically expected from large display systems and 

differentiate possible solutions from ideal ones. A “perfect” system using a single curved 

very large UHD OLED (ultra-high definition organic light emitting display) monitor, say at 

16k x 9k resolution, would probably be hard to build, order, and ship, probably exceeds 

current graphics hardware capabilities, and is less likely to be affordable, too. Therefore, 

it is crucial to compare realistic targets in a cost sensitive manner and make design 

decisions considering all mentioned factors.  

In general, researchers should ask what the motivations for design choices are, 

what the resulting trade-offs are, what conditions have been considered when designing 

the system and what limitations apply to their design attempt.  
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3.1.1. The System 

3.1.1.1 V4-SPACE at a Glance 

V4-SPACE is a very large display system in the VVISE Lab at the School of 

Interactive Arts and Technology (SIAT), Simon Fraser University (SFU). It is a versatile 

display system environment designed to support multiple projects (Figure 3.1). 

Moreover, it is expected to be expanded with additional features, improved, used for 

comparative and other VA studies on LHRDs, and potentially even field studies. 

However, for the purposes of this thesis, the current state of the system has been 

designed for the VA study in this thesis. 

My research uses V4-SPACE to support work on VA tasks. My objective was to 

create a good environment for an analyst by providing a system focused on supporting a 

single user. In such an environment, my goal was to observe and analyze how physical 

size, resolution, and the spatialization of the content on the available display space 

affect user performance on LHRDs during VA tasks. The goal was to provide a very 

powerful system to a VA user, at a cost level that will soon be within reach for 

companies or institutions that do high-value VA work.  

To facilitate adoption, V4-Space is run by a single, powerful computer with 

multiple powerful graphic cards. This avoids complicated hardware configurations with a 

cluster of computers or complex software-based platforms. While the current 

instantiation costs more than CA$100,000 (cumulative cost of the system), we can 

expect that the falling costs of large display systems will make the system more 

affordable and cost-effective in the future. 
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Figure 3.1.  V4-SPACE, the display system used in this study. 

Description of V4-SPACE: 

• A 1x7 array of large, tiled monitors, which form the main display. The monitors are 

85” 4K Samsung Smart TVs, oriented vertically. An additional 21” monitor sits in front 

of the user below the view of the monitors, i.e., does not block the view of the main 

display, and is designed to be used for auxiliary tasks. 

• The main monitors have stereoscopic display capability. However, this feature has 

not been used in this research.   

• Currently the system is in a circular arc around the user such that the user is 

equidistant from each display unit in the system. Consequently, the system affords a 

uniform (perceived) font size across the whole display, which avoids information 

legibility issues due to non-uniform distances.  

• Each 85” monitor displays an array of 3840 x 2160 pixels. Together the LHRD 

system has 15120 x 3840 pixels. In total, this makes V4-Space a 58 megapixel 

display system, with 58,060,800 pixels. While the aspect ratio of each single display 

is 9:16, for the whole system it is 63:16, very close to 4:1.  
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• Each display in the grid is 1.88 m tall and 1.06 m wide. This translates to 74” and 

41.67”, respectively.  

• The whole system is 7.41 m by 1.88 m. As a single unit, it is a 7.65 m diagonal 

display with a display area of approximately 14 m2.  

• V4-SPACE has 52 PPI pixel density.     

• One of the biggest motivations for using larger displays for us was to eliminate 

bezels as much as possible within the available budget and available technologies 

by using largest commercially available units of display. With our 1x7 grid display, we 

eliminated all horizontal bezels and have only 6 vertical bezels due to the outer 

covering frames of the monitors in the system.     

• The system is run by a single computer, with an Intel i7-6700K processor at 4GHz 

and a Gigabyte GA-Z170X G1 motherboard, which features four PCI Express Gen 3 

slots. To operate the large displays, there are two nVidia Quadro M5000 graphic 

cards, which provide four 4K outputs each. Hardware refresh across all outputs is 

synchronized through an nVidia Quadro Sync card. In addition, there is an nVidia 

Quadro K620 graphic card for the auxiliary desktop monitor.  

• V4-Space relies on the nVidia Mosaic driver functionality, which presents all seven 

displays as a single display surface to the operating system. This greatly facilitates 

software development, thus the display functions like any other monitor. 

• The Operating System is Windows 7.  

• The system is designed for a single user who has a fixed position in front of the 

display system. As a limited form of physical navigation, the user may rotate a swivel 

chair to look at different parts of V4-Space. The system is not designed for the user 

to stand up and walk while using V4-SPACE for VA tasks.  

• Interaction with V4-Space is through keyboard and mouse. Users are already very 

familiar with this type of interaction modality, which greatly reduces training 

requirements for using V4-Space.  
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• A standard keyboard is provided to the user. To support the high resolution of V4-

Space, we use a high-performance mouse, a Razer DeathAdder Chroma 10000 PPI 

optical gaming mouse. The motivation for this choice is that regular basic mice are 

not sufficiently sensitive to afford efficient mouse navigation across 15120 horizontal 

pixels. 

• The chair is placed such that a spot midway between the user’s eyes is 3.3 m from 

the front face of the display (130"). Thanks to the curved positioning of the TV units 

in the display system, this distance is to the same for all units of the display.  

• When determining the distance, I specified PPD, then calculated screen-to-user 

distance to achieve that PPD. This will be further discussed in section 3.1.2.5.6.    

• From the fixed distance, the display system takes up approximately 131° of the 

user’s physical horizontal field of view. 

Finally, V4-SPACE is a highly re-configurable system. Details of the re-

configurability aspects are given in Appendix B.   

3.1.1.2 Advantages over Past Systems 

Both experience from past research as well as recent advances in technology 

make more powerful display systems more easily available than they have been in the 

past. In general, and compared to the first efforts in the field, constructing large display 

systems takes less effort and fewer resources and involves fewer technical challenges. 

Moreover, past work informs today’s researchers regarding effective ways of 

constructing displays and guiding them in designing such systems. Although large 

display usage in VA tasks has great potential, due to newer and cheaper technology, it is 

only now that we can build better systems than what was possible in the past which 

enables me to address some of the issues that existed in previously built large display 

systems that were discussed in section 2.4.  

Due to technology advances, it is not reasonable to compare our system with 

very early attempts of larger displays. Bishop and Welch’s system had low resolution 

[19]. DSharp [32] is in a sense comparable to modern curved 4K TVs. Chris North and 

Robert Ball’s systems [10,99] used 17” monitors driven by clusters of computers. Not 

only does this increase system complexity, it also results in many horizontal and vertical 
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bezels, as does NASA’s 64-megapixel Hyperwall [90]. Bi and Balakrishnan’s system 

[18], used 18 projectors with 1024x768 resolution which exhibited quite visible color 

pattern changes over the images coming from different projectors. 

More recent systems became progressively more sophisticated. The 34.5 million-

pixel display wall at University of Calgary was operated by a single computer and 

provided almost 10 square-meters area of display with 50 PPI density through rear 

projection technology [82]. However, as discussed earlier, projection-based systems 

have disadvantages and the Calgary system is no exception. One disadvantage is that 

bulbs for the projectors need to be replaced periodically, which increases maintenance 

effort and cost. Also, projector-based systems typically cannot match actual displays in 

terms of color, brightness and contrast levels due to the nature of the technology [72]. 

Projection displays also require specific environment and dark surroundings to provide 

the best quality. Finally, it is harder to reconfigure a projection-based system. 

As discussed previously, a better display cannot be simply specified as the one 

that has the most pixels. Still, some systems reached quite impressive quantities of 

pixels. Stallion, for example, at University of Texas at Austin consists of 307 million 

pixels [72]. However, little was reported about use cases, how it was useful in specific 

tasks and what the advantages of the system were. Rather the system was a flat surface 

with very many screens brought together to create a system with great potential, but not 

converted into a specific solution to any specific research problems.  

Lastly, some large display systems offer unique environments for users that do 

not necessarily address our use cases. The Varrier display (see section 2.3) emphasizes 

autostereoscopic technology to produce a VR immersive experience without requiring 

encumbrances such as glasses [89], targeting primarily 3D content. Similarly, the 

gigapixel Reality Deck aims to be a fully immersive system in an enclosed setting [76]. It 

targets groups working within the Deck and relies on physical user navigation to operate 

on the system. In contrast, V4-SPACE targets a single user who interacts with the 

system directly with the provided means of interaction, has the entire display all the time 

within their field of view, and does not require much fatigue-inducing physical navigation. 
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3.1.2. Design Challenges and Preferences 

Design choices involve judging the available options, optimizing resources with 

respect to requirements and making decisions about known trade-offs. As Andrews et al. 

suggest [3], since the field started to explore LHRD systems, we are shifting away from 

the technical limitations of scalability imposed by traditional displays (e.g. number of 

pixels) to studying the human abilities that emerge when these limitations are removed. 

This exposes the potential benefits of large, high-resolution displays. A better 

understanding of the interaction between visualization design, perception, interaction 

techniques, and the display technology will help to identify sweet spots for LHRD 

technology. My focus is on studying LHRDs used for VA.  

An extensive survey on LHRD technologies, techniques and applications by Ni et 

al. [75] developed a list of top ten research challenges (Table 3.1). The set of design 

issues we identified in section 3.1 for the creation of V4-SPACE mostly aligns with this 

list and we considered all the aspects as much as possible. Our decisions are discussed 

below. 

Table 3.1.  Top Ten LHRD Research Challenges listed by Ni et al. [75] 

1. Truly seamless tiled displays.  

2. Stereoscopic large high-resolution displays.  

3. Easily reconfigurable large high-resolution displays.  

4. High-performance cluster rendering.  

5. Scalability.  

6. Design and evaluate large high-resolution display groupware. 

7. Effective interaction techniques.  

8. Perceptually valid ways of presenting information on the large displays.  

9. Empirical evidence for the benefits of large high-resolution displays.  

10. Integrating large high-resolution displays into a seamless computing environment.  

 

3.1.2.1 Use Case Scenario 

The most important question regarding the system is how it will be used. What is 

the use-case? What is it built for? Who is it built for? How will it be used? Here we use 

the V4-SPACE for VA tasks. In past research and real-world practice, many different VA 

tasks have been used and/or evaluated. Some of the work targets individuals, others 
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target collaborative work around VA. The types of collaboration, interaction and 

navigation differed significantly. 

Other work has attempted to investigate large display system usage for data 

manipulation tasks [64], and the effects of display size and navigation technique on 

classification tasks [63]. However, these studies were performed in shared interaction 

settings. In real-life scenarios, VA processes consist of certain stages with different 

characteristics. When I was working as an analyst on a VA project, and even though 

other stakeholders were co-located with me, many VA tasks were handled solely by 

myself, and I spent most of the time working on the main VA task during the project. Still, 

there was collaboration at the beginning of the analysis, for reviewing progress and 

addressing problems during analysis, and for the discussion of results, mostly at the end 

of the task. Although such group sessions offer unique features and advantages for 

analytical tasks, in many real-life situations sustainable, long-duration analytical 

processes are associated with a single user setting [6,7,36] with a fixed, typically seated 

position. Consequently, even though our highly reconfigurable very large display system 

could also allow multi-user interactions, we decided to design and optimize the system to 

be used by a single user for this study so that the core part of the VA process, which is 

performed by a single user, is studied. 

I decided to place the user behind a desk in front of the display system and 

placed the displays all at the same distance from the user. Since the system will be 

controlled by a single user, keyboard and mouse was used as input method.  

To support the single-user scenario, the user of V4-SPACE sits on a swivel chair, 

so they can rotate to visually cover the whole area of the display system while 

performing the visual analytics task. With this limited form of physical navigation, the 

user does not need to get up and walk to the displays, since they are all at the same 

distance from the sitting location in a semi-cylindrical configuration. I also adjusted font 

sizes and the size of user interface elements to allow optimal reading conditions for this 

given viewing distances. I set the font size to 28 pt to match the perceived size of 10 pt 

font text on a page of paper at a reasonable reading distance (approximately arm’s 

length). The user opens the visual analytics tool on the LHRDs in full screen mode to 

undertake visual analytics tasks. The tool and the tasks will be discussed in detail in the 

following chapters.  
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The auxiliary display is used to show reference documents and similar 

information which ensures that such documents and tools do not affect the workspace 

allocated for the VA tool.  

The user performs VA tasks using the keyboard and high PPI mouse, which 

enables covering the large horizontal display space with ease. The user can work on the 

task for long periods of time since they will be sitting and not dealing with potential 

fatigue due to extended periods of standing. At the same time, the user uses eye, head 

and body rotations to cover the large viewing angle of the displays.  

3.1.2.2 Navigation Technique 

Navigation on displays can be either virtual, as in the traditional approach, or 

physical, which enables exploitation of embodied human abilities, such as spatial 

awareness, proprioception, and spatial memory [3]. There is a trade-off between virtual 

and physical navigation. In physical navigation, spatial understanding is higher, 

navigation is more direct, and the navigation UI can be simpler. However, the user must 

be able to change their physical location, e.g., by walking around. On the other hand, for 

virtual navigation, fatigue can be less of an issue, and many different interaction devices 

can be used [11]. Past research [11] indicates physical navigation offers some 

advantages over virtual navigation, especially for large display settings. Previous work 

on spatial visualizations argued that larger displays lead to more physical navigation, 

which offers improved user performance and reduces the need for virtual navigation [11].  

Many strategies have been developed for displaying large amounts of 

information, including overview + detail, focus + context, and pan + zoom [29]. These 

techniques are used in virtual navigation, also some of them are occasionally used with 

physical navigation. Continuous, “intelligent” zooming techniques have been presented 

too, as in Figure 3.2 [35,94].  
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Figure 3.2. Intelligent zooming [35].On top, there is the example of basic 
operation; (a) network before zooming; (b) nodes a and d have been 
zoomed to show the subnetworks; other parts are shrunk as context 
[94]. At the bottom, there is the display of a network with one cluster 
(C) is open and closed in two consecutive views. 

During a study by Ball and North [12] in which they investigated users’ 

visualization task performance in a large 2D information space, users were given four 

conditions, designed with 2 independent variables and 2 levels for each. The systems 
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that users worked on offered either physical or virtual navigation, and either a “context” 

or “focus” view. The results indicated that physical navigation was preferred over virtual 

navigation, as it promoted higher order thinking, such as investigating data points that 

held the most promise for solving a task, while virtual navigation promoted less efficient, 

simplistic algorithmic strategies. Physical navigation also lowered performance time.    

Since V4-SPACE features a large area to lay out the information, more 

information can be displayed at a readable size, and less panning, zooming or scrolling 

takes place as compared to small monitors. Instead of using indirect techniques, V4-

SPACE users can navigate through objects directly by simple physical movement, such 

as eye, head or body rotation, for scanning increasingly larger distances. There is no 

need for additional degrees of movement, which reduces the potential for fatigue. All 

standard interaction and navigation components on the displays, such as menus, scroll-

bars, and buttons, can easily be controlled through the mouse rather than embodied 

navigation.   

3.1.2.3 Input Devices 

There have been attempts to improve interaction on large display systems, since 

the interaction becomes more difficult as displays get larger.  

Bezerianos and Balakrishnan presented the design and evaluation of the vacuum 

[17], an interaction technique that enables quick access to items on areas of a large 

display that are difficult for a user to reach without significant physical movement. The 

vacuum is a circular widget with a user controllable wedge of influence that is centered 

at the widget’s point of invocation and spans out to the edges of the display. Far away 

objects residing inside this influence wedge are brought closer to the widget’s center in 

the form of proxies that can be manipulated in lieu of the original [17].  Results have 

shown that the vacuum outperforms existing techniques like a regular mouse when 

selecting multiple targets in a sequence, performs similarly to existing techniques when 

selecting single targets located moderately far away, and slightly worse with single 

targets located very far away in the presence of distractor targets along the path. 

Some researchers have explored methods beyond virtual interaction. Khan et al. 

described a widget and interaction technique, known as a “Frisbee,” for interacting with 

areas of a large display that are difficult or impossible to access directly. A frisbee is 
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simply a portal to another part of the display. It consists of a local "telescope" and a 

remote "target". The remote data surrounded by the target is drawn into the telescope 

and interactions performed within it are applied on the remote data [58]. Their results 

indicate that the frisbee is preferred over walking back and forth to the local and remote 

spaces beyond 1.37 meters (4.5 feet) [58]. 

In the current instantiation, interaction with V4-SPACE is through keyboard and 

mouse. With modern GUIs, this means that the user relies mostly on the mouse. Mouse 

control of very large display surfaces poses several challenges. Sufficient cursor size, 

movement speed, and easy long-distance targeting are the most notable ones. Previous 

research suggests that increased sizes of displays often affect how users handle their 

mice [14]. The problem arises from the need to increase mouse speed, as large displays 

feature many more pixels, which requires the mouse to cover larger distances, 

compared to the conventional monitors that the mouse was designed for. To avoid 

excessive clutching, users who want to get across the screen reasonably fast must set 

their mice to higher speeds or acceleration values, which introduces drawbacks. One 

problem is that higher mouse speeds make it harder for users to visually track the cursor 

and/or reacquire the cursor as it is approaching a target, such as a button the user wants 

to click. If users lose track of the cursor, they must spend extra time reacquiring it [14]. 

However, it is not only the cursor’s speed that makes the cursor hard to track. Due to 

limitations of the operating system that renders the cursor or limitations in frame rate, it 

may appear to jump from one position to the next. This artifact, a form of temporal 

aliasing [33], becomes a problem as higher mouse speeds make the cursor jump farther.   

Existing techniques to solve these problems, such as the Windows mouse trails, 

do not preserve the responsiveness of the mouse cursor on high-resolution display 

systems. Windows mouse trails were designed to enhance the visibility of the mouse 

cursor on LCDs with a slow response by leaving cursor images on the screen for two or 

more frames [14]. In my experience, they substantially slow interactivity down with very 

high resolutions, such as the 58 megapixel V4-Space display. 

The general problem of long-distance target acquisition has been the subject of a 

much research on interaction techniques [23,41,71,100,114]. An important improvement, 

the high-density cursor, addresses this issue by filling in additional cursor images 

between actual cursor positions through temporal super-sampling [14]. The reported 
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results of the corresponding user study indicated that the high-density cursor improved 

participants’ performance on a Fitts’ law task by up to 7% for target acquisitions across 

long distances. The differences found in the study were statistically significant but not 

very large.  

To address the interaction problem on V4-SPACE I increased cursor speed and 

simultaneously increased the cursor size to address the drawbacks of the increased 

speed. To achieve the maximum possible size of the cursor in the Windows operating 

system I used “largest cursor ever” [125]. Since interacting with the system with a 

regular mouse did not yield an acceptable experience, we used a Razer DeathAdder 

Chroma mouse with a 10,000 ppi optical sensor [126] as the main input device. 

3.1.2.4 Equipment Used 

One of the central debates in very-large display system design is tiled display 

panels versus projector arrays. Some advantages for tiled LCD panels are: (1) they are 

easier to align and color correct, (2) maintenance costs are lower, and (3) they take less 

space (no throw distance needed). A disadvantage is borders between tiles due to the 

bezels, which we will discuss in detail in section 3.1.2.5.1. Bezels affect the display of 

imagery to a limited degree, but can affect the display of text more strongly [75]. 

Projector-based systems, on the other hand are typically cheaper to build in 

terms of square area of the display, but often cannot achieve the same image quality as 

LCD panels and need careful geometric calibration. In general, projection-based 

systems have also much lower resolution compared to LCD panels. Tiled projection 

systems also need additional system components to blend images from different 

projectors. Projection-based systems also typically have larger space needs in terms of 

the depth of the system. 

My system uses very large display panels, which tackles all issues and 

minimizes the bezel effect. V4-SPACE consists of seven vertically oriented 85” displays, 

tiled horizontally. Due to the large vertical size of the displays, and in contrast to many 

other tiled LCD systems, this means there are no horizontal bezels. The monitors are 

Samsung 85” UHD TVs. UHD is the abbreviation for Ultra-high-definition television; 

which is also known as Ultra HD and UHDTV [27,39,55,122,128]. "Ultra HD" is an 

umbrella term selected by the Consumer Electronics Association [8]. There are two 
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resolution configurations described as UHD, 7680x4320 and 3840x2160, referred as 

“8K” and “4K”, respectively [129]. Our UHD TVs are 3840 × 2160 pixels tall (8.29 

megapixels each), four times as many pixels as HD resolution, which is 1920 × 1080 

pixels (2.07 megapixels). Our system provides 15120 pixels horizontally and 3840 

vertically, which exceeds UHD and could be called “15K” resolution. 

3.1.2.5 Physical Attributes 

 Many physical attributes must be considered. Here I use Andrews et al. set of 

such attributes to characterize V4-Space [3]: 

size: measured in inches of the diagonal viewing area (e.g., 17 inches); 

pixel density: measured in the number of pixels per inch [e.g., 96 PPI (pixels per 

inch)]; 

resolution: measured in a horizontal multiplied by a vertical pixel count (e.g., 

1600 x 1200 px); 

brightness: measures the amount of light emitted by the display (in candelas per 

square meter); 

contrast: measured as the luminance ratio between the brightest and darkest 

color (e.g., 700:1); 

bezels: the frames that surround conventional monitors; 

display technology: the technology used to create the display, typically tiled 

LCD monitors or projectors (rear or front projected); and 

form factor: the physical arrangement and form of the display.  

We discuss our design considering these attributes in the following subsections.  

3.1.2.5.1 Display Units 

When the gigapixel display of the Reality Deck was being built, the researchers 

decided to use LCD monitors over projectors, due to factors such as lower maintenance 

costs, and better manageability and affordability [76]. Then they considered different 
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types of LCD monitors based on the following criteria: resolution target, bezel number 

and size, unit size, image quality and stereo support [76].  

Even though their number is limited in our system, bezels are the main issues 

with tiled multi-monitor display systems. While one study argues that larger bezels are 

causing small judgement errors for distances (around 5%) [110], another study from the 

same group focused on the fact that the additional costs associated with thinner bezels 

may not provide significant return on investment. They also found that bezels may act as 

visual anchors and be useful for placement of the interface elements [109]. Still, bezels 

might be useful under certain conditions, too. Other research has shown that bezels are 

sometimes actively used by the user for distribution of tasks among monitors and thus 

become useful in terms of dividing tasks into multiple subspaces [18,102]. 

Smith et al. present two experiments investigating bezels on large tiled displays 

used for fast-action gaming [102]. The first experiment examines bezel size independent 

of configuration, using simulated bezel sizes ranging from 0 (i.e., no bezels) to 4 cm in a 

3x3 grid configuration. Results of the experiment indicate minimal effects for bezel size 

and compensation. The second experiment fixed bezel size at 4 cm and instead varies 

configuration from a single display up to a 3x3 grid of simulated displays. Results of this 

study indicate that while the 1x2 performed worse in certain metrics, globally, the effects 

of configuration were similarly small. The issue of bezels is still a great topic for future 

research. 

Good image quality requires good contrast, backlight uniformity, and large 

viewing angle, and the high-end displays panels of V4-SPACE are state-of-the art in this 

respect. 

3.1.2.5.2 Organization 

Individual screens can easily be combined into wall-sized displays. Such 

combinations of displays could be straight, curved, or arranged in irregular patterns. With 

different organizations of the displays, one can even build a completely enclosed space, 

i.e., a CAVE. As there are many possibilities for arranging the screens, it is unclear what 

arrangements are “best” [62]. Moreover, there are many options for how to arrange 

content and applications across such large displays. 
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When we were organizing the individual display elements of V4-SPACE, we 

encountered certain trade-offs due to physical limitations. One can think of this as a 

puzzle, with 8 puzzle pieces (identical 4K TVs) of 85 inches with 3840x2160 pixels. One 

option was to create a 2x4 grid with horizontally positioned TVs, which would provide a 

15360x4320 pixel configuration. The downside of this arrangement is that for a seated 

user there will be a horizontal bezel approximately at eye level. A bezel in such a 

prominent location is not desirable and thus we decided against this option. We could 

also have arranged the TVs vertically in a 2x4 grid to create a display with 8640x7680 

total resolution. While this would create an almost square display surface, it would be 

very tall (almost 4 m high), which does not match the human visual field well and which 

also exceeds most room heights. Thus, we settled on a horizontal grid/row with the 

displays in portrait orientation. By installing the TVs on stands with casters, we can 

reconfigure the displays freely, which affords many degrees of freedom and increases 

the versatility to the system. 

Once we had positioned the physical displays in the horizontal grid/row, we 

created a single, logical display using the nVidia Mosaic software. At this point we 

discovered a hardware/driver limit of a maximum of 16384 pixels (horizontally and 

vertically) for any Mosaic display. Eight displays exceeded this hard limit, so we used 

only 7 displays to get a display of 15120 horizontal and 3840 vertical pixels.  

3.1.2.5.3 Shape / Curvature 

The individual display units of V4-SPACE are organized along a semi-circular 

arc. Here we discuss why we chose this configuration. 

Shupp et al. presented a study to analyze the effects of angled orientation on 

large displays on performance during 2D visualization tasks. They asked questions such 

as “How does curvature affect finding data in different locations on the display?”, “How 

does curvature affect comparing data at varying distances?”, and “How does curvature 

affect users’ abilities to reason about visualized data?” [99]. With a 24"-panel, 31.5 

megapixel display in the flat and curved configurations, they found significant benefits of 

curving the display system. According to the authors, curving LHRDs provides the 

following benefits:  
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• Changes the amount and type of physical navigation, from translational 

movements to rotational ones. Translational movements decrease by about half, while 

rotational movements double. 

• Further improves user performance time for some tasks, up to 24% faster. 

• Eliminates users’ significant region bias towards the left side of large flat 

displays. 

• Changes the type of insights users gain from large-scale visualizations, to less 

overview insights and more localized detail insights. 

• Reduces users’ frustration levels on search tasks, and substantially increases 

user preference on comparison tasks. 

A summary of the effects is given in Table 3.2 [99].  

Table 3.2. Curved Displays versus Flat Display Surfaces. 

Effect  Curved  Flat  

Faster performance time (up to 24%)  X  

More turning (double)  X  

More walking (double)   X 

Users change area of focus frequently  X  

No region biases  X  

More detail-level initial insights  X  

More overview-level initial insights   X 

Less user frustration for search  X  

User preference for search  X  

User preference for comparison  X  

User preference for insight    X 

Similar to their approach, I curved the display of our system so the user sits in 

the center of a semi-cylindrical display, and can maintain the same distance to 

information on all screens, which reduces or addresses several issues with large flat 

displays.  

3.1.2.5.4 Display Size Viewing Angle 

Previous studies about display size yielded interesting outcomes. A huge 

motivation for having large displays is the results of experiments which suggest that 

physically large displays, when viewed at identical visual angles as smaller ones (Figure 
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3.3), help users perform better on mental rotation tasks [106]. While the reasons for this 

are yet to be explored thoroughly, large displays do immerse users within the problem 

space and might bias them into using more efficient cognitive strategies. 

Tan et al.’s study [106] is significant in this context. They kept the visual angle 

subtended from the user to each of two different displays constant by adjusting the 

viewing distances appropriately (Figure 3.3). They also held other factors such as 

resolution, refresh rate, color, brightness, contrast, and content as constant as possible 

across displays. Since the information content shown by each of the displays was 

identical, it would be reasonable to expect that there would be no difference in 

performance on one display or the other. However, quite interestingly, this was not the 

case, which suggests physical size is indeed an important display characteristic that 

must be considered as we create our display systems. Their results suggest that 

physically large displays, even at identical visual angles as small displays, increase 

performance on spatial tasks as well as mental map formation and memory. A visual 

representation of their experimental setup is given in Figure 3.3.  

  

Figure 3.3. Experimental setup to maintain a constant visual angle between 
small and large displays [106]. 
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This study provides strong motivation for some of my design decisions. As 

explained earlier, I keep all the information on the displays at a legible size (the 

perceived as a 10pt font text on an page at normal reading distance, at arm’s length). 

Consequently, I do not rely on approaches that trade off space and speed, such as 

overview + detail, focus + context or pan + zooming. At this point, and if the perceived 

size of the content and viewing angle are going to stay same, one could ask why we did 

not place a smaller number of smaller high-resolution monitors closer to the user (say a 

couple of 27” monitors at arm’s length), instead of larger displays at a larger distance. 

Our reason for this is Tan et al.’s evidence [106] that sheer display size, isolated from all 

other factors, improves user performance.  

3.1.2.5.5 Field of View 

Field of view (FOV) is related and connected to many attributes of a system. 

Geometrically, the horizontal FOV is the angle subtended at the human eye by the 

horizontal edges of the display [31], i.e. determined by the displays’ horizontal physical 

dimension and the user’s distance to the display. There is also a corresponding vertical 

field of view (VFOV), and diagonal field of view (DFOV), but for most situations only the 

horizontal FOV is of interest. Those are shown in Figure 3.4. Display manufacturers 

typically report DFOV numbers, as they are larger. However, as the main concern of my 

work is around horizontally wide displays, from here on I will use FOV to mean horizontal 

FOV. 
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Figure 3.4. Vertical, diagonal and horizontal fields of view of the display. 

 

The term FOV can also refer to physical field of view (PFOV) (or display field of 

view in other literature), or software field of view (SFOV). E.g., a display of 48” width 

placed 24” from a user’s eyes, will result in a horizontal PFOV of 90° [74]. The software 

field of view (SFOV) is used by 3D rendering software and does not necessarily match 

the PFOV, as the virtual camera may be at a difference distance to the display relative to 

the position of the user’s head. The effects of PFOV and SFOV on virtual environment 

task performance have been extensively studied [1,9,31,38,40,70,112], although much 

of the research was only concerned with virtual environments (VE). In my system, since 

my software sets the SFOV to be identical to the PFOV, I will not distinguish between 

the two terms.  

 Visual perception involves both the high acuity foveal vision and the wider 

overlapping peripheral vision. The role of peripheral vision in competent performance of 

adult visuomotor activities of walking, reaching, and forming a cognitive map of a room 

was examined in a study by limiting the field of view to certain degrees in each condition 
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[1]. In general, the results identify the benefits of higher degrees of PFOV, that is, large 

displays viewed by users in wide visual angles. However, there are still questions to 

answer, such as whether there is an upper bound beyond which users will be 

overwhelmed by the displayed information. In my study, I tried to find out if users of V4-

SPACE prefer and perform better in the largest display setting, or whether they prefer to 

view the information at a smaller FOV.  

The attributes of V4-SPACE that influence the user PFOV include the size of the 

display system, the curvature required to keep information at the same distance, and the 

pixels-per-degree that we want to preserve by placing the user at the correct distance, 

considering the resolution and display PPI. Across all seven displays in the system, V4-

SPACE provides a PFOV of 131° to the user. With such a large viewing angle, I 

attempted to balance immersion and the constant visibility of all displayed information. 

Considering the distance from the screens and the location of the user, the full 

width of V4-SPACE exceeds the foveal vision of any human, but not the peripheral 

vision. Thus, I want to vary the PFOV of the large display and use it as an independent 

variable in one of the experiment conditions in a study, i.e., change the field of view 

between experimental conditions, while the user remains in a fixed position. With this 

approach, I will be able to investigate the effects of the PFOV by comparing a larger 

FOV to smaller ones. To achieve this, I will be using 3, 5, and 7 screens in the display 

for displaying information in three cases (which will be providing approximately 56°, 94° 

and 131° FOV respectively), i.e., only the available display size will change, other 

attributes such as size of the information will be kept constant. In other words, the 

available display space will change with the number of screens, but everything else will 

stay the say. 

3.1.2.5.6 Resolution and Pixel Density 

Many researchers suggested that we need higher-resolution displays to better 

view scientific images that are becoming available with the higher-resolution sensors 

[72,117,118,119,121]. However, this trend is not limited to images alone. With the 

increasing availability of Big Data, any display system needs to display more information. 

In terms of Furnas and Bederson’s space-scale concept, a display with more pixels can 

show a greater amount of data space (more overview) or a greater depth in scale (more 

detail) [49].  
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V4-SPACE is a 58-megapixel display space with a 52 PPI pixel density. To make 

observations about effects of resolution on visual analytics task performances, I will also 

simulate a system with a lower resolution configuration by aggregating pixels in some 

experimental conditions. This will be explained more in detail in further sections. 

3.1.2.5.7 Control Distance and Visual Acuity 

As one approaches a fixed-resolution display’s surface, individual pixels become 

increasingly discernible. Pixels per degree (PPD) is often taken as a measure of the 

spatial quality of a visualization.  The visual acuity metric [76] correlates directly to the 

more commonly used Snellen fraction, which is used to quantify this aspect of vision. 

The fraction 20/X corresponds to “this person can see at 20 feet what a person of 

average vision can see at X feet.” Based on this definition, 20/20 is regarded as 

normal/average vision, which corresponds to a visual acuity of being able to resolve 

details of 1 arc min, i.e., 60 pixels per degree. The term Retina Display is sometimes 

seen as a measure of the quality of a display. This term is a marketing term developed 

by Apple to refer to devices and monitors that have a high enough PPI so that a person 

is unable to discern individual pixels at a normal viewing distance [103], i.e., roughly half 

of one’s arm’s length for a smartphone. 

A highly debated issue with LHRDs centers around visual acuity [93]. The 

question is if pixels are “wasted” in the periphery on large displays [113]. There is some 

research that supports the idea that there may be performance costs if visualizations are 

scaled up for larger displays, which could be avoided by drawing only what the user can 

perceive. The most relevant research deals with the eccentricity effect, which shows that 

performance gradually degrades as a target gets farther from our point of visual fixation 

and that the extent of this effect increases with larger display sizes [24]. Still, this 

argument assumes that the user does not move their eyes or head, which is essentially 

never true in practice. 

Still, the visual acuity measure described above applies only in the center of the 

field of view of a single eye (the fovea) and drops off substantially towards the periphery. 

This is easily demonstrated as one cannot easily read text one does not directly focus 

on. We need to use the term “pixels-per-degree” from the user’s eye at the viewing 

distance, to further discuss the perceived “image quality” displayed on the system.  
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In my case, the user sits 3.3 m (130”) away from the display system. As my 

calculations [116] show, V4-SPACE becomes a Retina Display at 1.67 m (66”). Since 

another independent variable to track in this thesis is resolution of the displays, we will 

have three conditions (for each monitor): 

• standard resolution (2160p, or widely known as 4K) 

• half the standard resolution (1080p) 

• one third of the standard resolution (720p)  

For latter two cases, the required distance for matching the retinal criteria would double 

and quadruple to 133” and 199”, respectively. The diagram in Figure 3.5. explains better. 

 

Figure 3.5. Diagram to explain Retina Display requirements considering the 
distances and the specifications of V4-SPACE displays. 

The initial distance of the user to the display system at V4-SPACE was 

determined in a way that the middle case is very close to being “retina display”. This 

gives us the chance to ask following questions:  

• Does resolution play a role in performance if pixels become discernible? 

(lowering the resolution) 

• Does resolution play a role in performance, even though the “retina 

display” condition is maintained? Is resolution still a performance factor 
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after reaching a certain PPD value? (increasing the resolution to 4K, even 

though the system already qualifies as retina at 1080p) 

3.1.2.6 System that Powers the Displays 

Since large display systems require much processing power, in the past clusters 

of computers have typically been used to operate LHRDs. But processor clusters are 

difficult to design, implement and manage - are they still needed? 

In 2006, a 50-60 mega-pixel Powerwall display required a cluster of seven 

machines to drive it. In 2012 the same display could be driven by a single machine with 

three graphics cards, and in 2015 it could be driven by a single graphics card [86] (albeit 

sometimes at reduced frame rates). This demonstrates that computer systems are in 

general keeping up with display technology improvements, which motivated us to try to 

control all displays with a single machine.  

A drawback of cluster-based display systems is that they typically require 

complex custom software to display data visualizations across the whole display area. 

Clusters usually require middleware software, which add an extra layer of complexity for 

building and operating large display systems. For example, the computer cluster that 

drives HiReD [86] uses middleware to eliminate problems of layouts transferred from 

conventional monitors. Thanks to the hardware system and the design of the visual 

analytics software that we are using on V4-SPACE, we do not require middleware to 

perform tasks in the intended way.  

Our system consists of a single computer, which contains two nVidia Quadro 

M5000s [120] for the TVs in the display system and one nVidia Quadro K620 [115] for 

the smaller auxiliary monitor outside of the mosaic display. The system does not have 

visible and distracting delays, provides a consistent 60Hz refresh rate even under heavy, 

full screen GUI rendering, and has a 75 ms end to end latency.   

3.2. Considerations for Designing the VA Tool: DynSpace+ 

In this work, I use DynSpace+ as a VA tool on V4-SPACE. This software is an 

extension and a redesign of DynSpace (Figures 3.6 and 3.7), which is a VA tool for 

conventional desktop systems developed in the VVISE Lab. The plus sign “+” appended 
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to the system name represents a modification for usage on large displays. DynSpace+ 

also differs in some aspects from the original, in terms of interface design, functionality 

and display preferences. This was motivated by previous research [3] that indicates that 

larger display systems have different sets of requirements, features and use cases, and 

therefore should use different interface paradigms.  

 

Figure 3.6. Desktop-version DynDash user interface. 
The prototype contains three main panels, the Data Attributes Panel (A), the Dashboards Panel 
(B) and the History Panel (F). The Data Attributes Panel (A) displays the dataset name, total 
number of data records, and all the data attributes. Clicking on a data attribute name will highlight 
all charts that show that attribute. The Dashboards Panel (B) consists of multiple analytical 
dashboards, represented as tabs (C). Each dashboard can contain an arbitrary number of charts 
and all the charts inside a dashboard are linked (charts in DynSpace+ are explained later in this 
section). The Local Filter Bar (D) at the top of each chart shows all applied filters color-coded 
corresponding to the data attribute. These filters can be created, copied, or removed through 
simple drag-and-drop operations. Filters in the Global Filter Bar (E) at the top each dashboard 
apply to all charts inside that dashboard. The History Panel (F) consists of thumbnails of charts 
with their states maintained and tooltips showing details. 
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Figure 3.7.  Original DynSpace in its environment 

My thesis work took entirely place on large displays. In two separate studies 

conducted as parts of this thesis, two different versions of DynSpace+ were used. In the 

first study on exploring users’ spatialization and information clustering approaches on 

large displays, a simplified version of DynSpace+ was used since the purpose was to 

emphasize semantic interaction and to remove functionalities that were not applicable so 

that they did not distract users’ classification tasks. In the second study, all available 

analytical functionalities were offered to the user for supporting the sensemaking tasks 

that they were the focus of my second study. The views of those tool versions during two 

separate studies are shown below in Figure 3.8.   
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Figure 3.8.  Simplified version of DynSpace+ used in Study I to observe content 
spatialization and how users cluster data charts (The upper image). 
The version of DynSpace+ used in Study II, with enriched analysis 
features (The lower image).  

DynSpace+ is a browser-based VA tool developed with JavaScript. On the left 

side of the UI, is a Data Panel. The dataset’s data dimensions are in this panel. Those 

data dimensions are classified as categorical, numerical, or date & time. Users can pick 

data dimensions, drag and drop them into charts in Visualization Panel for analysis.  

The visualization Panel is the main panel containing data charts in which 

relations between selected data dimensions are explored. The visualization panel can 

also be considered as a dashboard. A dashboard is a “faceted analytical display” [46]: a 

set of interactive charts on a single screen, each of which presents a somewhat different 

view of a common dataset. DynSpace+ allows users to spatialize their data charts within 

the visualization panel, i.e. they can move, resize and easily compare multiple charts by 

moving them adjacent to one another. 

A chart in DynSpace+ is a 2D representation of selected dimensions of a given 

data. Supported chart types include are scatterplots, histograms, bar charts and row 

charts (a type of bar chart in which there are horizontal bars instead of vertical ones). 

Charts are in rectangular panels, which are called chart containers. User can move, 

resize, add or remove charts through chart containers on DynSpace+. 
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• Moving: DynSpace+ has a floating layout, which enables the user to place 

charts (actually chart containers) in any part of the visualization panel. For 

moving the chart, users click on the top bar of the container, drag it and 

can drop it anywhere. DynSpace+ uses a grid layout manager [124] and a 

drop action will snap the moved chart container to the nearest grid 

position. This design decision was made to avoid overlapping charts and 

to guaranteed that all charts are visible. When there is a collision, existing 

chart containers are pushed down to make room for the moved chart in 

an animated sequence. For such collisions, only overlapping charts are 

pushed away. 

• Resizing: Users can resize the charts in both horizontal and vertical 

dimensions. Resizing does not have to be uniform in both dimensions. To 

perform resizing on DynSpace+, the user clicks on the bottom right corner 

of the chart container, holds the mouse button and releases at the 

intended size. X and Y axes can be stretched independently, and the 

chart container adapts to the nearest grid location after the mouse 

release (while also making space to avoid collisions, as discussed 

above).  

• Removing: This action only requires a click on the close button on the top 

right corner of the container.  

• Adding new chart: For adding a new chart, the user clicks on the “Create 

New Chart” button in the Data Panel. This creates an empty chart 

container in the Visualization Panel. The user then needs to drag and 

drop data dimensions on X and Y axes to specify the data to be used. 

Depending on the data type, DynSpace+ automatically creates an 

appropriate scatter plot, histogram, bar chart or row chart.  

Users can filter the charts. One way of filtering is by selecting data points on a 

chart and clicking on the “filter” button, which will create a new chart that involves only 

the selected data points. This is an effective way of focusing on details, separating parts 

of data, and/or removing outliers. Another way of filtering in DynSpace+ is to bring data 

dimension(s) onto selected chart to use the data dimension(s) as filters. Assume that a 
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user is working with the “Bird Strike” dataset and is making a cost analysis of the bird 

strikes to aircrafts on a chart. For this, they can bring in other (related) dimensions and 

use them as filters by dropping them into a filter bar. They can also edit those filters by 

manipulating the data points or determining a range of values in those intended filters. 

For example, the user can specify “Originating Airport”, which is a data dimension, as a 

filter and can select only some of the airports from the corresponding dropdown list. 

Alternatively, the user can select the dimension “Time of the strike” and exclude “night” 

or “dusk” from the data points in that dimension. If the data is numerical in the selected 

dimension, users can specify a range. E.g., if they are using “speed at strike” as a filter, 

they can edit the filter and include only the ones that are higher than 20 knots and lower 

than 100 knots. 

There are two types of filters: Global and local filters. Global filters apply to all 

existing charts, and local filters apply to only selected charts. For global filtering, the user 

needs to drag a filter to the “global filters bar”. For local filtering, the user drags the filter 

and drops on the filter bar for the individual chart. Filter name appears on the second top 

bar on the chart container, right under the name of the chart. All charts in the dashboard 

are coordinated through brushing and linking as well as global filtering. There are also 

various analysis functionalities, and study-specific features, which are explained in 

following chapters. 

The intended use case for DynSpace+ is to analyze a complex dataset, which 

includes categorical and numerical data types. The user’s goal would be to gain insights, 

or answer questions regarding the details of data. Sample questions could be: “Do critics 

and ordinary users have usually similar opinions towards a video game?” (videogame 

dataset), “How high are the shipping costs with a delivery truck as compared to air 

shipping?” (superstore dataset), “Among the states in which females are less than 50% 

of the population, which state has the highest percentage of ESLs (people with English 

as a Second Language) in the population?” (US Census dataset). 

To provide a starting point, DynSpace+ displays a number of charts, generated 

automatically by picking random pairs of dimensions from the dataset input at the 

beginning of the analysis. The specific number of charts was adapted depending on the 

needs of each study, as explained in the respective sections. The main idea was that the 
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automatically generated charts should take up approximately half of the analysis display 

space for the condition that uses the whole width of V4-SPACE.  

As seen in Figure 3.9, users were provided in the beginning with a set of charts 

to help them to begin their exploration of the dataset. More specifically, DynSpace+ 

generates an regular array of charts with randomly chosen pairs of dimension, without 

any form of clustering (Figure 3.9.). Below this initial array, we left enough free space to 

enable the user to arrange the spatial layout of the content, e.g., by moving charts 

around, and encouraged users to create clusters. As the initially provided charts are only 

a subset of all possible charts, users were shown how to create additional charts, as 

needed.  

 

 

Figure 3.9. The initial views of DynSpace+ versions in Study I and II, 
respectively.  

We could have clustered the initial charts. This idea is not new and many 

clustering algorithms have been used in various systems, including those focusing on 

VA tasks [52,54,59,87,95]. However, as Schreck et al. summarizes [95], the 

unsupervised nature of the clustering algorithm can be disadvantageous for certain 

applications. Depending on the initialization and data characteristics, cluster maps 

(cluster layouts) may emerge that do not comply with user preferences, expectations or 

the application context [95]. Or, worse yet, bias the exploration of the user in 

inappropriate ways. As the generated clustering in our research should conform to the 
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user’s own mental mapping of the information, we intentionally provided no initial 

clustering, keeping the clustering process entirely manual and up to the user.  

In summary, the initial organization of the randomly chosen charts is completely 

non-clustered. Charts are simply placed next to each other. The users are asked to 

cluster their charts freely. As the experimenter, I did not assist them in this aspect, since 

I did not want to intervene in their thought process and thus potentially influence their 

own clustering strategy. 

3.3. Data Sets for the VA Evaluation on V4-SPACE 

Picking appropriate data sets for an evaluation is not an arbitrary choice and the 

quality and quantity of the data need to be carefully considered. Of course, if the amount 

of data is too small, analysis becomes trivial. At the other end of the scale, too much 

data may overwhelm participants, unless they are (some of the few people who are) 

used to deal with huge amounts of data. Enrico Bertini discusses when data is too much 

[15]. 

In general, (and assuming a constant pixel pitch, i.e., constant PPI) more pixels 

usually provide more space for visualizing data; but the number of pixels also imposes a 

limit to how much information can be displayed. However, this is not the only factor and 

we cannot necessarily expect a linear increase in displayable information with a linear 

increase in pixels, e.g., due to the limits of the human visual system. Clearly, as displays 

get smaller, the amount of information that can be displayed decreases too, which then 

increases cognitive loads, as the user has to remember information that cannot be 

shown. We can increase the display size to increase the number of pixels, but that will 

reach limits in terms of the field of view for any given eye and viewer position. For large 

displays, navigation costs also generally increase with an increase of size. There are 

further issues, such as the type(s) of navigation and limits to the amount of data one can 

cognitively manage. Thus, in general, for every data visualization scenario, there are 

lower and upper limits to the quantity of data – and information - that can be managed. 

Potential consequences of working with very large datasets are cluttered 

displays, performance drop, information loss and limited cognition [15]. To make sure 

that the datasets in the evaluation were reasonable to use on V4-SPACE, I tested 
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several datasets in DynSpace+, the main one being the 2016 US Census Data set [130]. 

Other datasets used within this work were an aircraft-bird strike dataset [123], a 

videogame sales dataset [127], and a superstore dataset [131]. All these datasets are 

too large to be displayed in their entirety on V4-SPACE, but (at least parts of) the 

datasets are still “small” enough to be comprehensible by university students within a 

time frame appropriate for a user study. Specifications of the datasets that were used in 

measured analysis sessions are given in Table 3.3. 

Table 3.3. Following datasets have been used on V4-SPACE for VA evaluation.  

Data Set # of Data 
Records 

# of Data 
Dimensions 

Categorical 
Data 

Numerical 
Data 

Date & Time 
Type Data 

US Census 
Data 

51 18 1 17 0 

Videogame 
Sales 

200 16 6 9 1 

Superstore 200 18 10 6 2 

 

DynSpace+ supports histograms, bar charts, row charts and scatter plots in 2D 

(Figure 3.10). 

     

 

Figure 3.10.  DynSpace+ charts: Top left is a scatter plot, automatically created 
when a chart is created using two numerical data dimensions. Top 
middle is a bar chart. Top right is a histogram. Bottom is a row chart 
(horizontal bars).  
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Daniel Keim created the VA mantra [56], as a variant of Ben Shneiderman’s 

visual information-seeking mantra [96], which suggests a core process as follows: 

Analyze First, Show the Important, Zoom, Filter and Analyze Further, Details-on-

Demand. In alignment with this, I simplified the data first (explained in the following study 

chapters). Initially, users are given an overview consisting of an initial random set of 

charts, but also as the opportunity to “zoom” to request more details. Details for each 

data point on every chart are provided on demand, through mouse hover functionality, 

which shows all attributes related to the data point. This avoids having users being 

distracted with factors that may be irrelevant for the current context and thus enables 

them to focus on higher-level objectives, while being still able to get “detail on demand”. 

3.4. Design Overview 

In summary, my experimental system builds on and extends previous research 

through careful consideration of the impact of display size, resolution, field of view, 

distance to display, and spatialization on VA task success while using LHRDs. Building 

on the findings of previous work for various design alternatives guided me in my design 

choices towards optimizing single user performance for VA tasks on a large high-

resolution display system.  

I conducted two studies to observe users' spatialization and clustering 

mechanisms, and the effect of display size and resolution on visual analytics task 

performance. During those two studies, I used two versions of DynSpace+, a VA tool 

developed in the VVISE lab and which was redesigned for the LHRD system. To 

facilitate the desired analytical reasoning process, I used several sufficiently large and 

complex data sets for my studies as briefly described above. A user on V4-SPACE 

running the VA study using DynSpace+ can be seen in Figure 3.11. 
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Figure 3.11.  A user taking part in Study II, operating DynSpace+ on a specific 
size and resolution setting of V4-SPACE (in this case 5 out of 7 
displays). In the top figure, the user is interacting with the data 
charts. In the bottom figure, the user is typing answers to study 
tasks using the keyboard after having fond some results in their 
analysis. The tasks are displayed on the auxiliary display shown in 
the figures, but the latter does not interfere with the visibility of the 
large display system.   
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Chapter 4.  
 
Study I – A Classification Task 

This first study addresses RQ1: How do people use the (large) space of an 

LHRD to cluster their items while trying to solve analytical problems that require re-

organization of the content? What are the factors that users consider when clustering; 

topical relations, visual similarity, common dimensions of charts? How much of the 

space do they use when clustering objects? How do these clusters look? How far are 

they from each other? What does the cluster distance symbolize? Are objects strictly 

separated or loosely grouped? Are there patterns for the space usage? Do those 

patterns lead users to different types of navigation on the system? Also, do different 

clustering approaches lead to significant differences in accuracy and/or task completion 

times?   

The purpose of the study was to observe user behavior solving a classification 

task. The spatialization task used a simplified version of DynSpace+ to display many 2D 

plots visualizing relations among a subset of the 2016 US Census Dataset. This study 

took place on the largest possible V4-SPACE configuration, a 7-display mosaic in a 

single row. 

Users were given a workspace populated with charts as shown in the top view of 

Figure 3.9. In this study, only scatterplots were used. While DynSpace+ can support 

multiple data chart types, my objective was to keep it simple and to focus on a 

classification task for study I. Thus, I used only one type of data (numerical) and one 

type of charts (scatterplots). During pilot studies, I observed that novice users’ 

classification behaviours could be based on the type of charts, which has no relation with 

the visualized data. By using the same chart type, I wanted to make sure that 

classification decisions were not affected by such factors, as all charts were of a uniform 

type. 

On the given workspace, users could create new charts, delete existing charts, 

resize the charts as needed and move them around freely. When resizing, they did not 

need to maintain the initial aspect ratio, i.e., they could resize charts in the x- or y-

dimension independently, or in both with a different proportion. One noteworthy feature 
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of DynSpace+ is that when the user clicked on a data dimension on the data panel on 

the left, charts that were using that dimension in the visualization panel were highlighted, 

as in Figure 4.1. 

 

Figure 4.1. Figure showing when a data dimension is clicked within the data 
panel on the left, all corresponding data dimension labels in the 
visualization panel are highlighted to identify where that data 
dimension is used. 

This study examined how users organized the 2D plots into clusters when given 

the instructions below. I put a lower limit to number of groups that they needed to create 

in the first task, namely that they needed to create at least 5 clusters. However, 

participants were free to create more than 5 clusters.  
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Task 1: Grouping 

(a) Please arrange the charts into groups based on similarity. You can 
consider any similarity criteria. Group ALL the charts. The number of 
groups is up to you, as long as it is at least 5. You can have as many charts 
as you want in each group.  

(b) Please explain the motivation for the way you grouped the charts in 
part (a). Try to give a detailed response about all the aspects you 
considered. Use the text box below. 

Task 2: Highlighting 

(a) Highlight each dimension in turn. Pay attention to any visual 
groupings.  

(b) Identify those [dimensions] that do and do not correspond well to 
the grouping.  

In Task 2, users could highlight dimension by clicking on each data dimension in 

turn on the data panel on the left side. When a user clicks on a data dimension, the tool 

shows the instances of that dimension as in Figure 4.1. The purpose of this task was to 

ask the users to highlight dimensions after they finish with grouping, and see if their 

grouping criteria matched a "common dimensions” factor, which means plots having the 

same dimension in one of their axes. The users needed to complete Task 1 before being 

asked to highlight. After they observed how highlighted charts were aligning with their 

own grouping, they were required to type in their observations to the given text field.  

Endert et al.’s work [43] presents the concept of semantic interaction that seeks 

to enable analysts to spatially interact within their analytical workspace, which was the 

main inspiration for this study. Grouping the information content and generating clusters 

of objects during analytical tasks is a part of sense-making, which is the process of 

searching for a representation and encoding data in that representation to answer task-

specific questions [88]. It takes place in the early stages of visual analytics processes, 

and is a part of preparation stage, which can impact task efficiency in the next stages, 

especially on large displays. For this reason, my objective is to study clustering on 

LHRDs as a part of this thesis in this first study.  
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4.1. Apparatus 

The system consists of physical system, a software tool, and a dataset to be 

analyzed. 

4.1.1. Physical System 

The physical system consisted of the LHRDs, an auxiliary monitor, keyboard and 

mouse, and the computer that runs system, and additionally a comfortable swivel chair 

allowing only rotation and height adjustment. Translational motion was restricted to 

maintain a constant distance to the displays. For details, see section 3.1.1.1.  

Study questions were answered by the user using the auxiliary monitor 

positioned so that it did not visually overlap with the analysis space on large displays. 

Having this auxiliary display enabled me to provide continuous visibility of the actual 

analytics material. The use of the auxiliary display is justified in section 3.1.2.1. 

In this study, the distance of users to 1 x 7 array of large displays in a circular arc 

around the user, whose position was fixed at 3.3 m (130”) from the displays.   

4.1.2. Visual Analytics Tool 

I used a simplified version of DynSpace+ as explained (section 3.2) and 

illustrated (upper image in Figure 3.9) above.  

A screenshot during a participant’s analysis is given in Figure 4.2. 

 

Figure 4.2.  A view from DynSpace+ during Study I. Left panel (1) shows dataset 
and its dimensions; analysis takes place in the main panel (2) where 
user arranges 2D data charts into clusters.  
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4.1.3. Dataset 

In this study, I used a custom dataset generated from the 2016 US Census 

dataset [130], which can be found in the data division of the United States Census 

Bureau website (American Fact Finder). This Census dataset can be downloaded as a 

MS Excel file and contains over 50 columns (dimensions), related to population, 

economical and geographical facts. It also has over three thousand rows, one for each 

state and county of US.  

My custom version is available at http://bit.ly/2zkupn7 as a JSON file, the file type 

that DynSpace+ works with. Usually, displaying tens of thousands of records 

simultaneously causes cluttering and dozens of data dimensions contribute to 

performance issues. Some strategies for dealing with visualization of large datasets are 

sampling, aggregation, tuning/tweaking and segmentation [15]. I was reluctant to sample 

data points, fearing information loss, as randomly filtering out data points might have 

caused the loss of useful data. Also, specific to my case, having some of the states in 

the dataset and not having others would not make so much sense and such a design 

decision would have been difficult to explain. Instead I aggregated the data. I simplified 

the data set to make it more appropriate for VA/LHRD studies, by aggregating county 

data at the state level. 

I also limited the number of dimensions to 17. Following that, I shortened data 

dimension labels so that they would fit in the chart containers at a readable size. If, for 

example, the label was “The percent of persons that are over 25 years old, in between 

years of 2009 and 2013, who have Bachelor’s Degree or higher”, I made it 

“BACHELOR_DEGREE_PERC” (Due to a technical problem, I could not include a “%” 

sign or “ ” character).  

The 17 dimensions of the dataset used in Study I can be seen in Figure 4.3. 
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Figure 4.3.  Metadata for subset of 2016 US Census Data used in this study. At 
the top is the dataset name and the number of rows of the dataset 
(corresponding to states) in the top right corner. Data dimensions 
are given under the respective data types. The names of the states 
are categorical, while the 17 data dimensions are numerical. 

4.2. Participants 

There were nine participants, P0 to P8, four of whom were male, providing a 

balanced gender distribution. Ages ranged from 18 to over 40. Some participants were 

undergraduate students who participated for course credit, others had at least a 

bachelor’s degree and were individuals from my personal connections who volunteered 

to take part in the study. A table for detailed user responses for the motivation survey, 

which was a part of pre-study survey, is given in Appendix C.   

There were seven questions in the list of terms and concepts that I gave 

participants during the pre-study survey to identify how familiar they were with the 
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context. On average, participants were reportedly familiar with 4.4 of them. The 

summary of the concept familiarity data for this study is given in Appendix D. 

The participants of this study were mostly novice users, since the study did not 

require VA skills other than basic skills that would assist them organize the content 

provided to them in a workspace. 5 participants out of 9 did not have any experience in 

visual analytics. One reported less than a year of experience and three reported 1 to 3 

years of experience. From a software point of view, seven of them have never used any 

visualization or VA tools, whereas one had used D3.JS and another used R in a 

statistics course for a short period.  

To ensure that the displayed information made sense to participants, in the pre-

study survey I asked them whether they could interpret data from scatter plots. They 

ranked their likelihood of interpreting data correctly from a scatterplot on a scale from 1 

to 5. The results were 3 “Sometimes”, 4 “Mostly” and 2 “Yes, always” answers; which 

respectively stood for 3, 4 and 5 on the scale used. 

I also made sure that participants had not participated in previous studies of our 

research group, since the visual analytics tool used here was the same as some other 

VA studies in our lab and I did not want familiarity bias to occur. Also, users were asked 

if they had perfect or corrected vision, to make sure that they could read the text on the 

displays from the specified distance.    

4.3. Experimental Design 

4.3.1. Procedure 

To prevent procedural errors and to remove potential biases, I carefully designed 

the experimental protocol and documented the entire process in advance. The whole 

procedure is given in Table 4.1 below. 

Table 4.1.  The steps of the formal procedure followed in the study. 

1. Introduction of the environment 
2. Pre-study background survey on auxiliary monitor (discussed above) 

3. Start DynSpace+ on V4-Space 
4. Verbal introduction to study procedure 

5. Questionnaire on auxiliary monitor given (user tasks, discussed above) 
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6. Start screen capturing on V4-Space 
7. Main task 1: Clustering 

8. Main task 2: Highlighting 

9. Screen capturing ends 

10. Post-study interview (audio recorded) 

The 1st and 4th steps required giving verbal introduction to users, regarding the 

system or the tasks. To ensure that every participant got the same introduction and 

instructions, here is the sequence I followed: During step 1, I first informed participants 

about the length of the study and advised them to get comfortable in the swivel chair by 

adjusting their seating posture, as needed. I told them that they could rotate/swivel the 

chair to see the full displays, but that their chair had to remain in the spot until the end of 

the experiment, since I wanted them to retain the same distance to all displays in the 

system. Leaning back and forward was allowed, as needed. Then I gave them basic 

information about the display specifications and the system configuration, to give them a 

basic awareness about the system that they were interacting with. I observed that most 

participants found V4-SPACE very interesting, which helped to motivate them to perform 

the subsequent experimental tasks. Next, I trained them in basic yet frequent operations: 

keeping track of cursor, how to find the cursor when they lost track of it, and switching 

between LHRDs and the auxiliary monitor through moving the mouse cursor to the top 

right of V4-SPACE and back.  

During the 4th step, I started an instance of DynSpace+ and introduced them to 

the VA tool, how it works, what they needed to do during the study and some practical 

tips regarding the usage. For each of the participants, my introduction was roughly as 

follows: 

• This is a visual analytics tool. It allows analysis of data. I am doing studies on 
this process of analysis on large high-resolution displays. 

•  A dataset is loaded into the visual analytics tool. Data has various dimensions. 
You can see those dimensions in the left panel. The data we are using right 
now is census data of the United States from 2016 that gives various 
information about the population. [I give examples here, from random data 
dimensions on the screen.] We also have scatter plots in the main panel, 
where we can see and explore the relations between data dimensions. There 
are 51 points in each scatter plot and each point represents data of a different 
American state for the given data dimension. For example, if I am looking at 
the scatter plot visualizing the relation between AVG_INCOME and 
BACHELOR_DEGREE_PERC, each data point on the plot is showing where 
each state stands in terms of those two data dimensions. You can resize 
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charts, delete unneeded charts, or create new charts using data dimensions of 
your preference. [Here I demonstrated each activity.] If you click on any data 
dimension on the data panel, it will highlight all data charts in visualization 
panel that contain this data dimension. 

• You will start your analysis with the given dataset using the VA tool. For this 
analysis, I am asking you to organize your workspace by grouping your data 
charts. The reason I am asking you to move chart containers around is that, 
for the analysis process, you will need to have several distinguishable groups 
of charts containing different kinds of information. By moving charts that are 
relevant to each other closer to each other, you need to group charts together 
on your workspace. You are asked to create a minimum of 5 groups, but there 
is no upper limit. It is up to you what you choose as your relevancy criterion for 
grouping. E.g., you can go by how the charts look, common data dimensions, 
or can be any kind of similarity or commonality that you can think of.  

• Feel free to use the given charts if you find them useful. You can delete charts 
if you do not think that you will need them. You can add new charts as 
needed, if they are important for your analysis. 

• There is no right or wrong answer for this task, the study is about your 
preferences and considerations. Charts are draggable. You can “grab” them 
by the darker top bar of the container and move them around. If you want to 
insert your chart into an occupied position through drag-and-drop, the tool will 
push the other charts away to provide you with a free spot.  

•  Ask me whenever you have questions or get confused and let me know when 
you are done.  

I followed the steps of the procedure in the given order for consistency. I assured 

users that they could ask questions at any time during the experiment and that they 

should communicate around the tasks, their thoughts or any points where they 

experienced confusion. With pen and paper, I noted down any direct verbal feedback 

from the users during the tasks, as well as indirect physical or approach-based 

responses. I collected this data to be analyzed later.  

4.3.2. Tasks 

In this study, participants were asked to complete two tasks, consisting of two 

subtasks each. In the first task, participants grouped their scatter plots. They were asked 

to arrange the charts into groups based on similarity, and told that they could consider 

any similarity criteria. Participants were required to group all the charts. The number of 

groups was up to the user as long as it was at least five (5), and they could have as 

many charts as they wanted in each group. After completion of the grouping, they were 
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asked to explain their motivation for the way they grouped the charts. I recorded their 

detailed responses about all the considered aspects via the text box provided. 

In the second task, they used the highlighting facility through clicking on the data 

dimension in the left panel, to see where these dimensions exist in charts in the main 

visualization panel, and to observe any patterns that might become apparent. They 

highlighted each dimension in turn, and observed if the highlighted charts were mostly 

together in their grouping or not. They shared their observations about the highlighted 

dimensions in relation to their own grouping by typing their response in the study 

questionnaire on the auxiliary display.  

4.3.3. Data Collected 

Users of the study completed a pre-study survey after signing a consent form. 

The online survey responses were stored on Simon Fraser University’s servers. During 

the tasks, users completed a study questionnaire. The answers were recorded through 

free-form text boxes and the responses were stored in the same survey system. 

Users’ clustering activity was tracked in two ways: First, I screen-recorded their 

activities. Since the study used a very large ultra-high-resolution displays, I could not 

record the activity in real time as a video. With more than 58 million pixels on the display, 

each screenshot takes up more than 3 MB in the default JPG format. If we tried to 

capture the screen at full resolution with a 60 FPS video, we would a disk system 

capable of a sustained write speed of up to 200 MB/s, and would save more than 11 GB 

of data every minute, which means hundreds of GBs for each participant and terabytes 

of disk space. Additional space savings, typically an order of magnitude less, can be 

expected due to the fact that the screen video does not change for every frame. While it 

is feasible to handle such volumes for recording, the real constraint is the compression 

effort. A quick test convinced me that the CPU load for the continuous compression 

during the screen recording would severely slow down the rest of the system, which 

would render the system too sluggish for normal usage. 

Thus, I decided to use a program called “Chronolapse” which performs periodical 

automatic screen captures, where I captured a screenshot every 120 seconds. The 

motivation was that observing the grouping actions of the participants did not require 
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high frame rate, and 120 seconds would still be frequent enough to record major 

changes that the user did on the graphical layout during the tasks. I additionally recorded 

the positions and information about each chart for each final participant’s grouping. This 

data enables me to apply clustering algorithms on them after the fact.  

At the end of the study, I did an audio-recorded post-study interview with each 

participant, which typically took less than 5 minutes. This interview was semi-structured, 

and I asked them a list of questions regarding the tasks they completed, the software 

tool, the system, what they liked, what was challenging and/or confusing, and whether 

they had any further feedback. The results of those interviews are discussed in section 

4.6.  

At each step of the procedure, I watched the user carefully and noted down 

important observations, to be able to better understand the raw screen recordings, e.g., 

through recordings of frustration at a specific point in time, which in turn further informs 

the analysis of the experimental results.  

4.4. Results 

4.4.1. Clustering 

Participants were expected to organize charts by manually grouping the plots into 

clusters. Screenshots of the final output for each participant are given in Appendix G. 

Number of Clusters 

Users were instructed to construct at least five groups; yet there was not an 

upper limit specified for the maximum number of groups that they could have created. 

With these instructions, three participants created five groups, the minimum allowed 

number. Out of the remaining six, four clustered their plots into 6 groups, one into 8 and 

one into 16 groups.   

Clustering Criteria 

Participants used various criteria when they were clustering the scatter plots. My 

analysis of these criteria is based on my nodes from the observations of each participant 
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during the experiments, their written answers to the study tasks, and my interpretation of 

their final group layouts (through the screen recordings) after the experiments.  

I observed three main approaches, which can be classified as (i) visual 

appearance that reflected correlation of the plots, (ii) topical relations of the used data 

dimensions, or (iii) commonality in axis labels.  

• Visual appearance: Some participants interpreted the scatter plots as 

“pictures” and simply grouped the ones that “looked similar” together. 

• Topical relations: Some participants grouped charts with similar and/or 

related data dimensions together. E.g., they created clusters with women-

related dimensions, or sale-related dimensions.  

• Common axis labels: Some participants picked a specific data dimension 

and clustered all charts that involved that dimension. E.g., they created a 

cluster of LAND_AREA versus every other data dimension, regardless of 

whether that comparison makes sense or not.   

Each of these approaches corresponds to a primary clustering criterion that 

determines which chart goes into which group, which implicitly separates clusters across 

the display. Some users used only a single criterion for grouping and did not consider 

anything else. Other participants used a secondary criterion to determine either the 

positioning of charts within a cluster or to determine the relative positions and distances 

of clusters. This includes applying one criterion for constructing the clusters and applying 

another criterion for in-cluster arrangements and depicting intra-cluster relations. For 

example, P6 stated that he grouped charts that had common x-axis labels, as the 

primary clustering criterion. However, P6 deliberately chose the positions of charts within 

each cluster, by considering “how they visually appear”.   

Three participants based their decisions on how the plots visually appeared 

(Figure 4.4). They grouped the plots so that those that were showing similar trends were 

clustered together. Among those three, P1 mostly relied on a higher level, pictorial 

observation of the plots. P1 said; “… Most dots in Group C were staying in middle of 

chart. In Group D, most of dots are [at the left side] of the chart”.  
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P2 on the other hand, considered whether there were any patterns in the data or 

not. She responded to the questionnaire as follows: “Some data of [the charts] is very 

concentrated. People may find [rules/correlations] from the [charts]. But some data of 

[the charts] is very dispersed.” It is interesting to observe that she clustered strong 

positive and negative correlations together, since she was focused on how usable the 

charts were, in terms of reflecting strong trends in the data.  

P7, the other participant with the same approach, exhibited a behavior similar to 

P1, but seemed to be more aware of the concept of correlations and did not just interpret 

the plots as pictures. P7 created groups with specific kind of correlations, and an 

additional group with no visible correlations. Interestingly though, P7 started the task by 

topical clustering: “When starting to organize the graphs, I first looked at the topics that 

were being compared.” However, P7 appeared to be a bit uncomfortable with reading 

text on V4-SPACE, even though this participant did not report any vision problems and 

was wearing glasses at the time of the experiment. At the beginning, P7 leaned forward 

to be able to better read the text. However, it seems that the readability problems 

remained. Thus, P7 changed their clustering approach to avoid any problems/discomfort 

when reading headings and labels.  

      

 

Figure 4.4. Excerpt images from P1, P2 and P7’s grouping. All 3 participants 
based their grouping on the visual appearance of charts. Top left is 
from P1, top right is from P2, bottom figure is from P7. 

Above examples of the different approaches for grouping are shown. P1, where 

an excerpt is shown at the top left of Figure 4.4, stated that this was a vertical grouping, 

although the plots are placed next to each other. All entries in the column are visually 
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similar for this participant. A part of P2’s chart layout is shown in the top right of Figure 

4.4. Here the grouping criterion is if there is (any) correlation or not. On the left side, 

negatively and positively correlated scatter plots are grouped together. On the right, 

charts have no correlation. Finally, P7’s groups are at the bottom of Figure 4.4. In those 

3 clusters, the participant grouped three kinds of scatter plots: On the left, data points 

are spread mostly along the X-axis. On the right, there are charts with a roughly linear 

positive correlation. In the middle, there is no visible pattern.  

Three of the remaining participants clustered scatter plots with the strategy of 

picking one common dimension, either x or y. Interestingly, all three participants who 

followed this strategy chose the vertical, i.e., the Y-axis as the common data dimension, 

and grouped all scatter plots that have the same dimension together (Figure 4.5).  

P0 explained this behavior as follows: “I chose [vertical axis] as my choice 

instead of [the horizontal one], because visually [the vertical axis] stands out.” P4 

explained “… this way will be easier to read it”, and P5 did not provide any feedback. 

P4’s approach in particular was unusual, as this participant decided that there were too 

many plots. Thus, P4 picked five key data dimensions, created groups around them, and 

deleted plots that she thought she would not need. It is noteworthy to state that all three 

participants who adopted this strategy as their primary clustering approach seemed to 

agree on the selection of dimension for common properties. However, this approach did 

not align with P6’s comments, who adopted a different approach but made use of labels 

on axes as well, where he commented that labels on X-axis were more readable.   
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Figure 4.5.  Excerpts from P0, P4 and P5’s organization are shown above. All 3 
participants based their grouping on common axes (the Y-axis). Top 
left is from P0 (6 groups indicated by red dashed line), top right is 
from P4, bottom is from P5. 

 

As shown in the top left of Figure 4.5, P0 had all the groups positioned side by 

side, with no gaps in between. I added the red dashed rectangles in the image to make 

the groups more distinguishable. Each of the six column (groups) has a different, 
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common data dimension. As visible in Figure 4.5, P4 (top right) and P5 (bottom) followed 

the same approach. Yellow highlights (applied by the users) visualize the common 

dimension for the group (ABOVE65AGE_PERC for P4 and LAND_AREA for P5). 

The remaining three participants used a topical selection strategy when they 

were constructing their clusters, i.e., they grouped the same topics together. Different 

from the previously discussed participants, they did not restrict the clusters to only a 

single dimension; instead they put charts with a few related data dimensions into the 

same cluster. Part of P3’s organization exemplifies this approach, as shown in Figure 

4.6. 

P3 said “I tried to organize the charts using their axis names. Some of them were 

about average, some about population and some about females (women). I did not care 

about the data inside them. I just grouped them by the [labels] I would see, mostly 

horizontal but sometimes vertical ones.” In this participant’s final layout, the groups 

consisted of charts with related axis labels, either the horizontal or vertical one, and an 

extra group for uncategorized plots. P3 said that they did not quite understand what 

those plots were representing, which is why they kept them in a separate group.  

When clustering the plots, P8 considered topical relations as well and put plots 

that represent related data dimensions, such as different sales parameters and 

manufacturing stats together. Also, P8 created another cluster with “FEMALES_PERC” 

and “FIRMSbyWOMEN_PERC” grouped together and placed it next to sales and 

manufacturing data.  

P6 spent a lot of effort on the task and gave a detailed response to the written 

questions regarding their grouping approach. This participant had various criteria while 

creating clusters, but prioritized the topical relations in the data. 

I used horizontal axis texts to group charts. And in each group if dots 

are grouped [close], I stretched [the] graphs x or y axis, so I can see 
better and makes them easier to catch [with] the eyes. I created [a] 

virtual grid in my mind, which divides [the] screen [into] three parts 

horizontal. And I tried to list group elements in some random groups in 
different order. For example, all group elements [have a common] 

vertical or horizontal [axis]. Purpose of this is to break the order so I 
can focus. I tried to avoid screen [edges], they make it hard to read; 

but not a crucial problem. One last thing; I tried to collect groups to the 

right, because [the] left [panel] distracts me. 
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Figure 4.6.  Above is a cluster that P3 created. All scatter plots have population-
related data dimensions in their x-axes:  
POPULATION_COUNT:  red star, 

  POPULATION_CHANGE_PERC: yellow star 
POPULATION_PER_LAND: green star.  

The full responses from participants around their motivation for the way they 

grouped their charts are given in Appendix E.  

After the data dimension highlighting task, their responses around which 

highlighted axis labels do and do not correspond well to their grouping are given in 

Appendix F.  

Cluster Shapes 

The clusters that the participants created were mostly either linearly arranged in 

long, narrow clusters, or had a roughly round shape around an arbitrary center point. 

However, some variations occurred, which combined those two distinct characteristics. 

That means also that clusters had widely varying aspect ratios.  

P0 and P1 generated similar arrangements, where the clusters were organized 

into vertical columns of charts. Such an arrangement is notable, as vertical “stacks” of 

items on V4-SPACE are an inefficient use of the whole display system, which is 

horizontally much wider (almost 4:1 aspect ratio). With DynSpace+, participants could 
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quickly scroll up and down vertically via the mouse wheel to see other items in the 

cluster. P4’s approach was also somewhat similar, with the difference that P4’s clusters 

consisted of “double columns”, i.e., a two-charts wide tall group, which decreased the 

amount of vertical space needed, and thus did not require vertical mouse scrolling. 

Despite creating these vertical double columns, P3 also created a linear horizontal (!) 

group, which they used for uncategorized plots. Different from aforementioned 

participants, P3’s linear group was horizontal, and was covering all the horizontal space 

of the display system in a single row.  

The remaining five participants did not create linear groups, and charts in their 

clusters were thus closer to each other. For P2 and P7, no visible patterns stood out, as 

their cluster shapes were mixed, following no defining shape. On the other hand, P6 and 

P8, created clusters that were approximately circular. Finally, P5’s approach used 

horizontal row-shaped groups of plots, which use the horizontal space of V4-SPACE 

efficiently. In other words, P5’s approach was complementary to the vertical 

arrangements of P0 and P1. 

If I classify cluster shapes through their aspect ratio, where numbers larger than 

one signify horizontally-wide clusters I get the following results:  

• Much higher than 1: P5. 

• Much lower than 1: P0, P1, P4. 

• Close to 1: P2, P3, P6, P7, P8. 

Examples for each behavior are provided in Figure 4.7. 
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Figure 4.7.  A vertically-dominated clustering with aspect ratio << 1 is shown in 
the top left (P4). Top right shows a roughly round arrangement  with 
~1 aspect ratio (P6). The bottom shows the horizontally-dominant 
clustering of P5 (aspect ratio >> 1). 

Intra-Cluster Relations 

I also analyzed the arrangements to identify any potential semantic patterns 

between as well as within clusters. By “relation between clusters”, I mean if the position 

of the charts and distance between clusters have a discernible meaning in the layout.  

Such relationships were only visible for a subset of the participants. For four 

participants, I could not observe any such relationship, nor found that they self-reported 

relations between different clusters. For those four, clusters appeared to be clearly 

separate, and were randomly positioned. P0 and P1 did not have any space between 

clusters, and they were arranged in a random order. For P4 and P5, clusters were 

spatialized with some distance between. However, the spacing seemed quite uniform 

and clusters looked no different than one another.  

On the other hand, some participants used the arrangement to convey some 

meaning. For P3, cluster shape changed with what the clusters represented. While the 

main groups looked quite similar, their cluster of ungrouped plots looked different from 

others in terms of shape and the distance to other clusters (Figure 4.8).  
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Figure 4.8. For P3 categorized clusters were generally rounder with an aspect 
ratio closer to 1. However, the cluster of uncategorized plots (at the 
top, marked with red) had different visual characteristics from the 
others. The difference in state of the groups (categorized / 
uncategorized) also determined the cluster shapes.  

For P2 and P7, who both clustered plots in terms of visual appearance, clusters 

of strongly correlated plots were placed far away from other clusters, likely to further 

emphasize their difference. Though, other clusters, whose charts were visually more 

similar, were positioned closer, as explained under Figure 4.9. These participants used 

distance to symbolize the “closeness” of the relations they used. In other words, if 

members of different groups were completely unrelated, groups used to be far away. If 

they had similarities with members of other groups, they appeared like #4 of Figure 4.9. 

 

Figure 4.9. A snapshot from P2’s grouping. Among the numbered clusters, #4 is 
a (meta-)group of clusters that are close to and transitioning into 
each other, due to the relations between the charts in them. Clusters 
#1, #2 and #3 are distinct and they are clearly separated. In #1, there 
are plots in which data points are dense around an axis. In #2, there 
is either a positive or negative correlation between data points. #3 
consists of data points which are scattered around the chart.   
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Finally, for P6 and P8, the same effect was seen with the topical relations. Most 

groups were located depending on what information they revealed. Examples include 

“RETAIL_SALES” and “MERCHANDISE_SALES” being on top of each other and 

population-related plot clusters being side by side. While these were still different 

clusters, they were closer in terms of topics. 

Distance between Clusters 

Among the participants, I observed four different patterns around positioning and 

distance between clusters. P0 and P1 did not put any distance between their vertical 

columns of charts. These columns were right next to each other, which made it hard to 

distinguish the groups from each other in the beginning, as in the top left screenshot in 

Figure 4.5. For P2 and P7, the distances between clusters varied by the strength of 

relation that existed between them (Figure 4.9). Here, distance represented the strength 

of the semantic relations between clusters. 

I configured DynSpace+ so that the canvas panel permits the user to organize all 

charts into a fixed, rectangular grid. Each rectangle can contain a single chart with its 

default (minimum) size. The reason behind this design decision was to prevent the user 

from overlapping charts, which ensures that all content is visible. P3, P5 and P8’s 

grouping strategies reveal that they wanted to have some distance between clusters, but 

that they also tried to keep that distance minimal: the majority of their clusters were 

separated by single-chart-sized gaps.  

A significant observation from the study is that bezels played a role in users’ 

clustering and spacing habits. A previous study [75] already had observed a bezel 

adaptation strategy employed by most users when working with tiled LCD surfaces. 

Their work showed that bezels tend to help users to quickly separate multiple 

applications and tasks, which significantly decreased context switching. In my study, I 

observed similar behaviors where participants attempted to make use of the bezels, 

mostly by using it as an aid to separate clusters. P4 and P6 made use of bezels by 

placing inter-cluster gaps where the bezels were. P4 in particular seemed to adapt their 

entire grouping strategy to the bezels since they had created two-column lines, which 

separated by a single-column gap where the bezels were.  
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On the other hand, bezels have disadvantages too. I noticed on a few occasions 

that users missed some detail on a chart since the chart was placed across a bezel and 

the continuity of the image was distorted. Then, participants could either not see a 

diagonal trend properly, or could not categorize the label name correctly since the text 

was running over to the next screen.   

4.4.2. Space Usage 

Moreover, I observed how much horizontal space was used, how much vertical 

space used, and how the content was oriented on the workspace (Table 4.2).  

If the user runs out of free space, DynSpace+ permits vertical, but not horizontal 

scrolling. Vertical scrolling is easier with the mouse wheel, while horizontal scrolling is 

less accessible in today’s graphical user interfaces.  

Out of nine participants, seven used the entire width provided by the system. P0 

and P1, though, used only about 2/7 and 3/7 of the space respectively. P0 reported that 

the large space distracted them, so they wanted to limit the content to a smaller PFOV. 

Due to this trade-off, P0 and P1 needed much more vertical space than available, 210% 

and 170% respectively. P8 also used about 150% of the available vertical space and 

thus also needed to scroll up and down to reach all the charts in the workspace. 

However, in P8’s case, this was mostly due to non-ideal arrangement of the content that 

did not fit a rectangular workspace well. Other users used almost all the visible space to 

lay out the same amount of content and did not have to resort to virtual navigation 

through scrolling. 

From a layout orientation point of view, P0 and P1’s contents were aligned to the 

left borders of the space. The clusters of P5 and P7 were slightly biased towards the left 

side. One potential explanation is the data dimensions panel that they were interacting 

with was on the left. In contrast, P8’s content was concentrated more towards the right 

side, as also confirmed in that participant’s self-report. Other users’ clusters seemed to 

be distributed across the whole display space. 
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Table 4.2.  Users’ horizontal and vertical space usage is given below.   

 P0 P1 P2 P3 P4 P5 P6 P7 P8 

Amount of used 
horizontal space 

2/7 3/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 

Use of vertical space 
(% of visible) 

210% 170% 100% 100% 100% 100% 100% 100% 150% 
 

4.4.3. Navigation Techniques 

Earlier studies reported a preference for physical over virtual navigation 

[4,11,12], as discussed above. However, in my study, I observed mixed results around 

navigation.  

P0 and P1 clearly preferred virtual navigation over physical navigation in my 

study. They used nearly 37 degrees and 53 degrees of PFOV respectively, leaving the 

remaining space blank (Figure 4.10). During clustering, both users ran out of vertical 

space, and relied on the mouse wheel to virtually navigate, i.e., scroll up and down. They 

seemed to be content with this strategy and did not seem to want to navigate physically 

by placing charts in a wider space and rotating their heads to access them.  

P8 used both virtual navigation through vertical scrolling and physical navigation 

by body/head/eye rotation to cover the complete 131° HFOV. However, it seems that for 

this participant vertical scrolling was more like an undesired outcome of an unsuccessful 

attempt at organization, caused by inefficient usage of space. The participant stated that 

they preferred physical navigation.  
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Figure 4.10. The final state of P0’s organization. The scroll bar is on the right 
edge, emphasized with a two-headed arrow. Most of the space was 
left empty, which caused the user to run out of vertical space early 
on. This participant still preferred vertical scrolling instead of using 
the empty screen space on the right for grouping. Later the 
participant explained that they wanted to work close to the data 
panel on the left, and did not want to turn around so many times to 
check the right side of the screen every time. 

The rest of the users used physical navigation techniques during the tasks. 

However, P5 stated that he did not like navigating physically, and perceived it to be very 

time consuming. P7 was observed to lean forward as a different type of physical 

navigation, to be better able to visually focus on the displays. P3 reported that they 

enjoyed physical navigation and prefers that over virtual navigation: “even if [they] had 

needed to navigate virtually, [they] would have rather used tabs than vertical scrolling”. 

4.5. Discussion of Study I 

In study I, charts were uniform, i.e., all charts were scatter plots. I wanted to 

avoid displaying multiple chart types, since this decision might affect users’ data 

classification. For example, users could have grouped a scatter plot and a bar chart 

depicting data dimensions from the same domain differently, just because “they appear 

different”, which would not be an data-based classification decision. And indeed, I 

observed chart classification behaviours based on visual appearance, see the results 

detailed in section 4.4. 

4.5.1. Clustering 

For further analysis, I identified five different topics to investigate clustering 

strategies that participants used and attempted to group users through similarities in 

their clustering strategies. To make sure that my observations reflect how users actually 
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clustered, after the sessions I explicitly asked them about their clustering, e.g., how 

many clusters they had and what they considered while clustering. While we were 

looking at the final version of their clustering attempt, participants explained their 

groupings, showing them and explaining what they considered while doing such. Each 

user’s clustering behaviour seemed to be unique. Thus, I was not able to observe strong 

patterns or commonalities among users. A detailed breakdown of the clustering criteria I 

used is given below. 

Number of Clusters 

The number of clusters that participants created can be classified into three 

groups: Low (P0, P1, P2, P3, P4, P5, P7), mid (P8), high (P6) number of clusters. The 

majority (7 of 9) preferred to create six or less clusters, likely due to the lowest allowed 

number of clusters having been five. 

Clustering Criteria 

The participants seemed to have used one of the following three strategies when 

clustering: Similar visual appearance (P1, P2, P7), commonality in labels (P0, P4, P5), 

or commonality in topics (P3, P6, P8).  

Cluster Shapes 

When building clusters, charts were either arranged horizontally or vertically (P0, 

P1, P4, P5), around a center (P6, P8), or in a mixed way (P2, P3, P7).  

Inter-Cluster Relations 

For some users, there was no perceptible relation between different clusters in 

the workspace. (P0, P1, P4, P5). For P3, cluster shapes were determined by cluster 

types. For the rest (P2, P6, P7, P8), as the similarity between clusters increased, the 

distance between them got smaller. For those participants, relations between clusters 

were reflected by cluster separation (but not for other users).   

Cluster Separation 

For some participants, there was either no (P0, P1) or only a minimal (P3, P5, 

P8) distance between clusters. For some (P4, P6), the bezels strongly influenced the 
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cluster separation. The distance between clusters varied for some users (P2, P7) 

depending on the inter-cluster relations.  

One significant observation from the cluster analysis is that bezels affected some 

users’ clustering strategies. The influence of bezels on VA tasks will be further discussed 

in Chapter 6.  

4.5.2. Space Usage 

Two of the participants used space in a radically different way. In essence, their 

approach was orthogonal to the characteristics of the display system and the features it 

provides: while we had a horizontally wide display system that allows the user to view 

information on the large display surface just through physical movements, these two 

users’ approach (P0 and P1) depended completely on vertical scrolling with the mouse 

wheel. As explained above in section 4.4.2, these two participants gathered all charts 

together, and did not leave any distance between them to spatially encode different 

clusters. Moreover, as they used very limited horizontal space, their navigation through 

the charts required frequent vertical scrolling using mouse interaction.  

There could be multiple reasons for this behaviour. First, some users might not 

prefer physical navigation, in contrast to what the ample previous literature suggests. In 

Study I and also in Study II, introduced below in Chapter 5, there were users who stated 

that they wanted to keep everything within their central, i.e., foveal, vision. For such 

users, sitting still and using the mouse to control the system seems to be preferable to 

performing body and head rotations to access the information on the displays. One 

potential reason might be that mouse movements could be (or at least perceived to be) 

faster than head or even body movements. Also, some users do not seem to be 

comfortable with relying on their peripheral vision and want to gather all information in a 

compact space (i.e., within foveal vision) that they can monitor without missing any 

content. 

Another possible explanation is that the advances in technology are pushing 

users towards certain paradigms. As smartphones are pervading everyday life, we are 

getting more and more used to scrolling (vertically) through content. It is possible that 
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this form of accessing content has formed navigation habits that shapes how users 

arrange content, even on wide screens.  

4.5.3. Navigation 

Users exhibited widely different navigational habits and preferences. Some 

preferred physical movements over scrolling in a virtual space, while some preferred the 

opposite. Some even preferred tabs over scrolling, even if the navigation needed to be 

virtual. In summary, although more users preferred physical navigation, I could not 

observe the clear, dominant preference over virtual navigation that is suggested by 

previous work [4,11,12]. 

4.6. Limitations 

Due to the nature of the task (working on large displays, having 100 charts), 

participants needed to perform a large number of “drag” interactions. Most of the users 

found this to be a very iterative and tenuous process and expressed a wish to make this 

grouping process faster. Eight of nine participants asked if there was a feature for 

selecting multiple charts for drag and drop. Based on this strong desire, I believe that a 

future version of the software should allow multiple-chart selection, together with the 

ability to move multiple charts simultaneously.  
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Chapter 5.  
 
Study II – LHRD impact on VA 

In this chapter I describe Study II, which targets RQ2 and RQ3: 

• RQ2: Do larger displays help the user to do better in visual analytics 

tasks? How does task success change as screen size is increased? Task 

success is here defined as shorter task completion time and better 

accuracy in visual analytics tasks, such as answering fact-based 

questions or finding insights in relatively complex datasets among 

categorical, numerical or time data using scatterplots, bar charts and 

histograms. 

• RQ3: How does task success change as resolution is increased? Does 

higher resolution improve task success in visual analytics tasks?  

The purpose of the study was to determine if display size and resolution had any 

impact on VA task success, analysis approaches or user preferences. I was primarily 

interested in the effect of display size (RQ2). After an initial training phase with a 

separate data set, each participant used our VA tool to analyze three datasets, using 

one of three display sizes with each dataset (without repetitions).  

Also, to investigate the effect of resolution, each participant was randomly 

assigned to one of three groups, where each group was associated with a different 

screen resolution.  

5.1. Apparatus 

The study took place on V4-SPACE, using a newer version of DynSpace+, 

working with four datasets introduced in section 3.3.  
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5.1.1. Physical System 

V4-SPACE was described in sections 3.1.1.1 and 4.1.1. The same physical 

system was used for Study II as was used for Study I, but with different numbers of 

screens, i.e., different physical screen sizes, and varying resolutions. 

V4-SPACE is a 1x7 array of large, vertically oriented 4K-resolution displays. 

Since each of 4K displays have 3840x2160 configuration, the pixel configuration of the 

entire system with vertical 7 displays is 15120x3840. Participants of Study II worked with 

3-, 5- and 7-screen conditions in each task of the experiment (1x3, 1x5 and 1x7 arrays). 

To create the 5-screen or 3-screen conditions, the outer two or four displays were 

temporarily disabled.  

All participants were randomly assigned to one of 3 different display resolution 

configurations:  

- 3840x2160 (original 4K resolution) 

- 1920x1080 (1080p or half of original resolution) 

- 1280 x 720 (720p or a third of original resolution) 

Refer to Table 5.1 for the experimental design. Figure 5.1 shows a user working 

on V4-SPACE with a 3-display condition and resolution R2 (HD 1080p).  
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Figure 5.1.  Participant working with the 3-screen configuration (S2) and 1080p 
resolution (R2) conditions of V4-SPACE, using the US Census data 
on DynSpace+. Tasks are displayed on the auxiliary display, visible 
in the foreground. Responses are entered on this screen, while 
analysis is done on large displays.  

5.1.2. Visual Analytics Tool 

An updated version of DynSpace+ with small improvements, bug fixes and 

adjustments considering the task was used in this study (bottom image in Figure 3.9). 

Smaller improvements were based on the fact that this VA tool is still a prototype and is 

being continuously enhanced, especially for LHRDs. Several more advanced features 

were added to this version, due to differences between the two studies reported in this 

document. While a simpler version of the tool was used for the classification task in 

Study I, for Study II, the tool enabled performing a more complete set of VA operations, 

such as drag & drop, brushing & linking, and data filtering.  

DynSpace+ for Study II differs from that used for Study I as follows: 
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• Check boxes were added next to each data dimension in the data panel 

on the left. Users can select those dimensions that they want to work 

with, which limits the number of initial charts shown in the main 

visualization panel. 

• Histograms and bar charts were added as chart types.  

• To support the analysis better, charts could show three dimensions 

simultaneously through the use of color for the third dimension (Figure 

5.2).       

 

Figure 5.2. Correlogram from videogames dataset. Each color represents a 
different developer.  
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5.1.3. Datasets 

Four datasets were used in this study. The “Bird Strikes 1996 – 2000” dataset 

[123] was used in the training session and the analysis of that dataset was not 

measured. For the three tasks where I collected measurements, I used the “Superstore 

Sales” [127], “Video Game Sales” [131] and “2016 US Census” [130] datasets.  

All datasets consisted of following data types: Categorical, numerical, date & 

time. The data were shown through histograms, bar charts, row charts (horizontal bars), 

and scatterplots, as appropriate for the data type and number of dimensions. 

5.2. Participants 

All nine participants (P0 to P8) were graduate students at SFU SIAT. Three of 

the nine were females. Seven students were 23 to 28 years old. Two students were 29 

or older. Participants were offered a cash stipend for their participation.  

There were several criteria for the selection of participants. To eliminate any 

potential familiarity factor with the software and the display system, participants who 

participated in any of my pilot studies, Study I of this thesis, or any VA studies conducted 

by my research group were not allowed to take part in this study. Moreover, as in the 

first study, participants were required not to have vision problems (I relied on self-reports 

here) and had to be able to read text on the displays, which was the size of 10pt font-

sized text on an Letter format paper at reading distance.  

Display resolution varied between participants. Participants were put into one of 

three groups, referred to as G1, G2 and G3: 

P0, P1 and P2 were assigned the lowest resolution condition (G1: 720p),  

P3, P4, P5 experienced medium resolution (G2: 1080p),  

P6, P7, P8 saw the display at their native, high resolution (G3: 2160p4K).  

From an experience point of view, two participants stated that they had more 

than three years of experience in VA and one participant also reported an experience of 

more than six months in the field. The remaining six students had less than six months 
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of experience. Typically, their experience consisted of taking one graduate level 

visualization course. 

In the beginning of the study, I also asked participants about their knowledge and 

experience about VA concepts and tools. The questions and participants’ replies are 

listed in Appendix H.  

5.3. Experimental Design 

5.3.1. Conditions 

There were two variables in the study: Display size and display resolution. As 

noted above, the display resolution factor was investigated between participants, by 

using: groups G1, G2 and G3 with resolutions R1, R2 and R3 respectively. 

Size factor was observed within participants by having each participant solve a 

different problem on each of the three display sizes (S1, S2, S3). To avoid any ordering 

effect, I applied the Latin square method to order the three conditions. A Latin square 

arrangement ensures “each display condition to occur once for each participant and 

once in each order” in my 3 x 3 arrangement of three participants in each experiment 

groups and three display size conditions. Table 5.1 summarizes my experimental 

design.  

Table 5.1. Groups, participants, displays sizes for each of the three tasks, and 
display resolution conditions for Study II.  

Groups Participants Task1 Size Task2 Size Task3 Size Resolution 

G1 

P0 S2 S3 S1 

R1 P1 S1 S2 S3 

P2 S3 S1 S2 

G2 

P3 S1 S2 S3 

R2 P4 S3 S1 S2 

P5 S2 S3 S1 

G3 

P6 S3 S1 S2 

R3 P7 S2 S3 S1 

P8 S1 S2 S3 
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Each task used a different data set, to reduce any potential learning effects. 

Datasets were chosen to be similar in size and complexity. Based on this, I assumed the 

tasks to be similar in terms of how challenging they were, since I designed all tasks to 

require equivalent effort: First, a simpler question that could be answered right away by 

interpreting the relation of two dimensions on a chart, followed by a question that 

required sorting, then a question that focused on digging into details, and subsequently a 

final question that required a sequence of multiple analysis steps such as filtering, 

comparisons, and information. All other factors were kept identical across users.  

5.3.2. Procedure 

Initially, I briefly introduced the experimental setting to each participant. 

Participants could adjust their swivel chair and move rotationally but were told not to get 

out of the chair, as they needed the keyboard and mouse for interaction, or move the 

chair around, as that would change the FOV and PPD.  

Next, I gave the participants the questionnaire for the study, which was a single-

page pre-study survey (see section 5.2 and Appendix H).  

After that they saw a practice task. Before the task, I verbally introduced the VA 

tool in 10-15 minutes by demonstrating the main features in a predefined sequence. 

Then, I asked participants to complete the training task on their own. They were 

permitted to ask questions if they forgot about a given functionality, or if they got 

confused. They were required to finish all steps of the training task until they could 

achieve the tasks on their own, i.e., were reasonably comfortable with the analytic 

capabilities of the tool. I did not start the actual tasks until participants ran out of 

questions, which I considered as them “being ready to start the study”. This phase was 

not time restricted. More information from the practice session is provided in Appendix I.  

After the practice phase, the three formal study tasks were given to participants, 

as discussed in section 5.3.3. Following the VA tasks, a post-study questionnaire was 

completed by the participants (Appendix J).  
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5.3.3. Tasks 

For each participant, there were three different tasks. For each task, participants 

worked with a different dataset on a different display size condition. Each task consisted 

of two parts: Exploratory analysis (part a) and answering specific questions about the 

data (part b).  

In the exploratory analysis part, users were asked to identify (and write down) up 

to ten insights about the dataset, where an insight was specified as an individual 

observation about the data, i.e., a unit of discovery [91] (Figure 5.3). In the second part, 

users were asked a specific set of questions about the dataset; participants could find 

the answers by using the VA tool to analyze the dataset. A sample subset of questions is 

given in Figure 5.4. The complete set is available online [132].   

 

Figure 5.3. Form for the first (exploratory) part of the analysis session with each 
dataset. Insights are open ended. Users could type in any finding 
from the dataset they thought was valuable.   
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Figure 5.4. Form for main VA tasks with structured questions (three of four 
tasks are visible in the figure). This measures the participant’s 
ability to follow a pre-determined set of reasoning steps to identify 
facts about the dataset. The timer visible in the bottom right corner 
of the screen is for all four questions.   

Time was a constraint for all parts of the tasks. Users were given eleven minutes 

for each of two parts (part a and part b) of the three tasks (T1, T2 and T3), including the 

time for reading descriptions, which would give them approximately 10 minutes to spend 

on the actual analysis for each part. When the time was up, online questionnaire 

proceeded to the next page, i.e. from Task 1 (a) to Task 1 (b), regardless of whether the 

user finished the task or not.   

5.3.4. Data Collected 

The questionnaire that the users of Study II completed before, during, and after 

the study were recorded in a single online form. Their responses to all stages of the 

study were saved, and a report file was generated by the SFU FluidSurveys online 

survey system.  

In addition to user responses, I observed all notable user behaviours during all 

experimental stages for every participant and took notes. My notes included 

observations about their analysis approaches, task behaviours, operations they used, 
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challenges they encountered, and solutions they discovered. I did not adopt a structured 

way of taking notes, noting only those observations I considered important. Typically, my 

notes were two A5 pages per participant. Those notes informed the discussion of the 

study in section 5.5. 

Finally, I screen recorded the study sessions for each participant by taking an 

automatic screenshot every few seconds.  

5.4. Results 

5.4.1. Quantitative Results 

Task Scores 

The primary goal of this study was to quantify VA task performance. Each 

participant worked on three datasets and for each performed two types of analysis, 

exploratory and structured. The measures of task performances were task accuracy and 

completion time.  

To analyze the effect of display size (within subjects) and resolution (between 

subjects) I created a scoring system to obtain a numerical value for task performance.   

The scoring system assigned each participant a single point for each insight they 

noted down in the first part of the analysis. Time was limited giving participants 

approximately one minute per insight, which made this somewhat of a challenge. A time 

bonus for recording a complete set of ten insights before the time expired was applied as 

an one extra point. Consequently, the highest possible score from the first part of each 

dataset analysis was eleven points.  

The second part of the analysis consisted of four questions on each dataset, 

usually requiring the user to perform a sequence of operations to find the answer using 

DynSpace+. Each correct answer received three points. If users selected “I don’t know”, 

they were unable to answer the question, which resulted in zero points. Wrong answers 

were penalized with a single negative point. The highest possible score from this part 

was twelve points.  
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In summary, each participant was given three different datasets, each with a 

different problem and a different screen size. They could score up to 23 points on each 

task. The results of the scoring are shown in Table 5.2. 

Table 5.2. Study scores. See text for detail.  

Participant Condition Score Resolution Dataset Order Gender 

P0 S3 15  
 
 
 

R1 

C O3 M 

P0 S5 19 V O1 M 

P0 S7 16 S O2 M 

P1 S3 14 V O1 M 

P1 S5 17 S O2 M 

P1 S7 17 C O3 M 
P2 S3 20 S O2 M 

P2 S5 23 C O3 M 

P2 S7 20 V O1 M 

P3 S3 15  
 
 
 

R2 

S O1 F 

P3 S5 15 V O2 F 
P3 S7 19 C O3 F 

P4 S3 20 C O2 M 

P4 S5 23 S O3 M 

P4 S7 15 V O1 M 

P5 S3 20 V O3 F 

P5 S5 10 C O1 F 
P5 S7 19 S O2 F 

P6 S3 15  
 
 
 

R3 

S O2 M 

P6 S5 18 V O3 M 

P6 S7 11 C O1 M 

P7 S3 20 V O3 M 
P7 S5 23 C O1 M 

P7 S7 15 S O2 M 

P8 S3 9 C O1 F 

P8 S5 19 S O2 F 

P8 S7 15 V O3 F  

 

S3, S5 and S7 represent the number of displays in the system. Resolutions R1, 

R2 and R3 represent 720p, 1080p and 2160p respectively. Dataset, order and gender 

are only shown for reference. In the dataset column, C is the census data, V is 

videogames and S is the superstore data. Order is the sequence in which the users 

were given the datasets and the screen condition.  

Task success per display size and resolution conditions are further analyzed in 

the next section. Task success by total number of pixels is given in Appendix L. 
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Self-Reported Evaluations 

After the tasks, each user was asked to fill in a questionnaire to rate display 

conditions in terms of: 

• How likely that a display condition was to be their overall favorite,  

• How well that display condition enhanced their effectiveness and 

efficiency for VA tasks, 

• Ease of use of that display condition for VA tasks.  

User responses to different display size conditions varied, with some preferring 

each of the three sizes equally. In general, the 5- and 7-display conditions were 

considered as the best ones in terms of efficiency and effectiveness. However, the 

3-display condition—the smallest—was preferred for ease of use. 

Participants’ overall favorite seemed to be the large (7) display condition, though 

this was not a significantly different preference. If user ratings are classified as detractor, 

neutral and promoter ratings, out of nine participants the 7-display condition had four 

promoter and four detractor ratings for the overall favorite display condition. The 5- and 

3-display conditions had two promoter ratings along with five respectively six detractor 

ratings, respectively. Each condition was considered as the top choice by some 

participant(s), which indicates a large variation in users’ qualitative evaluations. Screen 

resolution did not seem to have any impact on users’ self-reported evaluations.  

Table 5.3 shows actual user responses, with ANOVA results for display size 

conditions are attached under.  
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Table 5.3.  Users ratings of each display size condition out of 10. P6’s overall 
favorite was S3 (10-5-0), P0’s favourite was S7 (0-5-10) and P7’s 
choice was S5 (2-9-4).  

Participant Size Condition Overall Favorite  Efficiency & 
Effectiveness 

Ease of Use 

P0 S3 0 8 9 

P0 S5 5 9 7 

P0 S7 10 10 10 

P1 S3 6 5 9 

P1 S5 7 6 8 

P1 S7 9 8 7 

P2 S3 10 7 10 

P2 S5 8 8 9 

P2 S7 4 4 6 

P3 S3 6 4 6 

P3 S5 6 6 8 

P3 S7 4 4 6 

P4 S3 0 0 0 

P4 S5 5 10 10 

P4 S7 10 10 10 

P5 S3 7 6 10 

P5 S5 9 9 8 

P5 S7 8 9 6 

P6 S3 10 8 7 

P6 S5 5 6 5 

P6 S7 0 2 3 

P7 S3 2 3 7 

P7 S5 9 9 9 

P7 S7 4 4 4 

P8 S3 2 5 6 

P8 S5 5 7 7 

P8 S7 10 10 10 
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5.4.2. Qualitative Results 

Direct Observations 

Participants' analysis strategies were quite different from each other. Interestingly 

and based on my observations and notes, different display sizes seem to have 

encouraged/forced them to make changes to their strategies on the fly during analysis. 

P0 usually followed the routine of picking a chart, resizing, hovering on a data 

point to see pop-up details, and finding an insight. He also did dimension filtering, filter 

editing, local filter copying, brushing, used global filters, created new charts and asked 

questions regarding the functionality.  

After switching from the S7 condition to S3, P0 commented: “I was using (all) 

screens. Now I feel trapped.” To overcome space restrictions, he limited the data to a 

smaller subset of dimensions to reduce the amount of the data.    

P1’s strategy was to clear the space first, by filtering most of the data dimensions 

out and leaving only the ones that he was going to work with. When he started working 

on a chart, he always resized it first to make it larger. If he was working with bar or row 

charts, he sorted the bars/columns so that the values of data points appeared low to 

high, likely to be able to make better comparisons. Characteristically, P1 always worked 

on a single chart and made it extremely large (Figure 5.5). “Can we clear the space?” 

was P1’s first question when he started the analysis, as he did not seem to find it useful 

to have many visible charts at once. As he had the habit of working with a single, 

oversized chart in all cases, changes in display size did not seem to affect his work.    
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Figure 5.5. Example of the giant charts that P1 used for analysis (the chart 
above is taking up approximately 3.3 m2 space on displays, which is 
nearly 70% of the vertical space). 

P2’s analysis strategy consisted of resizing chart(s) first, thinking aloud, making 

analysis comments and then reaching insights. His analysis seemed to have been 

affected negatively by two factors: vertical display bezels and the small, fast mouse 

pointer on large displays. Trying to avoid the bezels and occasionally losing the mouse 

pointer slowed down this participant’s analysis process. Bezels also impacted task 

success, by misleading this user and causing errors in reading during the analysis. For 

example, at one point of the analysis, P2 was reading data points, which were: 10-12-

14-16. P2 overlooked part of the information as it was displayed across a bezel and read 

it as 10-14-16, which yielded a totally different answer to the task question.  

P2 preferred smaller screens as he commented during the analysis: “[The] 3-

screen setting is better for me. Everything is in focus.” 

I observed with some participants that some discoveries about how they could 

use the system in the earlier part of their session may have affected the rest of their 

analysis behaviour. For example, P3 sped up their analysis when they discovered the 
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strategy of not filling up the space and working on fewer data charts. Over time, this 

approach helped improve P3’s success rate.  

P3 commented that “I guess I filled [the space] up too much”, when they started 

scrolling up and down, through the content that was nearly 10 times the display height. 

Surprisingly, though, P3 did not mind scrolling, probably due to being very used to 

vertical scrolling on most of the devices that P3 was familiar with. P3’s favourite was the 

middle case [S5] and that participant explained that “[S3] was too small and in [S7] there 

was too much data at the periphery.”  

I observed similarities between P4’s approach and the approach of P3 and P0. A 

main characteristic of P4’s analysis routine was to move charts often in the S7 condition. 

When P4 switched to S3, he also switched to vertical scrolling from horizontally moving 

charts around, which he did not seem very happy with (in contrast to P3). P4 felt 

restricted by the display size like P0, and just like P0, adapted a strategy of picking fewer 

data dimensions to tackle display size restrictions. 

P5 seemed relatively less interested. This participant interacted with the data 

less than other participants. Resizing and moving charts seemed to have helped other 

users to get “involved” with the data but P5’s behaviour involved little resizing. Related to 

this decreased amount of interactivity, P5 sometimes did not follow instructions to 

identify answers.  

P6’s approach was similar to that of P5. As this participant lacked VA experience, 

they struggled in the beginning. As P6 started to understand more and get better at 

analysis they started to interact more with the data. The frequency of resizing charts 

increased and a larger variety of actions (beyond just looking at charts) was used, which 

yielded a better task performance. 

P7 had a mixed approach, making use of most of the introduced capabilities of 

the VA tool. This participant had a productive session and identified most of the 

answers. However, for P7 fatigue seemed to impact performance as time advanced, as 

this participant also commented on during the tasks.  

P8 is another example to improving performance significantly after developing a 

new analysis strategy on the fly, similar to P3. This participant figured out that one could 
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drag a data dimension (say, X) onto an existing chart (say, Y vs Z) to switch the 

dimension with one of the existing data dimensions (X substitutes for Y). This enabled 

this participant to identify information on the new chart (X vs Z) and was then repeated 

with a new data dimension. P8 thus discovered that it becomes much faster to look at 

correlations this way as compared to creating charts from scratch. Moreover, and similar 

to P2, dealing with mouse pointer loss issues negatively impacted P8’s analysis 

timewise.  

Self-Reported Results 

In the end of the analysis sessions, users were asked to answer questions 

regarding their experience. Here, my purpose was to learn more about users’ opinions 

about display sizes, their space and content management strategies, navigational 

preferences, and overall analysis approach.   

Display Size 

Mostly, users preferred a wider analysis space over a narrower one. P0 said: 

“With the full width, I could forget about the rest of the display and focus only on the 

data, while both others left me wanting to expand the windows.” P8 said: “I like it when I 

used the largest display. The small one was too small for me.”  

Furthermore, P1 points out a relation with multitasking: “Wider works best for me, 

since it allows me to solve multiple questions at the same time.” P3 also prefers wider 

space “to be able to compare different graphs on full scale at the same time.” 

In contrast, P2 commented: “The 3- and 5-screen setup is so immersive, making 

multi-dimensional data analysis easier.” P5’s response stated that: “Generally, the 

widest screen was harder to control, and I felt the need to move the charts in front of 

me.” P6 considers the time that a person spends on looking at charts: “[I prefer] 

narrower. Less time [is] needed to look for the data, especially when there are 20+ 

charts opened (that are very similar visually).” 

Finally, some participants realized advantages and disadvantages of both ends 

of the display space spectrum: P7 summarized it as follows:  

I was happy with the medium size configuration that uses 5 screens. I 

could quickly choose items from the menu on the left. The dragging was 
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easier than the large [7-screen] configuration. I had more space to 

arrange visualization compared to the small [3-screen] configuration.  

Space Management 

Some users managed to use the horizontal space efficiently. P4 said: “On a few 

occasions, I put together multiple charts to see insights.” Others did not. P1 said: “I 

usually expanded the plots in the center of the screen, while there was extra white space 

[on the] far-right end.” Also, P5 added: “I usually moved the charts I am interested in to 

the middle screen and enlarged them to see better.” 

Content Management 

Initially, DynSpace+ provides of charts right from the beginning to the user, as 

explained in Chapter 3. Most of the users like this feature, including P2: “I feel the 

system was effective at getting a bird’s eye view of the trends and correlations.” P3 

stated: “Being able to see multiple graphs at the same time was a big bonus of this 

system. I liked to be able to eliminate and filter information and only look the graphs I 

needed.” P7 mentioned: “The initial figures that are generated automatically made the 

process and exploration faster. The filters and sorting were quite useful to find a specific 

detail about the data.”  

However, P6 felt that having too many charts open at the same time was a little 

bit confusing at times. P4’s opinion was similar: “Although there were ready-to-use 

charts, they seem overwhelming. Therefore, I relied on creating new charts every single 

time.” 

Navigational Preferences 

Study participants were asked the following question: “Did you prefer virtual 

navigation (i.e. mouse scrolling vertically), or physical navigation (i.e. turning around, 

moving the head or body to see different parts of the display)?” 

P2, P5 and P7 preferred virtual navigation. P5 explained as follows: “I prefer 

virtual navigation because it feels more effective and faster that way.” P6 responded with 

“a mix of both”. However, the majority of the users still preferred physical navigation. P4 

said: “With physical navigation, it was easier to create a mental map of where exactly a 

chart is located at. When I am working with a bigger screen, I tend to lose the same 
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mapping if I rely on virtual navigation.” P3 said that physical navigation was better, as 

using mouse was a bit tiring for this large display. 

Analysis Approach 

Analysis approaches varied much among the participants. Every user had their 

unique way of exploration. P3 summarized their approach as follows:   

I first tried to see the numerical values in terms of the categories I felt 

[that were] important. For the questions, I filtered the variables that 

were wanted and then scaled up the graph to better see what was 

presented.  A crowded scene where I was exposed to all the graphs was 

not really providing me an advantage, so I tried to eliminate everything 

I did not need. I used the filters as I needed to. I guess I could have 

used the creating new chart feature, but I haven’t. Bookmarking was 

also something I barely used. 

5.5. Analysis of Results and Discussion of Study II 

5.5.1. Discussion of Quantitative Results 

Two-way Mixed ANOVA Results for Display Size and Resolution 

To analyze the quantitative task results, I applied two-way mixed ANOVA on the 

data. The results showed that there was a significant effect of the number of screens 

(F(2,8) = 4.14, p= < .05). According to the post-hoc test, the S5 condition significantly 

outperforms S3 and S7. Resolution did not have a statistically significant impact. I also 

verified that there was no significant interaction between the two factors. Scores per 

each condition are in Figure 5.6. The means and statistical characteristics for each 

condition are provided in Table 5.4.  
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Figure 5.6. Task scores in in the S3, S5, S7 conditions. The conditions were 
given in Latin square fashion.  

Table 5.4.  Data for within-subject display size experiment.   

Level Mean Std Error Lower 95% Upper 95% 

S3 16.44 1.23 13.90 18.99 

S5 18.56 1.23 16.01 21.10 

S7 16.33 1.23 13.79 18.88 

 

Looking at the whole data there is a statistical trend for the S5 condition to 

perform visibly better than S3 and S7 (Figure 5.6). When I looked closer at the data I 

noticed that previous user experience seemed to play a role. To eliminate the effect of 

task familiarity and experience between users, I normalized the data and ranked task 

successes out of 10, giving the maximum points to each users’ best attempt. Rescaling 

the scores allowed each user to score 10 with their best attempt, which eliminates 

individual differences between users. 7 out of 9 users achieved a score of 10 in the S5 

condition. Although S5 was looked to dominate the other conditions – it attained the top 

score 7 out of 9 times, there was no significant difference. Looking even closer, I 

identified that this likely was the consequence of not having removed outliers. I noticed 

that for each condition, there was exactly one score that seemed much lower than the 
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remaining data (55% or lower success rate, once in each 9 attempts). I removed these 

outliers from each of the condition and considered only the remaining 8 of total 9 scores 

for each of the condition. With the normalized data and outliers removed, S5 

outperforms the other alternatives significantly. The graph and the statistics are given in 

Figure 5.7.   

  

Figure 5.7. Two-way mixed ANOVA results of normalized task score.  

The results already indicate that S5 outperforms the other two conditions 

significantly (p < .05). Still, its effects on the performance can be even sharper than how 

it already looks. To avoid a reduction in task success rate, users appeared to have 

adapted to different display size conditions by changing their strategies. This adaptation 

behaviour likely made it harder to observing quantitative impacts. Therefore, I believe 

that the qualitative results and user feedback are also important to help understand the 

impact of display size in VA on LHRDs. 
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Display Size Analysis through User Ratings 

I investigated effectiveness and efficiency, ease of use and overall popularity of 

each display size condition. None of the conditions were statistically significant, and 

variance was very high. Graphs are in Figure 5.7 and further statistics are in Table 5.5.   

 

Figure 5.8. Plots of user ratings for 3 categories.  
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Table 5.5. Data for “effectiveness & efficiency”, “overall favourite”, and “ease 
of use” in order of “goodness of fit”.  

Level 
Mean 

effectiveness 
Std Error Lower 95% Upper 95% 

S3 5.11 0.85 3.36 6.87 

S5 7.78 0.85 6.02 9.53 

S7 6.78 0.85 5.02 8.53 

 

Level Mean Std Error Lower 95% Upper 95% 

S3 4.78 1.08 2.54 7.02 

S5 6.56 1.08 4.32 8.80 

S7 6.56 1.08 4.32 8.80 

 

Level Mean Std Error Lower 95% Upper 95% 

S3 7.11 0.83 5.40 8.82 

S5 7.89 0.83 6.18 9.60 

S7 6.89 0.83 5.18 8.60 

For the data shown in Table 5.5, none of the p values are significant (.102, .422, 

and .674, respectively).  

In summary, I can only state that users seem to have different preferences on 

how large a large display should be. Opinions were spread across the spectrum, and not 

a single criterion seems to be useful to decide between different display size conditions 

for each participant. This fails to replicate some previous work [4], which demonstrated a 

clear domination of “physical navigation over virtual”, and implied that largest displays 

will be preferred by most users. If generalized, I can suggest that S5 and S7 seem to be 

one step ahead of S3. However, the best would be to accept that there are different 

types of users who prefer to view their content differently.  

Display Size Analysis for Different Experience Levels 

According to their VA experience levels, I considered users in 3 groups: Not 

experienced users, users with little experience and experienced users. I observed that 

not experienced users preferred S7 and experienced users preferred S5. There was no 

clear pattern for users with little experience. When considering the other two groups, for 

not experienced ones the decision could have been affected by “how exciting large 

displays look”. Experienced users might have considered trade-offs between advantages 

of larger size and disadvantages of navigation speed on larger displays, which might 

have caused them to opt for the middle case. However, further studies are required to 
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identify the precise motivation of those preferences of users with different levels of VA 

experience.  

Display Resolution Analysis 

A secondary goal of the study was to analyze the effect of different resolution 

conditions (R1, R2, R3) through three participant groups (G1, G2, G3), and to study how 

task success changes between subjects as the display resolution changes, which 

addresses my RQ3. Figure 5.8 and Table 5.6. show users’ performance in terms of the 

scores they obtained with different resolution settings.  

 

Figure 5.9. The score and resolution graph. R1, R2 and R3 are 720p, 1080p and 
2160p respectively. The difference in score was not statistically 
significant (p=.6). 

Table 5.6. Scores (out of 23) per resolution condition. 

Level Number Mean Std Error Lower 95% Upper 95% 

R1 9 17.8889 1.2579 15.293 20.485 

R2 9 17.3333 1.2579 14.737 19.930 

R3 9 16.1111 1.2579 13.515 18.707 

As seen from the figure above, the impact of resolution on quantitative task 

success measures was not significant. In fact, the trend is counterintuitive, i.e., opposite 
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to what I had been expecting, since R3 is the highest resolution, which had the lowest 

average result.  

Based on my observations, I speculate that quantitative differences due to 

different resolutions might not be significant, if one considers that participants could 

tackle resolution-related issues in many ways, even if that create extra effort. For 

example, if an axis label was not readable at 720p with the initial chart size (due to 

pixelation issues), users resized the chart to be able to read better. Such requirements 

surely created discomfort and extra effort but should not result in quantitatively lower 

scores.  

On the other hand, the lowest average scores for R3 is still counterintuitive to 

me. The only reason I can currently see is that my study had only few people (3 users) in 

each group. 

In Appendix K, further graphs and statistics regarding some other criteria 

(gender, dataset, task sequence) are given, but were not directly investigated here. They 

are either assumed or verified to make no difference.  

5.5.2. Discussion of Qualitative Outcomes 

Using the qualitative results of the study, it is possible to discuss the effects of 

resolution, size, navigation techniques, usage recommendations, and potential 

performance inhibitors.  

As discussed in section 5.5.1, display resolution did not seem to affect task 

success, at least directly. Still, I observed that the text around charts, such as chart 

names, axis labels and data values, become more readable as the resolution increased. 

P5, P6 and P8 did some of their analysis without enlarging charts. All other users 

resized their charts to at least two or three times larger than the initial size before 

starting to work on a chart. P5, P6 and P8 were all in either G2 or G3, who worked with 

1080p or 2160p resolutions, where the displayed content was at retina display quality or 

better. This gives the users the advantage of being able to fit more charts, and therefore 

more information, into the same space and enhance their analysis. However, it is also 

important to mention that only some of the users used the whole space effectively, and 
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that thus resolution could be considered as an advantage for only a subset of the large 

display users.  

Concerning the size of the displays, users expressed substantially different 

opinions. While P0 indicated that he felt trapped when he was switching to S3 from S7, 

P2 said that S3 is better as it provides a display where everything is “in focus”. P3 on the 

other hand, stated that S3 is too small and in S7 there is too much information in 

periphery. Although larger displays seemed to be favoured slightly (~45% preferred S7, 

~33% preferred S5, which is the largest preference group), each option had some 

popularity among a certain group of subjects. 

Looking at the VA experience level among my participants, I was able to identify 

4 groups: 

- Level 0 (no VA experience): Both P1 and P8 preferred S7. 

- Level 1: Both P2 and P6 preferred S3.  

- Level 2: P5 preferred S5, P0 and P4 preferred S7.  

- Level 3 (very experienced with VA): P3 and P7 preferred S5.  

Overall, more experienced (level 2 and 3) users seem to prefer S5 (or S7, but 

less so), while the least experienced users (level 0) preferred S7. Users with 

intermediate experience (level 1 and 2) do not have a clear preference. 

Similarly, for the navigational preferences answers also did not show a clear 

pattern. While some subjects liked to turn around with the chair and rotated their body 

and head to view the information, others preferred vertical scrolling through the mouse 

wheel. Another group of subjects said that they preferred a mix of both alternatives. As 

no clear pattern of preference could be identified navigation preferences might be 

attributable to individual differences. 

I also observed mixed results for the initially displayed charts that served as 

recommendations or alternatives to consider. Some users (P1, P4) did not like them, 

with P1 asking directly: “Can we clear [the] space?” In contrast, P2, P3 and P7 used 
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those charts effectively and they helped them to finish tasks in a shorter time. Here are 

some related quotes: 

P2: I feel the system was effective at [giving me] a bird’s eye view of the 
trends and correlations.  

P3: Being able to see multiple graphs at the same time was a big bonus of 
this system. I liked to be able to eliminate and filter information and only 
look the graphs I needed.  

P7: The initial [charts] that are generated automatically made the process 
and exploration faster. The filters and sorting were quite useful to find a 
specific detail about the data.  

Here it is interesting to note that if a participant likes using the recommended 

charts, display size seems to gain importance. Both P0 and P4 reported that the smaller 

screens restricted them, as they adapted a strategy of reducing the number of 

dimensions to tackle the issue of limited space, which affected the time to complete 

tasks as well as the variety and depth of their analysis negatively.  

Participants also provided additional comments about chart sizes and display 

space. P5 commented: “I usually moved the charts I am interested in to the middle 

screen and enlarged them to see better.” This comment suggests that the user felt the 

chart was too small to work with. I chose the initial chart size to be small enough to 

accommodate a large number of charts in the overview mode, with the intent to provide 

a reasonable overview. With this number of charts, users could see many charts, and 

easily perceive their titles and any trends visible in the data. However, details, such as 

the values on the axes, were harder to see. When a user felt that they needed to see 

more information on a given chart, they enlarged that chart and started working on it. On 

the other hand, moving charts to the middle cannot be related to visibility, since the 

display system was curved and the distances of each display unit to the user was the 

same. As far as I can tell, the reason why some participants adapted the behaviour of 

moving content to the center, is that they wanted to reduce their physical eye and/or 

head movements. 

Finally, I observed some task performance inhibitors during Study II, namely, the 

bezels and limits mouse interaction. P2 was adversely affected by both factors. Bezels 

seemed to be misleading this participant as P2 read the data wrong and eventually 

found an incorrect answer for the asked question. P8 also seemed to have problems 
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with using a mouse on such a large display and experienced issues such as losing track 

of the cursor, wrong clicks, and motions that were too fast. That caused P8 to lose time, 

which resulted in time pressure and a reduction in time task performance.   

5.6. Limitations 

In this section I review several limitations of my work and discuss their potential 

impact. 

5.6.1. System-Based Limitations 

In some cases, bezels limited task success in this study, e.g., because 

participants misread data presented across a bezel, or had to spend extra time to avoid 

having charts going across bezels. Here is what some participants reported: 

P3: Sometimes the bezels were distracting and getting in the way of 
reading the data effectively.  

P2: The bezels cut off data.  

P5: The seams between screens interrupted the view of the charts. I had 
to move some of them to see clearly. 

Potential future work that could address some of the disadvantages of bezels is 

discussed in Chapter 7.  

5.6.2. Methodology-Based Limitations 

The limited number of participants and constraints on the time available per 

participant is also a limitation of the kind of study I performed. Fundamentally, clearer 

results might be found if there had been more users taking part in the study. More time 

for using the system to do analytical tasks, in multiple sittings if possible, would also 

likely lead to more insights into behaviours. However, real-world time and resource 

constraints apply for my work as well. 

Decomposing the above-mentioned limitations, the first limitation is the number 

of users taking part in the study. Ideally, there should be more than nine participants for 

a better study. With this number of participants, only three experienced people each of 
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G1, G2 and G3 for testing RQ3. A study with a multiple of nine, say 27, participants 

would likely yield more concrete results, as each condition would have been tested with 

multiple people. Recruiting a large enough number of subjects with VA experience is one 

of the main constraints that made this too challenging for the work reported here. 

To address the other limitation, it would be desirable to conduct more in-depth, 

longitudinal studies with the participants. Some limitations of my current study were: 

• Time was limited to approximately 90 minutes. For that reason, only reasonably 

simple analysis tasks could be performed. 

• Even though there were practice sessions, it is likely that at least some learning 

effects are present in the data. One potential reason is that participants experienced 

only a single session and some participants seem to have forgot some of the 

features right after learning and had to be reminded again about them during the 

main study tasks. From my observations and records of having to assist during the 

study, I believe that two users were particularly affected (P3, P8). Another user, P7, 

commented as follows: “I got used to the system in the second analysis. I think I was 

two times faster after the first analysis.” 

• Time constraints prevented me from testing all conditions within-subjects, since such 

a methodology would require over 5 hours per participants.  

• One participant, P7, got noticeably fatigued during the user study. This may well be 

due to external influences. 
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Chapter 6.  
 
Summary and Discussion 

In summary, I conducted two VA studies on V4-SPACE using DynSpace+ within 

the scope of this thesis. The first study was a classification and spatial organization task 

using a VA tool on LHRDs, whereas the second study investigated effects of changes in 

display size and resolution on VA task success. My goal was to address three RQs. 

Study I was designed to tackle RQ1, while Study II helped me to answer my other two 

research questions. RQs are stated below for reminding purpose:  

• RQ1: How do people use the (large) space of an LHRD to cluster items 

while trying to solve analytical problems that require re-organization of the 

content? What are the factors that users consider when clustering; topical 

relations, visual similarity, or common dimensions of charts? How much 

of the space do they use when clustering objects? How do these clusters 

look? How far are they from each other? What does the cluster distance 

symbolize? Are objects strictly separated or loosely grouped? Are there 

patterns for the space usage? Also, do different clustering approaches 

lead to significant differences in accuracy and/or task completion times?  

• RQ2: Do larger displays help the user to do better in visual analytics 

tasks? How does task success change as screen size is increased? Task 

success is here defined as shorter task completion time and better 

accuracy in visual analytics tasks, such as answering fact-based 

questions or finding insights in relatively complex datasets among 

categorical, numerical or time data using scatterplots, bar charts and 

histograms. 

• RQ3: How does task success change as resolution is increased? Does 

higher resolution improve task success in visual analytics tasks?  
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The results of the first study are mostly based on (qualitative) observations, as all 

users were given the same task and there was only a single condition in the experiment. 

In the second study, I explored the effect of display size and resolution in a mixed 

design, where display size was investigated within subjects (RQ2) while resolution was 

explored between subjects (RQ3), respectively. I recorded both quantitative and 

qualitative measures to analyze task performance and participant preferences.  

Through the results of the first study, I was able to identify that users follow 

substantially different classification and spatial organization strategies, even though they 

all started with the same state. I observed clear distinctions in terms of clustering 

strategies, space usage, and preferred navigation techniques. Clustering strategies were 

further analyzed in section 4.5.1. 

In the second study, resolution did not have a statistically significant impact on 

quantitative task success, but display size did, as measured through completion time or 

with a scoring system depending on task accuracy. Based on my observations during 

the study, the difference could have been even sharper, because I think that even when 

users are faced with the disadvantages of a given display size or resolution conditions, 

they seemed to be able to compensate for those disadvantages by changing their 

analysis strategy. Therefore, I believe that qualitative observations and user self-reports 

also play a role in identifying the impact of display size and resolution on VA tasks with 

large displays.  

In the following sections, I summarize and discuss the methodology, system 

design and results.  

6.1. Discussion of Methodology 

The research done in this thesis explored the impact of a very-large ultra-high-

resolution display system on user performance with visual analytics tasks. As 

Swaminathan and Sato [104] observed, “when a display exceeds a certain size, it 

becomes qualitatively different.”  

Through both qualitative and quantitative measures prior research had observed 

benefits in terms of user behavior and task performance on large, high-resolution display 

systems. The methodologies I used in my research builds on this body of work. 
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In Ball and North’s qualitative study [10], the following methods were used: Direct 

observations as individuals interacted with the display, formal interviews involving a 

predetermined list of questions, and informal interviews to let the user talk more freely 

about their experience. Quantitative methods, on the other hand, usually require 

exposing participants to multiple conditions and measuring the performance. I use both 

approaches in the two studies that were conducted with the scope of this thesis. 

Between the two studies, I recorded direct observations of the user interacting with the 

display, tracked the progress during ongoing interaction, obtained written responses to 

qualitative questions, asked (predefined) performance-determining questions to measure 

effectiveness, and used hybrid oral interviews that consisted of a formal interview 

involving pre-determined questions as well as additional informal questions, which 

targeted issues that participants had reported during the tasks. 

For the two studies that were part of the research, I used various methods to 

obtain the results. Thus, there are both qualitative and quantitative outcomes, both direct 

and indirect feedback, as well as verbal, visual or textual responses. Thus, as also 

discussed in previous work [92], my methodology is labor intensive. Although it seems 

unlikely that one can completely eliminate the intensity of the labor, while at the same 

time still using a detailed and thorough methodology, I still attempted to reduce the labor 

requirements with some design decisions, such as qualitatively observing usage 

patterns and asking participants for self-reports, as well as keeping configuration logs 

and screen-capturing the system during the sessions, which provides evidence for 

further quantitative measurements and analyses. 

When seeking study participants for VA studies, sufficiently trained participants 

are not necessarily easy to find, especially when one is looking for a high number of 

participants for multiple studies that potentially require substantial amounts of time. 

Unlike the undergraduate students that I could recruit reasonably easily for participation 

in my first study, VA knowledgeable participants for the second study, which was heavier 

in terms of analytic requirements of the tasks, were harder to find and had many more 

scheduling constraints. However, even though I recruited more knowledgeable 

participants, Saraiya et al. [92] argue that that this recruitment strategy does not 

necessarily improve performance in VA studies: 
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One might conjecture that users with more domain experience or 

software development experience would gain more insight from the 

data visualizations. Yet, we found that the insight domain value and 

total number of insights did not appear to depend on participant 

background. Averages were similar and no significant difference 

between user categories was detected. Rather, we found that these 

factors were more dependent on the user motivation. [92] 

Participant motivation is an important factor to consider when designing user 

studies [79]. Some previous work reported that users working on VA tasks did not 

analyze the data with much care, looked only for overall effects, but did not delve into 

great detail [92]. Consequently, I think it would be appropriate to expect a breadth-over-

depth approach from average participants, and experimental tasks should be created 

accordingly. Also, since the motivation factor affects how much engagement a user has 

with the tasks, motivation should be kept high as much as possible. For this reason, in 

both of my studies I watched for a certain “voluntariness” factor when recruiting 

participants. With the expectation of increasing motivation, I used rewards, through 

course credits for the undergraduate students in the first study and through cash 

remuneration in the second study. 

One of the biggest differences between experimental studies and real-world 

analysis conditions is the amount of time an analyst could spend on a problem. Analysts 

are able to work for tens or hundreds of hours on a given dataset or potentially even 

months. However, experiments typically take at most only a few hours. Longitudinal 

experiments might help here, but there are number of trade-offs to consider, such as the 

number of participants to track, controlling the tasks, collecting data, and study timelines. 

In my studies, users interacted with a new system they had never used before. 

They worked with a VA tool that they were completely unfamiliar with. They worked with 

a dataset that they were not necessarily personally interested in. All those factors 

required that there was sufficient training and that the time available to perform tasks we 

long enough, so that the results would not be affected too strongly by inexperience. For 

the training, the display system was introduced before the tasks, and participants were 

encouraged to use, train, and adapt to factors such as their position relative to the 

displays, adjusting seats, mouse controls, cursor tracking, the bezels and looking at the 

individual screens of the system. Then the VA tool was introduced to the participants 

and they received tool-related training. For this part of the training, I explained the tool to 
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them, how it works, what was expected from them and also gave them some useful 

usage tips based on my observations in pilot studies prior to the main studies reported 

here.  

Finally, the participants were introduced to the datasets and they were 

encouraged to ask questions, make comments, or think aloud during the entire study, 

also so that I could record feedback and/or provide immediate help for the system, if 

necessary. In summary, I still attempted to maximize the time that I could spend with 

each participant, especially for providing training and minimizing learning effect that 

could potentially impact my measurements.  

6.2. Discussion of System and Software Design 

6.2.1. Bezels 

One notable observation from both studies is that the participants complained 

about bezels going through a chart. In fact, in some cases bezels intruded upon the 

analysis and negatively affected the obtained results. That shows the fact that “bezel 

adaptation” is highly important in VA on LHRDs.  

6.2.2. Auxiliary Monitor 

In my studies, I kept the analysis space (LHRD) and evaluation space (auxiliary 

display) separate. While users worked on LHRDs, study information displayed on the 

small monitor in front of them and they answered the main task questions on this 

monitor, too. I believe that using such an auxiliary display was a good design decision as 

displaying the questions on the main screen during analysis would either reduce the 

available screen space or would require many tab switches between the analysis 

window/tab and a question window/tab.  

An alternative to an auxiliary monitor is paper-based instructions and forms. 

However, considering my observations of the users during informal, pilot experiments in 

the earlier stages of the studies, I believe working continuously on the system is a better 

experimental design, since it does not require the user to switch between keyboard - 

mouse and pen-and-paper during the task. In support of this statement is the fact that 
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finding the mouse pointer on a LHRD can be costly in terms of time and abandoning the 

mouse could easily increase the likelihood of losing the mouse pointer whenever the 

user transitions back from the paper interface to the system.  

Another alternative would be to put the reference material on the main display; 

however, I did not want to interrupt constant visibility of the analysis space by displaying 

the reference material on top of the VA tool.  

6.2.3. Display Settings 

Prior to my pilot studies, I did not realize how the brightness of the displays could 

become a significant issue on such large displays. However, in the pilots I observed that 

poorly designed user interfaces, e.g., interfaces that use very large white areas, might 

cause the user to be exposed to too much light, and even heat(!), coming from a nearly 

8-meter-wide display system, creating glare and causing discomfort.  

Therefore, display settings such as brightness, color, contrast should be 

calibrated, i.e., set to reasonable levels, for LHRDs to avoid potential discomfort created 

by heat that can be generated by large display surfaces. Additionally, from the software 

side, color schemes should be chosen wisely, as their choice can seriously reduce the 

amount of glare, e.g., compared to the glare caused by a very large display with a bright 

white background. 

6.3. Discussion of Overall Results 

My first study showed that LHRD users adapted a variety of classification and 

spatial organization strategies, and there is no overall, generalizable result other than 

the observation that clustering approaches can be very person specific. My second 

study indicated a lack of significant quantitative improvement between tested display 

resolution conditions, which was investigated by RQ3, however it showed that display 

size has significant impact on task success, as a response to RQ2. Outcomes of both 

studies are still very important, as they challenge some of previously identified results for 

the potential benefits of VA on LHRDs and also point out that there is substantial 

variation in terms of user behaviours during analysis tasks. 



128 

In the conclusion section of Andrew and North’s paper [4], they explain their 

results as follows: “It is true that we did not find a performance difference between the 

two environments. However, this was an exploratory study with the goal of looking for a 

difference between the two environments, which we did find.” Some of my findings have 

a similar character, as I discovered how the needs and preferences of users vary.  

My overall conclusion from the studies are: 

• Although still being the most popular choice, physical navigation is not 

uniformly preferred by all users of large displays working on VA tasks. In 

fact, I observed that the users prefer a happy medium of those. 

• As in the literature, large displays are preferred over conventional 

monitors. However, for different sizes of large displays, bigger is not 

always better. S5 appeared to be best in my studies and I believe that it is 

deeply connected to FOV limitations and/or preferences of the users.  

• I did not observe a significant performance difference between display 

resolution conditions, however I do not conclude that resolution has 

absolutely no effect on VA tasks. Since VA processes involve substantial 

amount of analytical reasoning, i.e., “thinking”, which constitutes some of 

the time spent on a task, potentially inferior display size or resolution 

conditions might not impact task performance that badly, if task 

performance is measured as a whole. That is, even if a certain condition 

takes extra time in VA processes, the added time caused by interaction 

operations could be covered by getting analytical reasoning faster in 

order to meet time restrictions, as I observed during the experiments. 

Writing ten insights or answering four questions take much less than 50% 

of the allowed time if those are done in a serialized way without spending 

any time on thinking. According to my observation of the analysis 

sessions, the portion of the analysis “cycle” requiring most time seemed 

to be thinking and figuring out what strategy to follow. Once user decides 

on that, execution of those thoughts took less time.   

• Similarly, if a given display size or resolution has a negative effect on task 

performance or accuracy, users adopt strategies to reduce those 
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disadvantages through taking extra interaction steps, which effectively 

translates any negative impact into time loss. For example, if resolution 

impacts readability, we do not observe a sharp decline in task accuracy. 

Instead, participants resized the charts for better readability, which 

overcame any potential readability issues through the price of increased 

interaction time. However, since interaction time is small relative to the 

time spent on analytical reasoning during the task, any losses become 

practically insignificant.  

• Bezels can be a major problem for VA task performance, as they can 

even lead to errors in information interpretation. 

• I observed that users fall into different categories through their 

preferences and strategies. Thus, certain design factors might impact 

only certain types of users. For example, if a user always takes a chart, 

places it in the middle of the displays, and then does the analysis always 

one-chart-at-a-time, changes in the display size will be practically 

irrelevant for that user, as the user essentially ignores information in the 

periphery. 

Though LHRDs have the potential to offer increased productivity over 

conventional monitors, they are fundamentally different environments, presenting both 

unique usability challenges and opportunities, which need to be better understood. I 

partially addressed this need for additional studies to analyze the impact of LHRD size 

and resolution settings on content spatialization strategies and VA task performance 

through the work presented in this thesis. I believe that each finding and observation 

improves our understanding of the role of LHRDs in VA.  
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Chapter 7.  
 
Future Work 

In a potential future expanded study, it would help to have more participants 

available, which would help to classify participants more clearly into groups according to 

their use of the system, and then be able to arrive at stronger conclusions for the 

behaviour pattern(s) associated with each group.  

In the first study, I observed an unexpected behaviour by two of the participants 

in their use of the LHRD, where they used only a very narrow space and performed their 

tasks through heavy use of vertical scrolling, i.e., in a way that I think they were 

accustomed to by everyday devices such as smartphones. It would be very interesting to 

have further studies on this topic and this is an interesting area for future investigation.  

In VA tasks on LHRDs, I noticed that the amount of content displayed may 

become too much and seemingly simple operations can create noticeable overhead that 

slows the analysis process. In my study, participants needed to move approximately 100 

charts on the analysis space, which started to become overwhelming. Thus, users asked 

if they could move multiple charts at once, as explained in section 4.6. Therefore, 

interaction with larger amounts of visual components should become more efficient, and 

operations that speed repeated tasks should be supported.  

One observation from the second study (section 5.5.2) is that display resolution 

seemed to affect the analysis process qualitatively, even though we did not observe 

quantitative changes in task success. With 720p (lower than retina display) no user 

worked on charts as they were in their initial size. In contrast, with Retina resolution or 

above, 50% of the users (3 of 6) identified some insights without resizing any of the 

initially provided charts. This means that the qualitative impacts of display resolution on 

VA task process should be explored in future work. 

Generalizing from the previous issue, further studies could benefit from 

improvements to the methodology, and further build on the observations, experience, 

and results I obtained. These studies should also address at least some of the 

challenges encountered in this thesis work.  
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At the current point in time, it is unlikely that bezels will be completely eliminated 

in a large (non-projector-based) high-resolution display system since the display system 

I used was almost 8 meters wide and single unit 8-meter wide monitors do not exist. 

However, a few improvements might be possible in the future: 

• Smaller bezels 

• Graphic card level bezel correction techniques (e.g. parts of image that 

span displays are hidden behind the bezel)  

• When improving the software, the chart layout methods could and should 

be improved to consider the bezels.  

Finally, considering the experience reported in my thesis, I believe that any 

evaluation regarding the size or resolution of LHRDs should be based on qualitative user 

feedback as well as quantitative measures. Due to several uncontrollable factors like 

different levels of learning ability, fatigue, various distractions, or different degrees of 

motivation for sense-making processes, it is very hard to control all the factors and 

ensure same environment to observe purely quantitative performance during VA tasks. 

Moreover, users seem to be able to reasonably perform well even if they experience 

some forms of mild discomfort, which then does not adequately reflect the impact of a 

given experiment conditions. Considering this, I believe that involving subjective 

measures in the evaluation of LHRDs might serve as a useful way to further explore 

characteristics of LHRDs. 
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Appendix A.   
 
Definitions, Concepts, Terms  

1. Display size: This is the physical size of the displays. If display size is defined with 

two numbers, they express the width and height of the displays, as measured in 

meters or inches. If only one number is used, it refers to the diagonal size of the 

display.  

2. Display resolution: In this work, resolution is the physical pixel configuration in a 

display. For example, if a display is said to have 3840 x 2160 resolution, the display 

contains 2160 rows of 3840 pixels each.  

3. Pixel count: It is the total number of pixels in the display, found by multiplying 

horizontal and vertical number of pixels. If a display has 8 million pixels in, it will be 

referred to as an 8-megapixel display.  

4. DPI/PPI: Dots-per-inch or pixels-per-inch. I use the terms PPI and DPI 

interchangeably, even though they do refer to different (although related) concepts. 

PPI, the correct term, means the number of pixels per inch and gives the number of 

pixels in a horizontal (or vertical) inch on the display. 

5. Pixel density: Refers to the concentration of pixels on a display. In this work, PPI is 

used as a measure of pixel density.  

6. Distance to displays: Display specifications alone are not enough to identify 

perceived image quality. The user’s position and the distance of the displays are also 

important to consider. In my experiments, users had fixed positions, at a known 

distance, in front of the display system. 

7. Pixels-Per-Degree (PPD): PPD considers both the pixel density and the distance 

from which the device is viewed for expressing a viewing quality measure with a 

specific unit. Apple marketed the Retina Display term, basing it on the angular 

resolution (PPD), which ensures that pixels are not visible at a given viewing 

distance, creating an impression of sharp, print-like text. PPD depends on both PPI 

and distance to the display.  
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8. Angular visual field: Display size and distance to displays are both distance 

measurements. Using those two quantities, a triangle can be drawn from the user’s 

eyes to the center and the edges of the display, from which the angular visual field 

can be calculated.  

9. Visual acuity: A measure of the clarity of an individual’s vision. At 20 feet, a “normal” 

human eye can distinguish lines that are approximately 1.75 mm apart. Thus, 20/20 

vision, a term used to express normal visual acuity (the clarity or sharpness of vision) 

means the individual can distinguish at 20’ what a normal human can distinguish at 

20’; 20/40 means the individual can distinguish at 20’ what normal vision can 

distinguish at 40’. This definition is usually used to describe foveal vision. 

10. Field of view (FOV): FOV is the extent of the observable world that is seen at any 

given moment, while the head does not move but eyes can, and I assume in this 

work that peripheral as well as foveal vision is included in the FOV. 

11. Physical field of view (PFOV): PFOV is the angle subtended from the eye to the left 

and right edges of the display screen. 

12. Software field of view (SFOV): SFOV is defined as the angle subtended from the 

virtual camera to the left and right sides of the viewing frustum [31]. 
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Appendix B.   
 
Re-Configurability of V4SPACE 

Even though I configured 4-SPACE to provide the best VA experience 

considering the design criteria for large displays in visual analytics, the system is also 

easily reconfigurable for a variety of use cases, design paradigms and user interactions. 

The bullet points below provide additional information on this re-configurability:  

• Due to the ease of motion that the casters provide, the spatial arrangement of the 

displays in the grid can be easily rearranged, as needed. The system can even be 

“split” to create multiple smaller displays. 

• The screens can rotate 360 degrees about a horizontal axis on the stands, i.e., be 

oriented horizontally, vertically or in any orientation while facing the user. A 

horizontal orientation, for example, provides over 13 meters (43 feet) of horizontal 

space, which could be used to create a closed circular display space for systems.  

• The height of the displays relative to the floor can be changed by adjusting the height 

of the rotating mount. 

• It is also possible to vertically tilt the screens. With this, the center of the display 

surface remains in position, but the angle can be adjusted to ensure the user views 

the displays as in a direction perpendicular to the surface. This helps to adjust if the 

user is not at the same elevation as the center of the screens, or to reduce glare 

effects.     

• Optional touchscreens attached to the display surface support multi-touch-based 

interaction. Therefore, multiple users can interact with the display system 

simultaneously. One option with touch interaction is to create multiple virtual work 

spaces, which can be arranged dynamically. 

• Optional 3D glasses support stereoscopic image display (currently only if the 

displays are oriented horizontally).   
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• As the number of screens and their orientation can be changed, and multiple types of 

interaction are supported, the potential use cases for V4-Space vary greatly. 
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Appendix C.   
 
Study I Participation Motivation 

Table A1. Participants and the motivation factor mentioned when asked why 
they had taken part in study I. 

Motivation\Participant P0 P1 P2 P3 P4 P5 P6 P7 P8 
Participation reward 

(course credit, cash, etc.) 
 X X X      

Interest in the experiment 

tools (large displays) 
 X  X X  X   

Interest in activity 

(Analytics, Visualization) 

   X  X X   

Interest in dealing with 

data 

   X   X   

Other (please specify) Helping 
a friend 

 

- - Understand 
the research 
methodology 
and approach 

used. 
 

   As a 
favor 

 

Volunteered 
out of the 

goodness of 
my heart :) 
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Appendix D.   
 
Study I Concept Familiarity Survey 

 

Figure A1. Participants were asked if they were familiar with given terms before 
the beginning of the study. They could pick multiple terms. 

Table A2. The concepts that the participants of first study were familiar with. 

Concept\Participant P0 P1 P2 P3 P4 P5 P6 P7 P8 

Data Visualization   X X  X X X  

Visual Analytics X  X X  X X   

Classification X   X   X  X 

Scatter Plot X   X    X X 

Workspace X X X X X X X  X 

Filtering   X    X  X 

Coordinate System  X  X      
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Appendix E.   
 
Study I Written Responses for Task (A) 

Task (A) of Study I asks participants to arrange the charts into groups based on 

similarity and to explain the motivation for the way they grouped the charts. Participant 

responses were: 

P0: I chose Y […] instead of X, because visually Y stands out.   

P1: I [arranged] these charts as six groups, all dots of charts in group A (first line 

and third line) are near [the vertical axis], and in group B (second line), the dots in charts 

are near [the vertical axis] and also more crowded than group A. Most dots in Group C 

(4th, 5th line) are in the middle of chart. In the charts of Group D (6th,7th), most of dots 

are in the [right] of the chart. Group E have clear tendency and Group F are at the 

bottom. Because these charts already include age or land, I need to find a new way to 

group them. 

P2: Some data of table is very concentrated. People may find rules from the 

table. But some data of table is very dispersed. I can't find data rules in those table. 

Some data just concentrate in the corner of the table. Some data points shapes are like 

lines in the table. 

P3: I tried to organize the charts using their axis names. Some of them were 

about average, some about population and some about females (women). I did not care 

about the data inside them. I just grouped them by the English words I would see, mostly 

horizontal but sometimes vertical ones. 

P4: I grouped them in that way because there was a lot of data and I consider 

this way will be easier to read it. 

P5: I grouped things with something different versus something in common. 

P6: I used horizontal axis texts to group charts. And in each group if dots are 

grouped close, I stretched [the] graphs’ X or Y axis, so I can see better and makes them 

visible. And I created virtual grid in my mind which divides [the] screen [into] three parts 
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horizontal. And I tried to list group elements in some random groups in different order. 

For example, all group elements are one line vertical or horizontal. The purpose of this is 

to break the order so I can focus. I tried to avoid screen frames, they make it hard to 

read but that was not a huge problem. One last thing I did was to try to collect groups to 

the right, because [the] left bar distracts me. 

P7: I grouped the charts by the way the scatterplots looked in terms of 

correlation. The first group are all the plots where the points cluster by the y axis. The 

second group is where the points cluster around the origin. The third group is where all 

the points gathers around the lower half of the y axis. The fourth group is where all the 

points seem to have no correlation. The fifth group is where the points have a strong, 

linear correlation. 

P8: When starting to organize the graphs, I first looked at the topics that were 

being compared. For example, above-65 age vs. women percentage. I would pick out 

the independent value (women percentage) and picked other graphs that fell within the 

first independent value group I chose. I chose retail as the first group to categorize as it 

stood out the most to me.  

When I realized that some graphs don't fit in the "retail" group that I have 

originally categorized as, I moved the graphs around. Some groups (ex. poverty) were 

hard for me to categorize as I was torn between categorizing it with other groups. 
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Appendix F.   
 
Study I Written Responses for Task (B) 

After Task A in Study I, users were asked to use the highlighting facility to see if 

the highlighted data dimensions aligned with their groupings. The following are their 

responses. 

P0: Data aligns with tab bars about 40%. 

P1: I think those highlights will be very useful for grouping if I use [a] normal way 

to group [those] charts, but I do not use it, because my grouping way do not need that. 

P2: When I see those table by each category. Some of them look like completely 

different. Some of them that we can figure out they are same category just by visually. 

P3: I grouped average_income in one area quite well. I grouped 

population_count, population_change_perc and population_per_land well too. I grouped 

females_perc and firms_by_women_perc in one place. I grouped manufacturing fine. I 

also grouped merchandise_sales ok. But I can see above65age_perc, 

bachelor_degree_perc, below_poverty_perc, employment_change_perc, ESLs_perc, 

foreign_borns_perc, land_area, retails_sales and under18age_perc are gathered all 

around the large screen. Maybe because I did not manage to use them for my grouping. 

I used my grouping by dimensions that I can easily understand and [have] more 

meaning to me. 

P4: The highlighted charts were matching per classification set.    

P5: I did something vs common factor; so when you highlight something, that 

group second elements going to be highlighted. 

P6: I already figured out at the beginning that property, so I grouped according to 

that. 

P7: Most of the dimensions when highlighted showed little correspondence to my 

groupings. The ones that stood out were Land area which showed many highlights in 

group 3 and Population per land which showed many highlights in group 2. I also noticed 
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that all three scatterplots in group 5 had the dimension or Retail Sales, however the 

dimension of retail sales also showed up in other groups. Going through the dimensions 

and comparing them to my groupings did not reveal very much compelling information. 

P8: From my categorizations of the graphs, some groups (ex. female, poverty) 

are widely spread apart, whereas some groups are categorized all into one group (ex. 

Bachelor’s degree, income). I realized that the areas highlighted are regardless of 

independent value or dependent value, therefore even if the categorization looks very 

scattered, the comparing values may not be scattered. 
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Appendix G.   
 
Final Organization Layouts of Study I 

The screenshots below show the final organization of charts for Task A of Study 

I. 

P0 

 

P1 

 

P2 
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P3 

 

P4 

 

P5 

 

P6 
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P7 

 

P8 
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Appendix H.   
 
Study II Familiarity Survey 

Table A3.   Suryey of knowledge users have of VA concepts, whether they know 
any VA tools, and if they could name any VA software with they were 
experienced. 

 

How much knowledge do you have in Visual 
Analytics concepts such as bar chart, scatter 

plot, filter, dashboard, etc? 

Do you know or use any Visual 
Analytics tools, such as Tableau? If 

yes, please write down the name of it / 
them. 

P0 I know all of them Yes Tableau 

P1 I know some of them No - 

P2 I know some of them Yes Tableau 

P3 I know all of them and have practical experience Yes Tableau, matplotlib, R, spss 

P4 I know some of them Yes JMP, Excel, SPSS, Minitab 

P5 I know all of them Yes Tableau 

P6 I know some of them Yes Tableau 

P7 I know all of them and have practical experience Yes - 

P8 I know some of them No - 
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Appendix I.   
 
Study II Practice Session 

 

Figure A2.  Practice session provided to users for Study II.  
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Appendix J.   
 
Study II Post Study Survey and Interview 

The first 3 screenshots below show the post study survey, asking Study II users 

about their experience and asking them to compare three cases of experiment: 3, 5 and 

7 screen settings as the display surface.  

The next two screenshots show the open ended post-study interview questions.  
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Appendix K.   
 
Study II Quantitative Analysis of Further Factors 

 

Figure A3.  Analysis of dataset, order, and gender’s impact on quantitative task 
measure (overall score).  

The results for each condition are fairly similar to each other, in terms of characteristics and complexity, as 
can be seen from the results shown on the left. In the middle, it is seen that subjects perform better in their 
later tasks, as they learned and gained experience VA during the experiment. Therefore, I can verify that 
counter-balancing the order helped me obtain more reliable results. Finally, on the right, 6 male participants 
performed slightly better than the 3 females, however this is not a statistically significant difference in terms 
of scores.  
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Appendix L.   
 
Study II Task Success by Total Number of Pixels 
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