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Abstract— Gaussian process (GP) models are a flexible means
of performing non-parametric Bayesian regression. However,
the majority of existing work using GP models in healthcare
data is defined for univariate output time-series, denoted as
single-task GPs (STGP). Here, we investigate how GPs could
be used to model multiple correlated univariate physiological
time-series simultaneously. The resulting multi-task GP (MTGP)
framework can learn the correlation within multiple signals
even though they might be sampled at different frequencies
and have training sets available for different intervals. We
illustrate the basic properties of MTGPs using a synthetic case-
study with respiratory motion data. Finally, two real-world
biomedical problems are investigated from the field of patient
monitoring and motion compensation in radiotherapy. The
results are compared to STGPs and other standard methods
in the respective fields. In both cases, MTGPs learned the
correlation between physiological time-series efficiently, which
leads to improved modelling accuracy.

I. INTRODUCTION

The Gaussian process (GP) framework is a useful non-
parametric Bayesian regression tool for machine learning
problems [1]. Compared to other regression techniques, such
as support vector regression, GP models have the advantage
that prior knowledge of the functional behaviour (including
periodicity or smoothness) can easily be integrated.

GPs have been used for various regression tasks concern-
ing physiological data. In [2], GPs were used to design a
vital-sign “early warning system” and in [9] relevance vector
machines were used to compensate for respiratory motion
in robotic radiotherapy. Additionally, the hyperparameters
of a trained GP can be used to estimate physiological
parameters such as the respiratory rate [4]. However, GPs
are typically used to predict a single output time-series
(“task”) based on one or multiple inputs. Here, we explore
the use of multi-task GP (MTGP) models for modelling
multiple univariate physiological time-series. By modelling
multiple correlated tasks simultaneously, the aim is to learn
the correlation between and within the tasks, and thereby to
improve overall modelling accuracy compared to single task
GPs (STGP). In the field of geostatistics, this approach is
known as co-kriging [5]. In recent years, MTGPs received
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more interest within the machine learning community and
have been applied to multi-label text categorisation [6],
speed-up prediction for programming tasks [7], robot inverse
dynamics [8], and environmental sensor networks [10].

In this paper, we present a novel general framework to
model physiological data using MTGPs. We evaluate our
approach using synthetic data, and real scenarios with differ-
ent biomedical datasets. To stimulate further biomedical re-
search, we have implemented an open-source MTGP toolbox,
which is available on-line1. The toolbox is an extension to
the GPML toolbox [1], which is one of the most frequently-
used toolboxes for performing analysis with GPs.

II. METHODS

A. Single-Task Gaussian Process models

In this section, we provide a brief introduction to STGP
models; a more detailed description can be found in [1]. Let
xn = {xi | i = 1, ...,n} be our training data and yn = {yi | i =
1, ...,n} the training labels with xi,yi ∈R. The aim is to learn
a regression model y = f (x) + ε , where f (x) represents a
latent function and ε ∼N (0,σ2) a noise term. The function
f can be interpreted as being a probability distribution over
functions,

yn = f (xn)∼ G P
(

m(xn),k(xn,x′n)
)

(1)

where m(xn) is the mean function of the process and k(xn,x′n)
is a covariance function which describes the coupling be-
tween two values of xn. Given xn and yn, predictions can be
made for the unknown “test” data x∗ (Fig. 1(a)) by computing
the conditional distribution p(y∗|x∗,xn,yn) which will be a
Gaussian distribution,

p(y∗|x∗,xn,yn)∼N
(

y∗,var[y∗]
)

(2)

where the mean and variance are given by, assuming the
mean function m to be zero,

y∗ = k(xn,x∗)>k(xn,xn)
−1yn (3)

var[y∗] = k(x∗,x∗)− k(xn,x∗)>k(xn,xn)
−1k(xn,x∗) (4)

The covariance function encodes our prior knowledge
concerning the functional behaviour of the time series that we
wish to model. As shown in [1], there exists a large class of
covariance functions which could be used. Frequently-used
examples are the squared-exponential (SE), periodic (PER)
and quasi-periodic (QP) covariance functions:

kSE(r) = θ
2
S exp

{
− r2

2θ 2
L

}
, (5)
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Fig. 1. Box diagram of a single input single output GP (a) and a multi-task
GP (b)

kPER(r) = θ
2
S exp

{
− sin2[(2π/θP)r]

2

}
, (6)

kQP(r) = θ
2
S exp

{
− r2

2θ 2
L

}
× exp

{
− sin2[(2π/θP)r]

2

}
, (7)

where θS, θL and θP are hyperparameters modelling the y-
scaling, x-scaling (or time-scale if the data are time-series),
and period of the covariance functions, respectively, and
where r = ‖ x−x′ ‖ denotes the Euclidean distance between
two data. The unknown hyperparameters can be optimised
by minimising the negative log marginal likelihood NLML=
−log p(yn|xn). The NLML was optimized using a gradient
descent method implemented in the GPML toolbox [1].

B. Multi-task Gaussian Process models

For the MTGP model, we combine the analysis of m tasks
within a single GP model. Let x̃n = {xi

ni
|i = 1, ...,m} and

ỹn = {yi
ni
|i = 1, ...,m} be the vector of training data and

labels for the m tasks, where the ith task has ni data. We
hereafter assume that the common independent feature x
corresponds to time for all tasks. To specify that data xi

ni
and labels yi

ni
belong to to task i, a labels vector l̃ = {lini

|i =
1, ...,m} with lini

= i has to be added as additional input as
illustrated in Fig. 1(b).

To model the correlation between tasks as well as the
temporal behaviour of the tasks within a single GP, two
independent covariance functions can be assumed,

kMT GP(x,x′, l, l′) = kc(l, l′)× kt(x,x′) (8)

where kc and kt represent the correlation and temporal
covariance functions between {x, l} and {x′, l′}, respectively.
Note that kt depends only on (x,x′) and that kc depends only
on (l, l′). The complete covariance matrix for the training
data KMT GP is

KMT GP(x̃n, l̃n,θ c,θ t) = Kc
n(l̃n,θ

c)⊗Kt
n(x̃n,θ

t) (9)

where ⊗ is the Kronecker product, Kc
n has a size of m×

m, and where Kt
n and KMT GP−n have a size of ñ× ñ with

ñ = ∑
m
i=1 ni. Here, θ c and θ t are two vectors containing all

hyperparameters for Kc and Kt . This approach is also known
as the intrinsic correlation model [5].

The remaining challenge is to construct a valid positive
semidefinite correlation covariance function Kc. One solution
is to use the Cholesky decomposition and to parametrize the
elements of the lower triangular matrix [7],

Kc(l, l′) = LL>, L =


θ c

1 0 . . . 0
θ c

2 θ c
3 0

...
. . .

...
θ c

k−m+2 θ c
k−m+2 . . . θ c

k

 (10)

where k = ∑
m
i=1 i is the number of correlation hyperparam-

eters. Similar to the case with STGPs, the hyperparameters
can be optimised by maximising the marginal likelihood, and
predictions for test data {x∗, l∗} can be made by computing
the conditional probability p(y∗|x∗, l∗, x̃n, l̃n, ỹn).

This framework has several useful properties which we
emphasise:
• we may have task-specific training data ni (i.e., train-

ing data may be sampled at different frequencies for
different tasks);

• automatic learning of the correlation within tasks occurs
by maximising the marginal likelihood;

• we may have task-specific prediction labels y∗; and
• the framework assumes that the tasks have similar

temporal characteristics and hyperparameters θ t .

III. RESULTS AND DISCUSSION

In this section, we illustrate the potential of MTGPs on a
synthetic dataset and two real-world biomedical case studies.

A. Synthetic dataset

We investigate an example with m = 4 tasks. The dataset
comprises time-series from three optical markers (OM)
which are placed along the median line of one subject, at
the chest (OM1), at the lower end of the sternum (OM2),
and next to the navel (OM3) [9]. Additionally, a respiration
belt (RB) was placed around the torso next to OM2. All
signals were scaled to [0 1] and are shown in Fig. 2(a).
The subject breathed normally throughout the period of
data acquisition. The training data and sample frequency
of each task are listed in Tab. I. We note that RB has a
sampling frequency that is five times lower than that of
OM1, OM2, and OM3. In this example, the objective is
to predict yOM1 within a test range of xOM1

∗ = [20,70). We
assume that the temporal behaviour of each task can be
modelled by a quasi-periodic function, kt = kQP, (7). The
table also shows that Pearson’s correlation coefficient for
all tasks with respect to OM1 indicates a highly positive
or negative correlation. The correlation covariance matrix
Kc is initialised assuming independent tasks, by setting it
to be the identity matrix. The MTGP model has to learn
the correlation during training by optimising the marginal
likelihood. We investigate four evaluation scenarios (S1-4).
In the first scenario (S1), only the time-series from OM1
is considered. This case is equivalent to a STGP. In the
scenarios S2-4, the time-series for OM2, OM3 and RB are

TABLE I
TRAINING DATA ni AND SAMPLE FREQUENCY fs FOR OPTICAL MARKERS

(OM) 1-3 AND RESPIRATION BELT (RB), ALONG WITH PEARSON’S

CORRELATION COEFFICIENT rOM1 WITH RESPECT TO OM1

OM1 OM2 OM3 RB
ni [s] (0,20) (15,30) (25,40) (0,60)

fs [Hz] 2.6 2.6 2.6 0.52
rOM1 1 −0.96 −0.9 0.88
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Fig. 2. (a) Signals of three optical markers (OM 1-3) and one respiration
belt (RB); (b)-(e) Prediction position of yOM1

pred for scenario S1 to S4,
respectively

integrated successively into the MTGP. This means that
scenario four (S4) will consider all tasks.

Fig. 2(b)-(e) shows the prediction results for the different
scenarios including the root mean square error (RMSE) for
yOM1
∗ . It may be seen that the prediction accuracy of yOM1

∗
improves by taking multiple correlated tasks into account.
The RMSE decreases from 0.246 for S1 to 0.161 for S4.
We observe that the MTGP is able to learn the correlation
between OM1 and OM3 even though they do not have
training data occurring at a shared interval. The correlation
is learned via the common intervals of training data for
OM1-OM2 and OM2-OM3. Additionally, the correlation of
the RB task, which is the signal with the lowest sampling
frequency, can be learned accurately, and which leads to a
further decrease of the RMSE.

B. Vital-sign monitoring

In-hospital patients who are recovering from surgery typi-
cally have their vital signs (such as heart rate, and respiratory
rate) periodically observed by nursing staff in order to
monitor the patients’ physiological status. One of the limiting
factors of existing methods for patient monitoring is deemed
to be how they cope with those commonly encountered
periods of signal artefact and incomplete or noisy vital-sign
data [2]. We investigated the correlation between heart rate
and respiratory rate observations from a cohort of patients
recovering from cancer surgery in the Oxford University
Hospitals NHS Trust. We applied the standard univariate
STGP to each physiological time-series, which assumes in
dependency between both variables, and compared the results
with those obtained by using our MTGP approach (where the
same optimisation algorithm was used in both approaches).
Fig. 3 shows the results obtained for one example patient.

We can see in Fig. 3 that the MTGP provides a significant
improvement in the estimated values for both channels,
because the correlation between the two vital signs is taken
into account. Particularly, in periods of incomplete data
(black arrows in Fig. 3), the predictions are more accurate,

Fig. 3. Application of standard STGP to respiratory rate (a) and heart rate
(b). Application of MTGP to the same training data is shown in (c) and
(d). Heart rate data from days 5 and 6 were not used for training the GP in
both cases.

and can therefore be used to estimate the true value of the
data and the distribution over the estimated values.

C. Motion compensation in radiotherapy

In stereotactic body radiotherapy, a particularly chal-
lenging task is the precise radiation of moving tumours.
Movements are mainly caused by respiration and can be as
large as 5cm depending on the position of the tumour. In
recent years several technical systems have been developed,
such as multileaf collimators and the CyberKnife R© (Accu-
ray Inc., Sunnyvale, CA), which enable an active motion
compensation. In general, motion compensation is based
on a correlation model between external optical markers,
measured via tracking cameras, and internal fiducial points,
obtained from stereoscopic X-ray imaging [11]. To reduce
the additional radiation dose to the patient, due to the X-
ray imaging system, the internal fiducial position is only
measured at a few selected positions within the breathing
cycle.

Fig. 4(a) shows an example of the nonlinear correlation
between the external and internal markers. The typical
hysteresis is visible, due to the different trajectories for
inhalation and exhalation. Current clinical practice is to
describe the correlation using a dual polynomial model where
one second-order polynomial model describes inhalation
and another describes exhalation (“Dual-Poly”). This simple
model can only describe the correlation between a single
external and internal dimension. Ernst et al. [12] presented
a promising alternative approach based on support vector
regression (SVR), which uses multiple external dimensions,
their first derivatives, and a label to classify inhalation and
exhalation as features. However, both methods only make use
of external and internal data points which are known at the
same time instance during the training phase. The majority
of the external data are ignored.

MTGPs can efficiently overcome this problem. To demon-
strate this, we use data from a porcine study [12], which
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Fig. 4. (a) Nonlinear correlation between internal and external motion;
(b)-(d) Respectively, predicted internal fiducial position yint

pred for a squared-
exponential (SE), periodic (PER) and quasi-periodic (QP) covariance func-
tion in the MTGP model (nint = 15)

is available online2. The subject was manually ventilated.
Six external LEDs and four internal fiducial points were
constantly measured at fs = 14.81 Hz. The investigated in-
ternal signal fragment (150 data points) is shown in Fig.
4(b)-(d). We investigated the RMSE of the predicted internal
fiducial position yint depending on the number of internal
training points nint for Dual-Poly, the SVR approach of [12],
and the MTGP with different kt(x,x′), (5-7). We assumed
that all external LED time-series are known (next = 150).
For nint = {100,75,50}, the training data were randomly
selected. For nint = {20, ...,5}, the training data were selected
by hand to guarantee that a complete breathing cycle is
represented. As the number of internal training points nint
is equivalent to the number of X-ray images, a lower value
of nint is preferable. Note that the results of Dual-Poly and
the MTGP models rely only on the data of the third spatial
dimension of LED 1. In contrast, the SVR approach uses all
three spatial dimensions of LED 1. The MTGP models were
extended by a delay hyperparameter θ∆t , which transforms
xext to xext ′ = xext +θ∆t [10] and is learned automatically.

Investigating the performance of the individual MTGP
models reveals that the assumption of a quasi-periodic mo-
tion leads to the lowest overall RMSE across all values of
nint (Tab. II). In contrast, the RMSE of MTGP(PER) is very

2http://signals.rob.uni-luebeck.de

TABLE II
RMSE OF A DUAL POLYNOMIAL MODEL, SVR AND MTGP DEPENDING

ON THE NUMBER OF TRAINING POINTS nint (BEST RESULTS PER nint

HIGHLIGHTED BOLD)

nint Dual-Poly SVR MTGP MTGP MTGP
(SE) (PER) (QP)

100 0.226 0.172 0.231 1.907 0.154
75 0.233 0.18 0.198 1.885 0.179
50 0.227 0.186 0.318 1.669 0.223
20 0.988 0.207 0.484 1.874 0.307
15 0.542 0.219 0.263 1.993 0.222
10 0.542 0.208 0.393 1.793 0.317
5 - 0.393 1.09 2.245 0.983

high, indicating that the periodic covariance function from
eq. (6) is too inflexible for real motion data, as expected.
This can be seen in Fig. 4(b)-(d), where the prediction results
for all MTGP models for nint = 15 are shown. MTGP(PER)
cannot adapt to small changes within the breathing cycle,
shown in Fig.4(c), resulting in broader confidence intervals
on the prediction. MTGP(SE) can better adapt to these
changes, as shown in Fig.4(a). However, as only few internal
training labels are known, the predicted periodic motion is
a result of the learned correlation to the external signal.
MTGP(QP) assumes a quasi-periodic motion, leading to
an improved performance and small confidence intervals.
Overall, MTGP(QP) outperforms Dual-Poly and only has a
slightly higher RMSE compared to SVR for nint ≤ 50 and an
even a lower error for nint > 50. Further improvements can
be expected by considering multiple external signals.

IV. CONCLUSION

We have presented a novel, non-parametric method to
analyse multivariate physiological time-series based on their
correlation. MTGPs are a promising tool for analysing
datasets with missing or unevenly-sampled data. Further-
more, prior knowledge of the functional behaviour can be
easily integrated and feedback of the current model accuracy
can be evaluated using the predicted variance.
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