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Abstract

Peripheral arterial disease (PAD) is a chronic disease that affects millions of people worldwide. 

Ascertaining PAD status from clinical notes by manual chart review is labor intensive and time 

consuming. In this paper, we describe a natural language processing (NLP) algorithm for 

automated ascertainment of PAD status from clinical notes using predetermined criteria. We 

developed and evaluated our system against a gold standard that was created by medical experts 

based on manual chart review. Our system ascertained PAD status from clinical notes with high 

sensitivity (0.96), positive predictive value (0.92), negative predictive value (0.99) and specificity 

(0.98). NLP approaches can be used for rapid, efficient and automated ascertainment of PAD cases 

with implications for patient care and epidemiologic research.

I. INTRODUCTION

Healthcare systems across the US are implementing electronic health records (EHRs) in 

response to the Health Information Technology for Economic and Clinical Health Act [1–4] 

which emphasizes need for “meaningful use”, defined as use of EHRs to achieve 

improvements in patient care. EHRs are a repository of patient information including 

demographics, symptoms, physical signs, laboratory values, images, medications, diagnoses 

and outcomes [5, 6]. A potential secondary use of EHRs is to conduct epidemiologic 

research. In EHRs, some data such as laboratory results, medications and diagnoses have a 

structured format while clinicians also provide observations in unstructured format (free 

text) such as consultations, progress notes, discharge summaries and other narratives. The 

ability to efficiently extract and consolidate information from EHRs will facilitate automated 

identification of patients with cardiovascular diseases including peripheral arterial disease 

(PAD) [7, 8].

PAD affects millions of adults worldwide and is associated with increased risk for death, 

myocardial infarction and stroke [9]. Despite the morbidity associated with PAD and 

established guidelines for management, [9] PAD patients are often undertreated [10]. Lack 
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of physician and public awareness of PAD-associated risks for adverse cardiovascular 

outcomes likely contribute to this public health problem [10].

The lack of automated processes for identification of PAD patients from EHR is an obstacle 

to conducting large-scale epidemiologic studies. Previous studies have demonstrated the 

usefulness of a natural language processing (NLP) for phenotype extraction [11–14]. The 

unstructured data processed using NLP methods provide important detailed information that 

is unavailable in structured data. We developed and validated our NLP algorithm for 

ascertainment of PAD patients from clinical notes and thus automating the chart review 

process.

II. BACKGROUND

PAD diagnosis is based on the ankle-brachial index (ABI) obtained during lower extremity 

arterial evaluation in the non-invasive vascular laboratory [9]. Patients at Mayo Clinic with 

PAD or suspected of having PAD are usually referred for non-invasive evaluation in the 

vascular laboratory. This evaluation contains measurement of the ABI at rest and one minute 

post-exercise. The ABI is the ratio of blood pressure (BP) at the ankle to the BP in the arm. 

PAD is defined as an ABI ≤ 0.9 at rest or 1 min after exercise; or ABI ≥ 1.40 [15, 16]. 

However results of ABI testing may not be available and medical experts may need to 

manually review the entire medical record for identification of PAD patients. Such manual 

review process is labor intensive, time consuming and often impractical for large-scale 

epidemiological studies. NLP may overcome these shortcomings by processing clinical 

notes to extract PAD-related information. NLP has been successfully applied in diverse 

clinical applications such as information extraction from clinical text [17], medical status 

extraction [18, 19], sentiment analysis [20], text summarization [21], genome-wide 

association studies [22, 23] diagnosis code assignment [24, 25] and cohort identification 

[26]. We previously applied NLP to ascertain PAD status from radiology reports [27]. 

Radiology reports lack information provided by the clinician including history, physical 

examination, summaries of test results and plan of care. In the present study we address 

aforementioned shortcomings by developing an NLP system to ascertain PAD status from 

clinical notes.

III. METHODS

A. Study Setting and Population

This study took place at Mayo Clinic, Rochester Minnesota. All study subjects were part of 

the PAD case-control cohort from Olmsted County. However, we only included patients seen 

at Mayo Clinic, because we applied this algorithm to the Mayo EHR. This study was 

approved by the institutional review board for human subject research at Mayo Clinic. The 

dataset contains 27 definite cases (PAD) and 90 control cases (not PAD).

Lower extremity arterial evaluation is performed using standardized protocols in the 

noninvasive Vascular Laboratory. Systolic BP is measured in each arm and dorsalis pedis 

and posterior tibial arteries bilaterally using a hand-held 8.3-MHz Doppler probe. The 

higher of the 2 arm pressures and lower of the 2 ankle pressures is used to calculate the 
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ankle-brachial index (ABI) for each leg [9]. Data is interpreted and reported by a vascular 

medicine specialist. We define normal ABI as 1.0–1.3. We define PAD as an ABI ≤0.9 at 

rest or 1 min after exercise; or ABI ≥1.40.

Two independent abstractors who were unaware of PAD status of the patients’ ascertained 

PAD status from the EHR and abstracted terms related to lower extremities, which are 

mentioned in Table 1. Both abstractors completed an orientation session that was led by an 

expert cardiovascular specialist (AAO). Abstractors followed a manual that guided the 

abstraction process. The two independent abstractors were blinded to clinical diagnosis 

classified each patient as case (PAD) or control (not PAD) using criteria summarized in 

Table 1. The inter-annotator agreement between two abstractors was high (95%) and it was 

calculated using kappa score. In addition to PAD status, an index date of PAD ascertainment 

was determined for all subjects during manual review of EHRs. This index date was defined 

as the earliest indication of PAD symptoms found in EHR that met the predetermined 

criteria for PAD ascertainment.

B. Study Design

Automated NLP systems were validated by comprehensive manual medical record review.

Figure 1 shows the overall design of the study. All retrieved clinical notes for each subject 

were used to ascertain patients’ PAD status as an output.

C. PAD Status by NLP Algorithms

The authors retrieved clinical notes from the EHR of each patient that were created until the 

date of completion of manual chart abstraction. The NLP algorithm included a text-

processing component, which found concepts in text that match specified criteria, and a 

patient classification component, which defined the PAD status, based on the available 

evidence from clinical notes For text processing, we used our in-house program MedTagger 

[29], a NLP pipeline with a fast dictionary lookup, to process clinical text and annotate 

clinical concepts. MedTagger is built using the Apache Unstructured Information 

Management Architecture (UIMA) framework.

The main annotations used by MedTagger included sentence detection that parsed sentences, 

tokenization found word token boundaries, normalization generated one form for the various 

morphological variants of the word through the NLM’s Lexical Variant Generation tool 

(http://SPECIALIST.nlm.nih.gov), which made it possible to use normalized terms for 

dictionary lookup. Concept identification used PAD named entity detection according to 

PAD specific dictionary compiled by medical experts and expanded by synonyms through 

MedLex [30] to discover PAD related concepts based on dictionary lookup while assertion 

checked concept certainty (i.e. positive, negative and possible) and experiencer (i.e., 

associated with someone else or patient).

The whole assertion process can be explained from the following example:

His leg should continue to be monitored for signs of improvement to demarcate the 

level of ischemia at which point an amputation may be considered.
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Here both leg and ischemia are PAD related concepts and the certainty levels of both 

concepts are positive and experiencer is the patient.

Patient classification component used a set of rules to classify patient status. The NLP 

system used of information described in Table 2 and the following rule for PAD cases 

(definite):

One disease location keyword + one diagnostic keyword within two sentences anchored by a 

diagnosis

For non-PAD control the system used the following rules:

1. If not satisfied the PAD criteria listed above OR

2. If the PAD cases are associated with exclusion keywords

In case of PAD cases, the system also provided the index date (i.e., the earliest date that 

satisfies PAD conditions) along with the evidence in the form of +/− 2 sentences anchored 

by diagnosis keyword that lead the system to classify the patient status.

IV. RESULTS

Figure 2 shows the concept types and values of a de-identified sample clinical note in UIMA 

CAS Visual Debugger. The right window shows a clinical note snippet that is processed to 

populate annotations as they appear in the upper left window.

The lower left window shows concept types and their respective values. The highlighted 

concept on the right side window is the concept identified by NLP system while lower left 

window contains information about that concept which includes its category (either it is 

from disease location, diagnosis or excluding keywords), certainty (positive, negative and 

possible), status and experiencer.

The dataset processed by the NLP system consisted of 117 patients and 26,656 clinical 

notes. Our NLP system classified PAD cases from that data with high PPV (positive 

predictive value), sensitivity, NPV (negative predictive value) and specificity (Table 3).

Moreover, whenever the NLP system classifies PAD status it also provides the part of 

clinical note with the evidence is used by the system to classify the patient. This is illustrated 

in the following example where our NLP system identified a patient as a PAD case and 

provided the following information: index date when system found the first evidence of PAD 

along with clinical notes information with the evidence used to decide PAD status.

   2008****

   mcn_cn.txt

revascularization::femoral artery

Given his multiple medical comorbidities, his currently questionable cardiac function, and 

his functional debility overall our options are very limited. Furthermore, an ultrasound was 
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obtained in the ER which demonstrated occlusion of the superficial femoral artery. Further 

intervention and revascularization of this limb would carry the risk of compartment 

syndrome and myoneuropathic consequences which may be detrimental in his case. 

Furthermore, his DNR/DNI status limits our attempts at operative intervention. At this point, 

we would recommend admission to a Medicine Service for stabilization and hydration with 

IV fluids and further work up of his cardiac status.

ischemia::leg

His leg should continue to be monitored for signs of improvement to demarcate the level of 

ischemia at which point an amputation may be considered.

In this study, we also compared the temporal association between our NLP systems with 

manual chart review regarding diagnosis of PAD. During the preparation of gold standard 

data manual abstractors documented the index date when they first found evidence of PAD 

in clinical notes. The NLP system also generated an index date for each subject when it 

found the first evidence of PAD in clinical notes. We found that in 13 cases (54%) NLP 

system identified PAD cases before the manual index date while in 4 cases (17%) the 

manual index date and NLP index date were similar. In 7 cases (29%) NLP system index 

date was after the manual index date and in majority cases the difference was a few days as 

shown in Figure 3.

A cardiovascular expert (AAO) further abstracted the EHR of the 7 cases where NLP index 

dates were after the manual review index date. We then identified two main reasons for these 

discrepancies. First, our NLP system only used clinical notes while manual abstractors made 

use of all available information in the EHR including angiograms and radiology reports. 

Thus NLP was unable to find the information on same date as manual abstractors’ index date 

when the diagnostic information was not documented in the clinical notes, but documented 

as another type of document. Second, when abstractors found earliest possible indication of 

PAD, patient was classified as probable PAD and abstractors documented that date as index 

date. On later date after tests were performed (e.g. angiograms or radiology), the results of 

these tests were then incorporated in the subsequent clinical notes which confirmed presence 

of PAD. The NLP system classified as PAD only when there was evidence of definitive 

PAD.

V. DISCUSSION

The results in this paper demonstrate that our NLP system can accurately ascertain the PAD 

status of patients in a timely manner with high PPV and sensitivity by using information 

present in clinical notes from 27 cases and 90 controls. There was one false negative and two 

false positives. A false negative case was due to the following sentence in clinical notes:

Patient has what appear to be an acute arterial occlusion as well as a DVT in the 

right lower extremity.

The system identifies two PAD related concepts (arterial occlusion and lower extremity) but 

due to the word ‘appear’ it classify these concepts certainty as ‘Possible’ for PAD-related 
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concepts while in order to be consider as a PAD case concepts certainty should be ‘Positive’ 

for both PAD-related concepts.

False positive cases were due to the following two sentences:

An old woman with degenerative central lumbar spinal canal stenosis that may 

account for her current back and leg pain symptoms.

Left lower extremity pain likely secondary to l4 foraminal stenosis.

Here in both cases due to concept ‘stenosis’ NLP system identifies them as PAD cases, but 

feedback from medical experts stated that patients with spinal stenosis, spinal canal stenosis 
and foraminal stenosis should not be considered as PAD cases. Accordingly, we updated our 

NLP system and added the aforementioned words with in the list of exclusion keywords.

Strengths of this study include the use of predetermined criteria for automatic ascertainment 

of PAD status based on clinical notes compared to lengthy manual chart review. 

Consequently, this study objectively compared how these predetermined criteria were 

implemented by medical experts vs. automated system. Another strength is the evaluation of 

the temporal aspects of PAD diagnosis, which may be relevant to research related to PAD 

and other chronic diseases. Study limitations include that we only considered clinical notes 

and NLP system would not identify PAD-related information reported outside clinical visits 

such as angiogram or radiology reports. However, previously we have demonstrated that 

another NLP algorithm identified PAD-related information from radiology reports [27] with 

high PPV and sensitivity.

Manual data abstraction for large epidemiological studies is laborious, expensive and time 

consuming. In this paper, we described a NLP-based system to automatically ascertain PAD 

status from clinical notes in a timely and accurate manner. Such a tool will enhance 

capabilities for PAD research including epidemiologic studies with potential impact on 

public health. In future studies, we will apply and validate our NLP system to a larger PAD 

cohort from multiple institutions and EHRs settings.
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Figure 1. 
Study Design
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Figure 2. 
PAD annotations visualized through the UIMA CAS Visual Debugger
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Figure 3. 
Temporality of NLP system for PAD ascertainment
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Table 1

List of terms and diagnostic criteria for PAD by manual abstraction

List of terms used for manual abstraction

ABI 0: if performed and negative;
1: if performed and positive;
9: if not performed

Claudication/ weak
peripheral pulse/ulcer

0: if not reported in clinical
history, 1: if reported

PAD clinic note Is there a mention in the
clinical notes regarding history
of peripheral arterial disease
defined as "Arteriosclerosis
obliterans" (ASO) or other
definitions of ascertained
PAD? 0: No. 1: Yes.

Imaging Assess whether there are
previous ultrasounds (US),
computed tomography
angiography (CTA) or
magnetic resonance
angiography (MRA) studies.
0: present and normal. 1:
present and abnormal
(indicating stenosis >=50% or
> then MILD). Use 9 if they
are not available or not
performed at all.

Lower extremity
revascularization

procedure (surgical or
catheter-based)

0: if not performed, 1: if
performed

Lower extremity
amputation

0 = no history of amputation;
1A: ischemic major (below
knee or greater); 1B ischemic
minor (distal to below knee
e.g. toe or metatarsal); 1C
non-ischemic major or minor

Criteria for PAD by manual abstraction

PAD Abnormal ABI (<= 0.90 or >=
1.40), poorly compressible
arteries (PCA)/ non
compressible vessels (NCV),
positive angiogram result with
"severe stenosis" or
"occlusion", prior
revascularization of the lower
extremity, positive US, CTA
or MRA studies of the lower
extremity indicating stenosis.

Not PAD Normal ABI values or
negatives imaging results or
no mention of PAD in clinical
notes.
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Table 2

Key Words - NLP algorithm for ascertainment of PAD status

Confirmation Key Words - Disease Location

lower extremities/extremity; lower limbs/limb; Leg
/legs; Iliac/femoral/tibial/popliteal artery/arteries;
Distal/ infrarenal /abdominal aorta/aorto (bi)iliac/ aorto
(bi)iliac/aorto(bi)-iliac; aorto-(bi)femoral; foot, toe,
toes, shin; plantar, heel, ankle, interdigital;
below/above knee, Claudication/calf pain; Ischemic
ulcer/ulcers; ASO/Arteriosclerosis obliterans/ arterial
sclerosis obliterans/atherosclerotic disease; PAD/
Peripheral arterial disease/Peripheral vascular disease
/Peripheral arterial occlusive disease.

Confirmation Key Words - Diagnosis

Arterial occlusive disease/occlusion/occluded;
Stenosis; non compressible vessels (NCV), non-
compressible arteries (NCA), poorly compressible
vessels (PCV), stiff vessels/ arteries ischemia; positive
ABI/ankle brachial index/ vascular labs/ extremities
study /arterial studies; revascularization/ recanalization
/ bypass /
angioplasty/PTA/stenting/stent/graft/endarterectomy/
endarterectomies; thrombectomy/ thrombosis/
thromboembolectomy/ embolectomy/embolectomies.

Exclusion Key Words

Family history of, Upper extremities/Upper extremity;
Arm/arms, hand(s); Brachial artery, axillary artery,
radial artery, ulnar artery; carotid, innominate artery,
subclavian artery; mesenteric artery; celiac artery;
AAA, abdominal aortic aneurysm/abd aortic aneurysm;
renal arteries/artery; coronaries, coronary arteries/ artery
/cerebrovascular-disease /arteries/artery; Amputation;
traumatic/trauma; sarcoma/osteoma; pseudoclaudication
/pseudoclaudicatory pain. diabetic foot, hammer toe/
toes; vascular calcification; varicose veins
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Table 3

Results of NLP algorithm for ascertainment of PAD status

True Positives 24

False Positives 2

False Negatives 1

True Negatives 90

PPV 0.92

Sensitivity 0.96

NPV 0.99

Specificity 0.98
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