Dense Feature Correspondence for Video-Based Endoscope
Three-Dimensional Motion Tracking

Ying Wan*, Qiang Wu, and Xiangjian He

Abstract— This paper presents an improved video-based
endoscope tracking approach on the basis of dense feature
correspondence. Currently video-based methods often fail to
track the endoscope motion due to low-quality endoscopic
video images. To address such failure, we use image texture
information to boost the tracking performance. A local image
descriptor — DAISY is introduced to efficiently detect dense
texture or feature information from endoscopic images. After
these dense feature correspondence, we compute relative mo-
tion parameters between the previous and current endoscopic
images in terms of epipolar geometric analysis. By initializing
with the relative motion information, we perform 2-D/3-D or
video-volume registration and determine the current endoscope
pose information with six degrees of freedom (6DoF) position
and orientation parameters. We evaluate our method on clinical
datasets. Experimental results demonstrate that our proposed
method outperforms state-of-the-art approaches. The tracking
error was significantly reduced from 7.77 mm to 4.78 mm.

I. INTRODUCTION

Navigated endoscopy (NE) seeks to assist physicians to
successfully perform endoscopic interventions (e.g., needle
biopsies). Compared to conventional endoscopy giving only
2-D endoscopic video information, NE provides an aug-
mented reality environment on the basis of pre- and intra-
operative images to find where an endoscope is currently ob-
serving inside body cavities. Endoscope 3-D motion tracking
plays a key role in endoscope navigation. It aims to register
live endoscopic video sequences to pre-operative volume
data, e.g., computed tomography (CT) slices, to locate the
endoscope tip in a pre-operative volume coordinate system.
Hence, physicians can exactly obtain endoscope position
and orientation and perform tumor resection or biopsies
successfully. Current tracking approaches consist of two
main groups of vision- and sensor-based methods [1], [2].

Video-based endoscope tracking, which is a very active
topic in the field of computer assisted interventions, is also
the topic of this paper. It usually defines a similarity function
between endoscopic video sequences and virtual rendering
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images generated from pre-operative volume data and per-
forms video-volume registration to maximize the similarity
between them [1], [3], [4]. Without using video image texture
information, sole video-volume registration approaches have
been discussed [1], [3], [4]. To enhance sole registration
methods, scale-invariant feature transform (SIFT) has been
introduced [2]. Although current video-based approaches
work well, more accurate and robust tracking methods are
still expected to correctly navigate the endoscope.

This work is motivated by an effective image local de-
scriptor — DAISY which not only computes image features
densely, but also was demonstrated to be more robust than
SIFT [5]. We use DAISY to detect image dense features.
Based on dense features, inter-frame motion information can
be computed by camera epipolar geometry. Using inter-frame
motion information, we perform video-volume registration to
determine continuous endoscope poses. The main contribute
of this work not only proposes an improved video-based
tracking method but also extend the application of DAISY
algorithm to the field of computer assisted interventions.

II. APPROACHES

Our tracking approach includes three main stages: (1)
DAISY feature detection, (2) epipolar geometric analysis,
and (3) video-volume registration, as described as follows.

A. DAISY Feature Detection

For each pixel (z,y) in an input image, N orientation
maps, M, ,,1 < ¢ < N, o indicates the direction of the
derivative, can be calculated by the gradient information. We
convolve each orientation map with Gaussian kernels ¥, of
different o (used to adjust the region size) and obtain con-
volved orientation map MY . To reduce the computational

time, we calculate M7 2 with respect to M7} and X, [5]:

M2 =%, «M]., o=,/05—o07. (1)

After convolution, all the orientation maps at pixel (z,y)
can be represented by vector V,(z,y) [5]:
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Vo(w,y) = [M{,, -, M5,]"

Finally, DAISY descriptor D(z,y) at pixel (x,y) can be



formulated as the concatenation of vector V,(z,y) [5]:

VI (z,y)
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3)
where p;(z,y, Lq)) is the pixel with distance L, from pixel
(x,y) along direction j to region ¢ whose radius depends on
the standard deviations of the Gaussian kernels.

B. Epipolar Geometric Analysis

After computing DAISY descriptor D(z, y) for each pixel
on k — 1 and k (previous and current) video images, we
match these descriptors to get matched pair (p§_ 1, pi,) 2],
point index a, and compute fundamental matrix F by:

(pi) " Fpi_, =0, )

which can be solved given enough corresponding points [6].

Combining F' with intrinsic endoscopic camera matrix Q,
essential matrix E can be determined by: E = QTFQ.
Finally, we obtain inter-frame motion matrix AT, including
translation unit vector Aty = (A#Z, At}, At?) and rotation
matrix ARy, between the previous and current video images
by sequentially solving the following two equations:

ETAt, =0, 5)
i . 0 -Af A 1T
ARGE" = [At], = | Af 0 —Af . (6)
—At] At 0

Note that essential matrix E is determined only up to an
arbitrary scale factor. We empirically determine such a factor.

C. Video-Volume Registration

After obtaining relative motion parameters AT}, we per-
form video-volume registration to determine current endo-
scope pose T, with 6DoF position and orientation at frame
k. We utilize a modified mean squared error similarity
measure (MoMSFE) to characterize the similarity between
endoscopic sequence I, and virtual rendering image Iy [1].

Let Iy (T) be a virtual rendering image that is generated
using rendering parameters T} = Tj_1ATj. We optimize
relative motion matrix AT}, to find the most similar virtual
rendering image Iy (Ty_1AT}) corresponding to video im-
age Ij. The process of video-volume registration involved
with AT, can be formulated as the following optimization:

AT; = arg max MoMSE (I, Iy (Tr_1ATy)). 7
k

The maximization process is implemented on the basis
of the Powell optimization method [7]. During such an
optimization process, its initialization of AT} plays an

Algorithm 1: DAISY-based endoscope motion tracking

Input: CT images and endoscopic video sequences;
Output: A series of motion estimation {T}};

O Initialize motion parameters T at frame k& = 1;
@ Detect and store DAISY features at frame k£ = 1;
for £ = 2 to K (K: Total video frames) do
© DAISY feature detection at frame & (Eqs.1~3);
Store DAISY feature at frame k;
Matching DAISY features at frames k — 1 and k;
® Epipolar geometric analysis (Eqs.4~0);
Obtain relative motion A’i‘k;
© Volume-video registration (Eq.7);
Generate virtual rendering image Iy (T;_1ATy);
Optimize AT}y and obtain optimal AT5;
® Determine current estimate: T, = AT;T)_1;

© Store T, and go to the next iteration k = k + 1;

end

return Motion estimation {T}5%_,;

TABLE I: Quantitative tracking errors of position and orien-
tation estimated by different approaches (unit: mm, degree)

[ Cases [[ Deguchietal. [1] | Luo etal [2] | our method ]
A 32.8 31.9 16.9 29.3 10.3 | 20.9
B 6.93 234 5.07 16.5 3.30 10.4
C 4.34 10.1 4.07 9.29 2.51 7.80
D 15.3 45.6 7.75 24.1 4.82 15.6
E 13.8 23.8 5.06 17.1 2.95 10.8

[Average || 146 | 270. | 777 | 193 | 478 | 13.1 |

important role, possibly increasing the tracking performance.
Setting AT}, as an identity matrix might be an easy way [1].
However, without using image texture information, the op-
timization process easily gets trapped in local minima, in
turn, resulting in the tracking failure. In this study, we use
relative motion matrix A’i‘k to initialize ATy. A’I‘k was
estimated using dense feature correspondence. Compared to
previous registration methods, we introduce DAISY features
since it is more dense than SIFT. These features are robust
to image motion blurring and illumination changes which
usually happen in endoscopic videos. Hence our method
can improve the performance of video-based endoscope 3-D
motion tracking. This is the major point of this work.

Our proposed method using DAISY features for endoscope
3-D motion tracking is summarized in Algorithm 1.
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Fig. 3: Compare estimated 6DoF position and orientation parameters in x—, y—, and z—directions to ground truth (red
line) on Case A. As we can see, green line that shows the position and orientation estimated by our propose method was
more overlapping on red line than cyan and blue lines indicated estimated results from other methods. This means that the
tracking performance of our proposed method outperforms the other two methods of Deguchi et al. [1] and Luo et al. [2].
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Fig. 4: Another example of visual comparison on Case E.

III. RESULTS

We evaluated our method on five cases of clinical datasets.
Each dataset includes a volume of CT images and its
corresponding endoscopic video sequences. We manually
generated ground truth for these datasets. We can compute
position and orientation errors, s, ¢ by: K = ||t — tg|, ¢ =
arccos((trace(RRE) —1)/2), where t and R are estimated
position and orientation, t and R are ground truth. We in-
vestigate three tracking approaches: (1) a sole video-volume

registration method [1], (2) a SIFT-driven framework [2], and
(3) our method, as discussed in Section II.

Figs. 1 and 2 displays an example of tracking errors
using different methods evaluated on Case A. Fig. 3 further
compares the estimated position and orientation to ground
truth. These figures prove that our method outperforms
others. Table I quantifies tracking errors of the three methods.
The position error was greatly reduced from 7.77 mm to 4.78
mm and orientation error was also improved from 19.3° to
13.1°. Moreover, we visually inspect the tracking results. We



100 ‘ : : ‘ ‘ ; ‘
ool —Deguchi et al. [1] i
~ 80| Luo et al. [2] i
= 70} Our method i
X A
5 50| ]
T 40f 3 ]
g 30f 1
5 sol possvy ,
10 / -
0 =7
0 50 100 150 200 250 300 350
Frame number
Fig. 1: Orientation error of Case A
80 : ‘ : .
70l Deguchi et al. [1] _
. —Luo etal. [2]
E 60+ Our method 7
= 50; ]
o
o 401
S 30
8 20/
10! /\
a

0 100 150 200 250 300 350
Frame number

Fig. 2: Position error of Case A

used all the estimated position and orientation parameters
to generate virtual rendering images. We manually visualize
whether endoscopic video images resemble to virtual render-
ing image. The more similar of these images, the more robust
performance of tracking methods. Fig 4 illustrates the visual
comparison of the tracking results of different methods. They
further prove that our method is more accurate and robust
than other two approaches.

IV. DISCUSSION

This work aims to improve the performance of video-
based endoscope motion tracking methods. Based on clinical
evaluation, our proposed method provides more accurate
and robust tracking than previous methods. We contribute
such an improvement to the introduction of dense feature
correspondence. Since SIFT only provides a number of key
points that might be insufficient, unstable, or easily disap-
peared in continuous video images, we introduced DAISY,
a dense computation of descriptors, which can tackle the
insufficiency of point features, since DAISY has the ability to

update unstable or disappeared points by new detected points.
Hence our method outperforms the SIFT-based approach [2].
Although our proposed method significantly improves the
tracking accuracy compared to previous approaches, it still
possibly fails to continuously track the endoscope motion.
Beyond image dense texture information that is very useful
for boosting endoscope motion tracking, a similarity function
also plays an important role in video-volume registration.
A robust similarity measure should be able to accurately
characterize the difference between endoscopic video and
virtual rendering images, even if low-quality video im-
ages, e.g., motion blurring, inter-reflection, or illumination
changes, appear frequently in endoscopic video sequences.
The mean squared error-based similarity measure that was
used in this work sometimes can not successfully distinguish
the difference under low-quality endoscopic video images.
Inaccurately computing the similarity easily collapses the
optimization trapped into local minima. One of our future
work is to explore a new similarity function, which not
only can adapt itself to image illumination changes, but
also can accurately characterize the difference of video and
virtual images for improving the performance of video-
volume registration. Additionally, we clarify that our method
currently can not track the endoscope motion in real time.

V. CONCLUSIONS

This paper proposed an improved video-based endoscope
3-D motion tracking on the basis of dense feature correspon-
dence using the DAISY descriptor algorithm. Since DAISY
features are more dense than SIFT, image texture information
can be more stably or sufficiently used in computing relative
motion parameters that can boost the tracking performance.
Compared to previous methods, the tracking position and
orientation errors was reduced from at least (7.77 mm, 19.3°)
to (4.78 mm, 13.1° ). The future work includes development
of a new similarity measure for video-volume registration
to improve video-based endoscope 3-D motion tracking,
reduction of processing time, and more clinical validation.
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