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Figure 1: On the left, the experimenter configures an Image Form Task as part of a between-group chapter with three groups. As
configured on the left, participants will repeat this task 8 times with different visualizations. On the right, a participant works on one
task.

ABSTRACT

Evaluation of a visualization technique is complex and time-
consuming. We present a system that aims at easing design, creation
and execution of controlled experiments for visualizations in the
web. We include of parameterizable visualization generation ser-
vices, thus separating the visualization implementation from study
design and execution. This enables experimenters to design and run
multiple experiments on the same visualization service in parallel,
replicate experiments, and compare different visualization services
quickly. The system supports the range from simple questionnaires
to visualization-specific interaction techniques as well as automated
task generation based on dynamic sampling of parameter spaces.
We feature two examples to demonstrate our service-based approach.
One example demonstrates how a suite of successive experiments
can be conducted, while the other example includes an extended
replication study.
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1 INTRODUCTION

Many scientists in the field of information visualization seek to pro-
duce valuable results. They strive to invent visualizations that help
actual people solve real problems faster. Empirical studies are a rigid
way to support the claim that a visualization technique achieves these
high level goals. However, good quantitative evaluation requires
a lot of effort [17, 19, 22], excluding any implementation-related
efforts.

Even with maximum effort invested into an experiment setup, the
most influential factor cannot be controlled. This factor is the exper-
imenter – her explicit and tacit knowledge, assumptions, incentives,
goals, and research culture. The PRIMAD model, developed in a
Dagstuhl working group by Freire, Fuhr, and Rauber, included ac-
tors as variables that can be changed [12]. In this sense, a replication
study is a variation of the variable “experimenter” in an experiment
with a larger scope. While evaluation is a rigid method to substan-
tiate actual scientific statements, only replication can confirm the
validity of the original statement. However, the expectable merits do
not always match the required investment. Even well documented
laboratory experiments (with data, software and experiment protocol
available in detail) still requires considerable effort to re-implement
the experiment infrastructure and setup.

This leaves us with two basic strategies for fostering replication:
Increasing incentives or lowering the required investment. Increas-
ing incentives might have a stronger effect, but requires nothing
less than cultural change. We therefore resort to the other strategy:
The main goal of the application described later is to reduce the
effort to actually set up, replicate and extend controlled experiments.
In terms of Munzners nested model we focus on supporting visu-
alization designers to validate visual encoding/interaction idiom
approaches [25]. Within the categorization scheme of Isenberg et al.,
we target Qualitative Result Inspections (QRI) and User Performance
(UP) tasks [17].

Our contribution is a web-based evaluation environment, tailored
to conduct experiments with web-based visualization techniques.



Visualizations and their control parameters can be registered to this
environment as a generic image generation service, hence referred to
as “image service” in the remainder of this document. The authoring
component of the tool helps building the experimental setup. An
experimenter may freely combine task and visualization parameters.
In addition, we support task randomization, task-order randomiza-
tion, and subject-group based randomization (for within-group and
between-group designs). Experimental results, including partici-
pant data and timings are automatically collected. The visualization
services, experiment setup, and the results remain available for docu-
mentation and future (re-)use. We do not claim to be able to replicate
every lab-study ever conducted. Still, a constrained evaluation envi-
ronment might have a larger value for replication purposes.

We believe that the main benefit of our approach is the removal
of important barriers for successful evaluation and replication of
controlled experiments. For a first-time experiment, the design can
easily be edited, tested, and improved over multiple iterations before
leaving the pilot stage, thus avoiding the need to start from scratch
over and over again. Replication benefits from this approach in
particular, as the environment allows to repeat any experiment, as
well as running variations of an original protocol (by cloning and
adapting the parameters accordingly). This avoids translation losses
while reinterpreting the protocol of an earlier study. We lower the
barrier for evaluation of visualization techniques by reducing the
effort required to include visualization-centric tasks into evaluation
protocols. We remedy the necessity of manual stimulus generation
by including a parameterization system into our system which au-
tomatically samples the parameter space to generate stimuli. The
technical separation between experiment design and visualization
technique also offers important benefits. It avoids adapting the exper-
iment to the (proposed) solution, instead of adapting the experiment
to the task. Additionally, it provides a lever to foster comparative
studies of different visualizations and quickly test new hypotheses,
as image services can be re-used.

The remainder of this paper is structured as follows: Section 2
outlines the current state of the art. We then describe our system
in Section 3. To clarify the relevance, we show in Section 4, how
experiment suites and replication studies can be set up. Finally, we
conclude by discussing current limitations and future directions in
Section 5.

2 RELATED WORK

We build our approach upon two complementary perspectives on
evaluation in information visualization. First, we review works
that focus on replication and reproducibility of evaluations. The
second part surveys evaluation and survey systems, ranging from
the scientific to the applied perspective.

2.1 Replication and Reproducibility
Donoho argues that the computer science community should adopt
the model of the biostatistics journal, who introduced a reproducible
research policy, which marks whether a published finding is backed
by data, code, or both and if they are freely available [8]. The policy
of the biostatistics journal follows Peng’s definition of reproducibil-
ity [26]. Reproducible work enables independent researchers to
verify results, and, due to availability of data or/and code, to per-
form alternative analyses. If independent researchers are able to
reproduce results with other data and/or different methods, then they
successfully replicated prior work.

Plaisant proposed in 2004 that (data and task) repositories and
benchmarks should improve, which would foster quantitative evalu-
ation and the comparability between approaches [27]. Her call for
community efforts has not been answered to date. As our system
allows integration of parameterizable image services, we support
this proposition and provide an indirect solution to this: The more
services are integrated on such a platform, the more data sets, results

and experimental designs will be available out of the box for fellow
scientists, who can build on those for replication and/or extension.

According to Isenberg et al., the majority of visualization evalua-
tions were Qualitative Result Inspections (QRI). Authors publishing
a new rendering method or visual encoding either compared the
new method against an older one, or they argued for the superiority
if no competitor approach was presented. For many of such eval-
uations, it is clear that the respective authors did not validate the
approach empirically, and therefore the results of such work can only
be described as anecdotal evidence. But theoretically, both types of
QRI can be easily converted to User Performance (UP) evaluations,
given enough time and resources, or a system that supports such
evaluations [20].

Borgo et al. find that many papers that did crowdsourced evalua-
tions failed to provide sufficient details about the study, making re-
production or validation of the study difficult [5]. This also holds for
controlled lab experiments [17]. Access to the raw and anonymized
experiment data allows for a more detailed comparison of where
results may diverge, as well as validation of analysis techniques [5].

2.2 Evaluation and Survey Systems

Many web applications are available for designing surveys and ques-
tionnaires. To name a few, there are surveymonkey [36], google
forms [13], typeform [38], surveygizmo [34], qualtrics [28], sur-
veyjs [35] and limesurvey [21]. Most of these (all but [13]) support
branching logic, which is essential for conducting between-subject
studies. By using branching logic it is possible for example to dis-
tribute participants into groups depending on their answers before
they conduct the actual tasks. To our knowledge, this has never been
used in any study within the scope of information visualization and
thus induces more complexity to the design process than necessary
for between-subject experiments. Most of the products are commer-
cial or have reduced functionality for non-paying users, e.g. limiting
participants [11, 34, 36], allowing only few questions [38], or re-
stricting the designer to work with simple question types [28, 36].
In general, these products do not treat visualizations as first-class
citizens and provide no means to integrate external services.

More science-oriented applications for generic experiment de-
sign are WeXtor [29], EvalBench [2], TouchStone [22] and tatool
[40]. However, with the exception of WeXtor and tatool, these do
not support running the experiment in the web natively [29, 40].
Other science-related experiment designers are supporting just a
single type of task [14, 32], or are highly specialized to fulfill the
requirements of a scientific domain [23]. Many of the generic ex-
periment applications do not provide a user interface for creating an
experiment and/or require a reasonable knowledge of the respective
programming languages, APIs, or configuration file schemata [23,
24, 40], which is necessary for efficient study creation. STEIN is an
interesting approach to evaluate the user experience and usability
of full systems [4]. However, it is targeted to record interaction,
and thus not capable to validate variants of a system, e.g. in a
between-subject comparison.

Heer and Bostock reported on a replication study comparing lab
evaluations and crowdsourcing evaluations [15]. In their opinion the
advantages of crowdsourcing (sample size, less biased population,
cost) may compensate the lack of control in the remote evaluation
setting. The dynamic generation of tasks was one of the features
they missed in their study, which we consider one of the core assets
of our approach. Ahmed, Zheng, and Mueller presented one of
the first approaches that used the computer to sweep the parameter
space in order to generate tasks [1] for a serious game that has
been developed to evaluate color blending perception. Close to
our work is the publication by Englund, Kottravel, and Ropinski,
who described their evaluation system for scientific visualization [9].
They support automated stimulus generation by providing linear
parameter sweeping [9]. Their approach is tightly coupled to the
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Figure 2: The prototypical work flow for experimenters. Registering image services is optional, designing experiments may be based on a previous
study or designed from scratch. Generating stimuli is an automated process tied to each individual participant based on the experiment design.
While conducting the experiment, progress can be monitored and (intermediate) results can be downloaded to prepare analysis.

scientific visualization framework InViWo [33]. In contrast, our
system a employs loose coupling between visualization and test
environment.

3 SYSTEM OVERVIEW

Experimenters who want to evaluate a visualization technique, fol-
low the work flow as depicted in Figure 2. They register a new image
service in the Image Service Editor (Section 3.1), alongside the
full parameter space it can handle. Then they use the Experiment
Manager (Section 3.2) create (or clone) an experiment, which is
then edited with the Experiment Designer (Section 3.3). Chapters
and tasks are chosen, and where applicable, parameter space con-
straints (Section 3.3.3) are added. Afterwards, the experimenter uses
the Evaluator (Section 3.4) to pilot the experiment, validate the
correctness of recorded information, and eventually publishes it to
conduct a study.

3.1 Image Service Editor
By choosing the approach of loose coupling between the actual stim-
ulus generation and the evaluation system, we enable researchers to
not only evaluate their own techniques, but to facilitate the compari-
son across different image services. Thus, we avoid implementing
multiple stimulus generators by facilitating the re-use of existing
ones.

3.1.1 Parameter Types
Currently, we distinguish between enumerable and continuous pa-
rameter types. The service definition covers the full parameter space,
which can be restricted and constraint later on in the task definition.
In practice, the Enumerable Parameter Type is more versatile,
as it can represent categorical, ordinal, textual and numerical val-
ues. For example, a image service that generates a visualization
of a node-link diagram using force-based layout may expose a pa-
rameter to modify the edge force calculation procedure using the
identity function, the logarithmus naturalis, and the square root.
Such a parameter might be registered using edgeForceMod := [id,
ln, sqrt]. However, the external image service is required to be
able to interpret these values correctly. Common use cases for
this are discrete parameters like data transformation (e.g dataset
:= [iris, cars, mnist]), visual mappings (e.g. colormap :=
[category10, divergingRedBlue, rainbowRbg]) and view trans-
formations (e.g. colormap := [category10, divergingRedBlue,
rainbowRbg]). More examples are listed in the paragraphs on cur-
rently implemented services in Section 3.1.2.

For Continuous Parameter Types, we support natural num-
bers and real numbers. Both are defined by minimum (in-
clusive), maximum (inclusive), and discretization value, which

defines the total number of equidistant stops between mini-
mum and maximum. For example, a real-value range of min
:= 0.0, max := 20.0, n := 9 results in a sampling space of
{0.00,2.22, . . . ,17.78,20.00}, while for natural numbers, the val-
ues round down to {0,2, . . . ,17,20}.

To clarify, this defines the schema definition language for the
parameters as it is used by the service editor. The actual param-
eters to be supported by an individual image service, depends on
its implementation. Once defined, services may be used in the Ex-
periment Designer to populate task definitions. Besides narrowing
down the parameter space in the task definition it is possible to add
constraints across image services. Both helps to reduce the degrees
of freedom when it comes to sampling actual tasks. More details
about configuring tasks can be found in Section 3.3.

3.1.2 Existing Image Services

In the following we show how actual service definitions may look
like from a parameter definition perspective. These are based on
examples from the later described replication study, already available
image services are the following.

The static image service returns an image from a database based
on the given name. We regularly use this service to introduce par-
ticipants to a certain task type. Instead of actual stimuli, we for
example use cat images, e.g we define id := [cat1, cat2, cat3
... cat12], after having registered 12 images of cats in the service
interface itself.

The number generator service generates an image of a given
number and color. This service has an integer parameter which
reflects the number (number := { min: 0, max: 9, n: 10 })
and a enumerable parameter which corresponds to the color to be
used (color := [red, green, blue, yellow]). This is a simple
but helpful service for testing and piloting pre-designs, for example
when a experiment is being set up before the actual target image
service is ready for production use.

The scatter plot service is used in the replication of the Tory,
Swindells, and Dreezer study [37] . The service supports three main
render modes (dot-plot, contour-plot and 3D height fields) and a
number of parameters from which some are exclusive to specific
render modes. As our prototype system does not support exclusivity
for parameters, we registered this service once for each of the three
render modes. To illustrate the flexibility of the parameter types, and
to show that they satisfy practically relevant use cases, we show the
definition of each of those three services.

The dot-plot mode scatter plot service has the following
configuration:
mode := [basic]
file := ["chainlink-100", "chainlink-500", "chainlink-



Table 1: Features in available products that are relevant to Information Visualization

Feature This solution SM1 GF2 TF3 LS4 SG5 QX6 SJ7

likert-scale questions yes yes yes yes yes yes yes yes
matrix values yes yes yes yes yes yes yes yes
multiple-choice yes yes yes yes yes yes yes yes
choose-one questions yes yes yes yes yes yes yes yes
dropdown selector yes yes yes yes yes yes yes
free text yes yes yes yes yes yes yes yes

grouping task yes yes
ranking/sorting task yes paid yes yes no
text A/B test paid no yes no

chapters yes yes yes no yes yes yes yes
generate tasks from parameterized definition yes no no no no no no no
branching logic / conditions simplified yes no yes yes yes yes no
randomization of questions yes yes yes no
size limitations no # responses # questions # responses
block randomisation yes paid paid
1 survey monkey: https://surveymonkey.com
2 google forms: https://docs.google.com/forms
3 typeform: https://typeform.com
4 lime survey: https://limesurvey.org
5 survey gizmo: https://surveygizmo.com
6 qualtrics: https://www.qualtrics.com/
7 surveyjs: https://surveyjs.io

1000", "chainlink-5000", "chainlink-10000", ...]
backgroundColor := [#000000,#ffffff,#b4b3c9]
imageSize := { min: 128, max:2048, n: 1920}
kernelBandwidth := { min: 0.0, max: 100.0, n:
100000}
numColorSteps := { min: 2, max: 20, n: 18}
color := [#ff0000, #00ff00, #0000ff].

The contour-plot mode variant scatter plot service extends the
dot-plot mode with one additional parameter, drawPoints, which
had to registered alongside all parameters of the dot-plot mode
variant. Additionally, the mode parameters was fixed to contour:
mode := [contour]
drawPoints := [true, false].

And finally, the 3D height field scatter plot service extends the
dot-plot with the following parameters:
mode := [parameters3D]
ambientLighting := { min: 0.01, max: 1.0, n: 100 }
cameraInclination: { min: 10, max: 80, n: 10 }
cameraAzimut := { min: 0, max: 345, n: 23 }
cameraDistance := { min: 0.1, max: 10.0, n: 100 }
cameraFov := [30,60,90,120]
heightFieldScaling := { min: 0.01, max: 20.0, n: 200
}
heightFieldSmoothingIterations := [0, 1, 2, 4, 8, 16,
32, 50, 64, 128].
Please note that heightFieldSmoothingIterations and some
other parameters were defined as Enumerable Parameter Types,
as this offers the freedom to constrain it to non-linear sampling.
Although the services were registered as described, for the actual
study, we fixed most of them to constant values, otherwise they
would possibly introduce confounding factors.

3.2 Experiment Manager

The experimenter can create a new experiment from scratch, but
also clone an existing experiment and adapt it accordingly. This
is especially useful, when experiments are carried out in different
stages of product development. As Kim, Yi, and Elmqvist already
emphasized, piloting is important, and as many pilots as possible

should be carried out [18]. Cloning experiments help exploring
even ad-hoc variations of a visualization design in a convenient way,
helping them to build suites of experiments. The decision to add this
feature was born out of the motivation to replace “gut feeling” by as
many experiments as needed.

We agree with Donoho that the computer science community
should incentivize reproducible research by marking publications
which provide data, measurements and code freely [8]. To foster
and ease publication of raw evaluation results, we therefore added
the possibility to add links to external services and web sites. For
example, the study results may be published on figshare [10] to
publish results citeably, i.e. with an attached Digital Object Identifier
(DOI), image services may refer to a homepage, e.g. github.com [7],
an online version control system commonly used for source code
hosting, for sharing details about an image service.

3.3 Experiment Designer
The Experiment Designer is the core of the application. Experi-
menters can configure and adapt an experiment according to their
requirements. The main structural elements of an experiment are
called Chapters. Each chapter represents a set of task definitions.

For each task, each chapter and the experiment itself, information
such as title, description etc. can be defined. As randomization
is a key requirement for many experiments, we include options to
randomize within tasks, chapters and experiments.

Chapters Each chapter has a hypothesis, which helps the exper-
imenter to focus on the specific hypothesis that should be tested. To
test this hypothesis, the experimenter designs a “mini-experiment”
within the larger context. As with any good experiment, participants
should be introduced to the task ahead, as well as answer some
example tasks to learn how to approach the actual tests. Chapters
can contain many different tasks in any order. Also, between-group
and within-group studies are defined on a per chapter basis. In all
the survey and evaluation applications we examined prior this work,
we realized that creating between-subject studies is mostly done by
adding branching or show/hide logic to the sequence of tasks. This
might be a good choice for classic surveys where e.g. the personal
income should be requested only if the participant is employed,

https://surveymonkey.com
https://docs.google.com/forms
https://typeform.com
https://limesurvey.org
https://surveygizmo.com
https://www.qualtrics.com/
https://surveyjs.io
https://figshare.com
https://github.com
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Figure 3: In the form (3a), a new image service is registered with name, service url and a single parameter ‘color’, but additional parameters can
be added dynamically. Managing experiments, including cloning and downloading the results of published experiment can be done in (3b). In
between-group chapters, tasks are shown next to each other to ease comparison between configurations (3c). Participants see a completely
different user interface, in this case, they are asked if they remember the dynamically generated visual stimulus in form of a 3D height field (3d).

but it adds more complexity than needed. In most between-subject
visualization studies different visualization types are presented to
the groups. In such a case, it is easier for the researcher to see all
variants of a task in parallel (see Figure 3c). To support within-group
as well as between-group studies, the user has the option to spec-
ify the number of groups for a chapter. As soon as this number is
changed, all tasks within this chapter are adjusted accordingly. To
help configuring between-group tasks, all groups are displayed next
to each other (see Figure 3c).

Tasks The experimenter can add tasks within a chapter. We
distinguish between two types of tasks: those which contain image
services (image tasks) and those which do not (generic tasks). The
reason for this distinction is that: as image services provide a pa-
rameter space, this parameter space can be sampled dynamically to
generate multiple instances of a task from the same definition (see
also Section 3.4). Thus, the experimenter defines a task once for
possibly hundreds of possible tasks that have to be solved by each
participant.

3.3.1 Available Generic Task Types
Our main goal is to support experimenters in conducting evaluation
on visualization techniques. But experimenters are free to select
their target participants and therefore they can share the experiment
on twitter, hire mechanical turks from crowdsourcing platforms,
or even invite participants into their usability lab. As a result, in
order to familiarize participants with their tasks even under remote
working conditions, such a system requires general purpose tasks to
be available.

Currently, the list of generic task types (i.e. non visualization
related) listed below are sufficient to set up general purpose surveys:

Story Task The experimenter can define a so-called story in mark-
down, which is then displayed to the participant. It is suited
for instructions, introductions, and a basic building block for
any experiment (see fig. 4a). As with all tasks, time is tracked
for story tasks as well, so this might be used as an indicator if
a participant pays attention or not.

Pause Task As some experiments might take longer or short term
memory needs “wiping”, this task defines a break in the execu-
tion of an experiment.

Form Task The experimenter can add different form fields with a
suitable label and description. It supports basic form fields like
text field, number field, selection field, check-box field, date
field, and image field. Also, some templates are built-in: a

demographic information field group (gender, age, education,
etc.), a participants consent group field, and a System Usability
Scale (SUS) group [6]. Those templates were added to mini-
mize the efforts required when requesting basic information.
Last but not least, there is also a Likert-scale field where the
experimenter can define the scale and the questions, and the
participant will see a matrix with questions × scale. Basic
form fields, templates and Likert-scale fields can be mixed
freely, and the form will be appear in an concise form (shown
in Figure 4b).

If used in conjunction with links to web applications, these task
types can also be used to run usability or user experience studies on
full systems, although this then requires multiple screens or windows
open to conduct the study.

3.3.2 Available Image Task Types
However, to lower the efforts needed to evaluate visualization tech-
niques, task types that are designed for the use with visualization
techniques are necessary. Andrienko and Andrienko distinguish be-
tween elementary and synoptic tasks in visualization [3]. We enable
experimenters to add synoptic tasks, e.g., outlier detection, target
identification, and pattern/trend detection can be realized using an
task for area or a lasso selection. Qualitative comparison, estima-
tion and decision making can, to large extent, be recorded by using
image form tasks, when adding appropriate questions to the form.
Clustering can be realized with a grouping task.

The following list of currently implemented task types are ex-
plicitly designed to work on visualization techniques, e.g. the area
selection task (see also Figure 4).

Multiple Choice Task One of the most important question types
that can be used during an experiment is the comparison be-
tween different image services or different parameterizations
of an image service. This comparison is possible with this task.
The experimenter must define image services and their parame-
terization. During the execution of the experiment participants
receive a list of images from which they must then select one
image based on the given task.

Grouping Task We also added a Grouping Task which requires
the participant to sort a given set of elements into predefined
buckets. Again, the experimenter adds and parameterized
multiple image services to the task and configures them.

Image Form Task In order to support gaining insight into the an-
alytical reasoning process, the experimenter can add Image



Form Tasks. The participant is shown a image stimulus and
has to answer questions (depicted in Figure 4e).

Lasso Selection Task As an experimenter you want to test in many
applications if the participant is able to locate desired infor-
mation in the visualization. One way to test this is to let the
participant of an experiment mark a region in the visualiza-
tion, depending on the task. It serves as an example that more
complex interaction patterns can be integrated into our system
(see Figure 4f). By using such interactions in an evaluation,
more in-depth information can be acquired and therefore may
provide hints on the reasoning process of the participant.

Area Selection Task For many tasks, a free shape provides too
many degrees of freedom. If, for example, the participant is
asked to locate the area with maximum density, a free-shape
lasso selection makes the assessment very difficult. If the
whole image is covered by the lasso, is that task solved cor-
rectly or not? Therefore, we added the Area Selection Task,
which restricts the size of the selected rectangle. The extent of
that rectangle can be defined by the experimenter.

These tasks can be divided into two groups: tasks displaying
limited to one single image (Image Form Task, Lasso Selection Task,
and Area Selection Task) and those allowing more (Multiple Choice
Task and Grouping Task).

3.3.3 Controlling the Parameter Space per Task

Image tasks have in common, that they require (at least) one image
service to operate on. As introduced in Section 3.3, the parameter
space of an image service can be sampled dynamically to generate
multiple instances of a task from the same definition. To enable
fine-grained control over the visual stimulus generation, we added
the possibility to reduce parameter spaces per task, and to add con-
straints between image services in the same task. For the Multiple
Choice Task and the Grouping Task, which allow more than one
image service, additional constraints are available to allow more so-
phisticated dependencies between image service parameterizations.

Task-based Parameter Space Reduction Different hypothe-
ses require other image service parameters to be fixed, or reduced.
To enable this, we added the possibility to reduce the parameter
space for each image service on a per task basis. This reduced pa-
rameter space is then used in the sampling process that generates
sequences of tasks for participants. The contour-plot variant of the
scatter plot service has a binary parameter drawPoints := [true,
false]. In the original study, all visual stimuli were rendering with
points on the surface. Thus, to correctly replicate the original study
protocol, the drawPoints parameter had to be fixed to true in all
tasks.

Task-based Constraints on Image Services For Image
Tasks with multiple image services, the experimenter can also add
constraints. While parameter space reduction is important, it cannot
capture more complex requirements. Constraints allow to model
dependencies between image services and between different param-
eters of an image service. This can be useful if a visualization has
for example two color parameters (e.g. background color and font
color) and the experimenter wants to ensure that both differ. This is
also helpful or if a task contains two image services and the num-
ber parameter between both should differ. Currently, we support
a Unique Constraint and a Compare Constraint. Both work with
Enumerable and Continuous parameter types. While the Unique
Constraint ensures that the related parameters are equal or not, the
Compare Constraint ensures an order relation between parameters,
i.e. <, =, >.

3.4 Evaluator
While the Experiment Designer is used by researchers to specify
an experiment, the Evaluator is used by participants to take part in
a study. In other words, this provides the execution environment
for conducting studies. The Evaluator has two functions: First, for
each new participant of an experiment, it converts the experiment
definition into a linear sequence of concrete tasks. Second, it tracks
the participants progress through the experiment.

When new participants log into an published experiment, samples
are dynamically generated for them (see Section 3.4). All defined
chapters and tasks are parsed and mapped into tasks, adhering to
all constraints that are defined. Tasks that contain a image services
with parameterizations might result in multiple tasks, all other result
in a single task. To generate a single parametrization, a sampling
function can be applied for each parameter. In this approach, sim-
ple random sampling is used to draw from the defined parameter
space, which assumes a uniform distribution among all values in that
space. As a result, the participant proceeds through a linear series of
concrete tasks. The different task types were already introduced in
Section 3.3. In Figure 4, we give a visual overview of some the of
tasks as seen by participants.

The Evaluator tracks answers given by the subjects, as well as
the timing. Furthermore, it ensures that participants can proceed
as configured, i.e. optional answers can be skipped and mandatory
answers have to be recorded. The Evaluator also ensures that par-
ticipants cannot skip through an experiment by manipulating HTTP
requests as the back end keeps track of progress.

4 EXAMPLES

The first example evaluation is a suite of experiments that have been
run with an early version of the presented system, which proofed the
concept of loose coupling of image services.

The second example is a replication study and highlights some
benefits of our system. Our primary goal was to replicate Tory,
Swindells, and Dreezer as the experimental design can be replicated
quite easily [37]. However, the original study leaves open quite a
few questions, which we then investigated, once the original study
had been replicated.

4.1 Event Sequence Experiment I and II
Often, an experiment and its results are just a step towards some
greater goal. Therefore, it is important to put the experiment into
context. This is what has been done with the event sequence experi-
ments.

The first experiment was designed to find the best encoding for
sequences of events. Position, color and shape were compared in
a within-subject experiment. Per task, participants saw three event
sequence visualizations: a baseline sequence, a target sequence and
one distractor sequence. They had to decide whether the distractor
or the target sequence was more similar to the baseline. The im-
age service generated an image based on encoding (color, shape,
position), allowed edit operations (insert, delete, replace), length
of baseline sequence, edit distance to target and to distractor. The
image service took care that the resulting images comply with the
constraints. The results clearly indicated, that color is the most
appropriate choice [30].

Based on that finding, a second experiment has been designed
to study how the alignment of sequences supports or hinders par-
ticipants in comparing event sequences that are encoded by color.
A between-subject setup was chosen, i.e. one group had tasks that
were setup just like in the predecessor (no alignment), one group
had alignment via Needleham-Wunsch, and the third group had its
sequences aligned by the longest common subsequence. The study
had 50 participants with 180 measurements each. Quite a few sig-
nificant effects were found, which will be presented in a different
publication.



(a) Introductory texts and preparatory informa-
tion can be presented in a formatted way

(b) For experimenter convenience, several
form templates have been embedded, like this
demographics form, which was enhanced with
an additional question

(c) Participants click on an image to directly
make a choice. Here the participant selected
the cat with the tie

(d) To group a set of images into categories,
the user drags an image and drops it into the
appropriate category

(e) To gain more information about the rea-
soning process of participants, a form can be
combined with an image

(f) The Lasso Task lets participants select an
arbitrarily shaped region of the presented im-
age

Figure 4: Figure 4a and 4b showcase convenience tasks, Figure 4c and 4d provide a standard tasks for performance assessment tailored towards
visualizations as first-class citizens. Figure 4e enables experimenters to gain insight into the reasoning process and fig. 4f emphasizes our focus
on supporting visualization and analysis research.

4.2 Replication of an existing study

In “Comparing Dot and Landscape Spatializations for Visual Mem-
ory Differences”, Tory, Swindells, and Dreezer conducted an ex-
periment that compared three specialization designs for their ability
to support mental operations involving visual memory. There are
two reasons why we picked this study as the main example. First, it
is well suited for replication as sufficient detail to derive the exact
setup was presented. Merely the collection of stimuli has not been
published. Secondly, we were genuinely interested if the study is
the final answer to the question if 2D scatter plot really is best suited
in all cases.

The original study was designed as a within-group design, with
30 participants. There were two conditions: 3 different visualization
types and 2 data set sizes, i.e. 6 factors. Using 12 data sets, this
resulted in 72 static images that served as stimuli for the participants.
The experimenter took care that the images were easily distinguish-
able, i.e. the task itself was easy to solve. The order of stimuli was
randomized to avoid learning effects. Each participant ran 6 tasks,
one for each condition. The task was to learn 8 images (4 were
targets, 4 were distractors). Then, participants were shown the 4
targets and 4 other distractors which they had to correctly label as
“seen” or “new”.

Prior to setting up the actual experiment, we derived different
2D distributions. We followed the advice of Henry and Fekete to
modify real datasets or to generate datasets [16] and created some
artificial and used some modified real world data sets (from the

online repository OpenML [39]). These data sets were then saved
in different sizes, where the smaller one always consists of a subset
of the larger one. Applying the tagging scheme of Schulz et al.,
the data sets were generated using a hybrid approach based on
imitation [31]. Once transferred to an image service which has been
created to generate dot-maps, 2D landscapes and 3D landscapes
from an input data set, we have set up the stimulus-providing side of
the experiment.

We then set up the first version of the experiment using the Exper-
iment Designer and ran a first pilot to (a) test the experimental setup
and (b) discussed based on preflight pilots which data sets were
appropriate and which were not. This sparked a discussion about the
difficulty of tasks, and we concluded that it is worthwhile to investi-
gate how much effect the data set size has. The altered experiment
was piloted again, this time with 3 encodings and 4 different data set
sizes. After discussing the experience again, we chose to split the
groups, so that we diverged from the original within-group design
and chose a between-group design. Each group has just one type of
encoding, but all 4 data set sizes. Again, a small pilot was run and
finally, the experiment was published and participants were invited.

Since we argue that it is easy to run suites of experiments, we
report estimates for the creation of each experiment/pilot. Prior to
creating the first pilot, the first version of the scatterplot renderer
was implemented and registered (cf. Section 3.1.2), and data was
acquired and prepared. Setting up the first pilot took approximately
two days, including decisions on which service parameters to fix
across all stimuli. During that period, the implementation of the

https://openml.org


scatterplot renderer was continued, fully independent of the study
design process. The second pilot was prepared in half a day (by
cloning and adapting), while the third and last pilot took a full day,
as we switched from within- to between-groups.

Our results with 58 participants can confirm the significant effect
of the number of points on the accuracy. Due to our decision to split
groups between image types, we have found no significant differ-
ences between image types yet. Statistical analysis was done by
applying Repeated-Measures ANOVA. Furthermore, we measured
overall accuracy of 86.7% (Tory: 87.1%) for dots, 83.4% (85.3%)
for 3D landscapes, and 83.9% (79.1%) for 2D landscapes, indicating,
that the difference across visualization techniques is not as large
as indicated by Tory. However, we found that the time to answer
probably correlates on the type of visualization (p < 0.1). Besides
that, we could measure a ‘fatigue’ effect over the different chapters.
Mean accuracy dropped for all image types over time, but the dots
visualization was affected most. The full study is attached as supple-
mental material, which contains the experiment definition, all data
sets and generated stimuli, as well as the anonymized results and the
jupyter notebook that was used for the analysis.

5 LIMITATIONS AND FUTURE WORK

The current version of the prototype does not integrate authenti-
cation and authorization, and is restricted to evaluation of static
images. However, the support for web-based interactive visualiza-
tions is already planned. By adding a new kind of image service
that produces embeddable web sites instead of images, the system
can be extended without requiring a change in the process for the
experimenter. Like static image services, interactive image ser-
vices provide controllable parameters that will be configured in the
Designer and instantiated in the Evaluator. To gather all relevant
interaction information on the platform, we intend to incorporate
participant activity tracing and collection approach described by
Angelini et al. in their STEIN system [4].

Currently, support for substantially different image services in
the same task is limited. This is due to the fact that each service
has a different parameter space. To mitigate this, we will research, if
a mapping functions between image services can be defined in such
a way that constraints can be used too, or if the introduction of an
domain specific language including variables is necessary.

Borgo et al. provided a preparatory checklist for crowdsourced
experiments, which apply for most kinds of experiments [5]. We
used their template to report the study results. Implementing this
checklist – as far as possible – as automated checks during setup,
is a viable next step towards the establishing of a common format
for evaluation-related supplementary materials.

6 CONCLUSION

The pain points in creation of quantitative experiments that can be
reduced with the help of our system are piloting, sampling, execution
and data gathering. We chose a service-oriented approach which
enables web visualization designers to plug new image generation
services into the platform and conduct experiments. A recurring
theme of the web application is re-use. Experimenters are able to
re-use image services, to replicate existing studies, to re-run stud-
ies with variations. Many common task types, ranging from basic
questionnaire tasks over elementary image-centric tasks to synoptic
visualization-centered tasks are supported. Most implemented task
types treat visualizations as a first class citizen. The separation of
image service and execution environment supports in experimenters
to designing and running multiple experiments on the same visual-
ization service in parallel, replicate experiments and even compare
against visualization services. We demonstrated the viability of our
approach with two examples, one suite of successive experiments
and one extended replication study.
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