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Abstract— Brain-computer interfaces (BCI) have the 

potential to play a vital role in future healthcare technologies 

by providing an alternative way of communication and control. 

More specifically, steady-state visual evoked potential (SSVEP) 

based BCIs have the advantage of higher accuracy and higher 

information transfer rate (ITR). In order to fully exploit the 

capabilities of such devices, it is necessary to understand the 

features of SSVEP and design the system considering its 

biological characteristics. This paper introduces bio-inspired 

filter banks (BIFB) for a novel SSVEP frequency detection 

method. It is known that SSVEP response to a flickering visual 

stimulus is frequency selective and gets weaker as the 

frequency of the stimuli increases. In the proposed approach, 

the gain and bandwidth of the filters are designed and tuned 

based on these characteristics while also incorporating 

harmonic SSVEP responses. This method not only improves the 

accuracy but also increases the available number of commands 

by allowing the use of stimuli frequencies elicit weak SSVEP 

responses. The BIFB method achieved reliable performance 

when tested on datasets available online and compared with 

two well-known SSVEP frequency detection methods, power 

spectral density analysis (PSDA) and canonical correlation 

analysis (CCA). The results show the potential of bio-inspired 

design which will be extended to include further SSVEP 

characteristics (e.g. time-domain waveform) for future SSVEP 

based BCIs. 

 
Index Terms— Brain-computer interface (BCI); canonical 

correlation analysis (CCA); power spectral density analysis 

(PSDA); steady-state visual evoked potential (SSVEP). 

 

I. INTRODUCTION 

Brain-computer interface (BCI) research has gained 
increased attention in recent years due to its great potential to 
provide an alternate way of communication and control. The 
number of scientific papers increases exponentially (Fig. 1) 
and numerous companies directly develop BCIs or aim to 
integrate BCI-based technology into their product portfolio 
for future applications [1]. Basically, a BCI is a device that 
sends user messages or commands to the external world 
without passing through the brain’s normal output pathway of 
peripheral nerves and muscles [2]. The intended messages 
can be conveyed through a BCI speller device, or intended 
user commands can be used to control physical devices, such 
as a wheelchair or a mobile device (Fig. 2). Although primary 
target of BCI technology is people with severe 
neuromuscular disorders now, advanced BCI systems will 
serve healthy people by providing convenient speed and 
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accuracy in future. Hence, we could eventually be operating 
devices purely by thinking.  

Although there exist several methods to measure the brain 
activity, electroencephalography (EEG) is widely used in 
noninvasive BCI applications because of its high time 
resolution, small size, and inexpensive equipment [3]. 
Especially, high time resolution is crucial for BCIs to work as 
real-time systems. Many EEG activities could serve to drive 
BCIs but steady state evoked visual potential (SSVEP) based 
BCIs have the advantage of having higher accuracy and 
higher information transfer rate (ITR) compared to other BCI 
modalities [4].SSVEPs are stable voltage oscillations in the 
brain that are elicited by rapid repetitive visual stimulation 
[5]. A flickering or moving visual stimulus at a constant 
frequency elicits a response in the occipital region at the 
same frequency and its harmonics.  

This paper introduces bio-inspired filter banks (BIFB) for 
a novel SSVEP recognition method. It is known that SSVEP 
response to a flickering visual stimulus is frequency selective 
and gets weaker as the frequency of the stimuli increases 
[6,7]. In the proposed approach, the gain and bandwidth of 
the filters are designed and tuned based on these 
characteristics while also incorporating harmonic SSVEP 
responses. The BIFB method is tested on datasets available 
online and compared with two well-known SSVEP frequency 
detection methods, power spectral density analysis (PSDA) 
and canonical correlation analysis (CCA).  
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Fig. 1. Number of BCI publications per year (Data is obtained from 
PubMed on 05 December 2015). 
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II. METHODS AND MATERIALS 

A. SSVEP Datasets 

In order to test the proposed BIFB method, two datasets 
available online are used in this study. The first one (AVI [8]) 
consists of SSVEP experiments done with four test subjects 
where flickering images at seven different frequencies (6 Hz, 
6.5 Hz, 7 Hz, 7.5 Hz, 8.2 Hz, 9.3 Hz, and 10 Hz) are used for 
visual stimuli. Each trial in a session lasts for 30 seconds, and 
the trials are repeated at least three times for each frequency. 
The signal electrode is placed in the occipital channel Oz, 
using the standard 10-20 system for electrode placement. The 
second dataset (RIKEN-LABSP [9]) consists of SSVEP 
experiments conducted with four test subjects where 
checkerboard pattern reversal stimulation at three frequencies 
(8 Hz, 14 Hz, and 28 Hz) is used. Each trial in a session lasts 
for 15 seconds, and the trials are repeated five times for each 
frequency. The EEG signals are recorded over 128 channels 
using the ABC layout standard for electrode placement. An 
overview of these datasets is summarized in Table I and the 
reader is referred to individual articles for a more detailed 
description. 

B. SSVEP Frequency Detection using BIFB 

In this work, we propose the use of BIFBs for SSVEP 
frequency detection. It is known that SSVEP response to a 
flickering visual stimulus is frequency selective and gets 
weaker as the frequency of the stimuli increases. The gain 
and bandwidth of the filters are designed and tuned based on 
these SSVEP characteristics in the proposed approach. 
Moreover, harmonic frequency responses are also captured 
by the filter banks using appropriate weights. The design of 
the BIFB is as follows: assuming there are K target stimuli 
frequencies f1, f2, … ,fK in the BCI system, the triangular 
filters (Hk) are expressed by the following equation: 
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where BWk and gk represent the bandwidth and gain of the 
filter, respectively. Initially, higher bandwidth and gain are 
set to frequencies with low SSVEP response [7]. 
Subsequently, these parameters are optimized for individual 
users in order to counter frequency selective nature of 
SSVEP response. The shape of the triangular waveform in 
the filter banks is chosen to emphasize the center frequency 
without completely omitting the adjacent frequencies. Fig.3 
presents BIFB design for the first dataset and reveals 
frequency selective nature of the SSVEP response. The 
second filter bank in Fig. 4 designed for RIKEN-LABSP 
dataset deals with the weakening of SSVEP response as the 
frequency increases. 

Once the BIFB parameters are trained, the EEG signal 
from the occipital channel Oz, where the SSVEP response is 
powerful, is first band-pass filtered (5-35Hz) to reduce noise 
and normalized. The resulting signal is then analyzed using a 
time window of length 4s moving with 1s displacement. A 
Hamming window of the same length is applied before Fast 
Fourier Transform (FFT) operation to decrease large side 
lobes. Finally, the power spectrum is estimated by 
multiplying each signal’s FFT with the BIFB to obtain the 
class value (ck) for each target frequency and ultimately the 
frequency with maximum class value is determined as 
follows: 
 

𝑐𝑘(𝑡) =  ∑ |𝑌| ∗ 𝐻𝑘
𝑓

+∑ |𝑌| ∗ 𝐻2𝑘 ∗ 𝑤ℎ
𝑓

 

   𝑓𝑡 = 𝑚𝑎𝑥
               

 
𝑘

(𝑐𝑘) 

where |Y| represents power amplitudes of the EEG signal and 
wh denotes harmonic frequency weight. Harmonic weights 
provide to tune frequency selective and subject specific 
harmonic frequency response. The SSVEP frequency is 
labeled as detected when the same frequency (ft) occurs at 
least three times in the last four iterations. If the selection 
criteria is not satisfied during the given time period, it is 
evaluated as an unsuccessful detection. 

C. Comparison Methods 

In this study, two well-known SSVEP frequency 
detection methods, PSDA and CCA are implemented as 
baseline to compare with the proposed BIFB approach. The 
EEG signal from the occipital channel Oz is similarly 

Dataset 
# of 

Subjects 

# of 

Trials 

Record 

Length 

# of 

Channels 

# of Stimuli 

Frequencies 
Stimuli Frequencies 

AVI [8] 4 92 30s 1 7 
6 Hz, 6.5 Hz, 7 Hz, 7.5 Hz, 

8.2 Hz, 9.3 Hz, 10 Hz 

RIKEN 

LABSP [9] 
4 60 15s 128 3 8Hz, 14Hz, 28Hz 

 

 

TABLE I. SSVEP DATASETS TESTED IN THIS STUDY 

Fig. 2. Functional model of a SSVEP-BCI. 
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preprocessed for PSDA by applying a bandpass filter (5-
35Hz), normalizing and passing through a Hamming window 
of similar length. Then, FFT is performed using the 
predetermined window length which serves to improve the 
accuracy after a training session. Peak detection is applied to 
the windowed data in frequency domain. The detection is 
classified as successful if the fundamental or second 
harmonic stimuli frequency is detected as the peak frequency 
in the performance evaluation.  

The second comparison method, CCA is a multivariable 
statistical method which is first used in [10] for SSVEP 
frequency detection. In summary, if X is a multichannel EEG 
signal, Y is the “Fourier series” of a simulated stimulus 
signal, and w is linear combination coefficient CCA searches 
for the linear combination that maximizes correlation 
between 𝑈 =  𝑤𝑥

𝑇𝑋 and 𝑉 =  𝑤𝑦
𝑇𝑌 by optimizing the 

following equation: 
 

max
𝑤𝑥𝑤𝑦

ρ = 
𝐸[𝒘𝒙

𝑻𝑿𝒀𝑻𝒘𝒚]

√𝐸[𝒘𝒙
𝑻𝑿𝑿𝑻𝒘𝒙 ]𝐸[𝒘𝒚

𝑻𝒀𝒀𝑻𝒘𝒚 ]

 

 

Only the highest correlation of canonical variables U and 
V are used for the frequency detection and this step is 
repeated for each simulated stimulus signal’s Fourier series, 
Y. The stimuli frequency which provides the highest 
correlation among other stimuli frequencies is detected as the 
actual SSVEP frequency. Similar to PSDA and BIFB, the 
same EEG preprocessing steps are applied for CCA method 
as well. 

III. RESULTS 

The results are evaluated with the most commonly used 
performance metrics for BCI algorithms [3]: accuracy, which 
indicates correct detection rate, and ITR which can be 
expressed as follows: 

𝐼𝑇𝑅 =  𝑠 [log2(𝑁) + 𝑝 log2 𝑝 + (1 − 𝑝) log2 (
1 − 𝑝

𝑁 − 1
)] 

 

where N stands for equiprobable user commands,  s denotes 

commands performed per minute, and p represents the 

probability of correctly detected commands.  

The proposed BIFB method for SSVEP frequency 
detection is tested on eight subjects and 151 trials in total 
using two datasets. The results which compare BIFB with the 
two baseline methods, PSDA and CCA, are listed in Table II 
& Table III. It should be pointed out that ITR changes 
logarithmically with the number of available commands and 
since numbers of commands between two datasets are 
different; ITRs need to be compared separately for each 
dataset.  

The classical PSDA method needs longer time windows 
compared to other two methods to improve the accuracy 
which then leads to lower ITR. CCA, on the other hand, is 
successful on shorter time windows providing high ITR but 
lower accuracy. The accuracy can subsequently be improved 
by using longer time windows with lower ITR trade-off. 
Moreover, the performance of CCA in RIKEN LABSP 
dataset is poor since it is insufficient and incompatible to 
detect 28 Hz.  

Both tables show that the BIFB method provides both 
reliable accuracy and sufficient ITR performance which is 
comparable with CCA due to its bio-inspired design. It is true 
that BIFB requires a longer training, or calibration process 
compared to CCA. However, the preliminary results show 
that even without any training, using a generic, non-user 
specific filter bank design, the accuracy values of BIFB are 
still comparable with CCA.  As future work, this observation 
will be explored in detail to create a trade-off metric between 
training/accuracy/ITR trio. 

IV. CONCLUSION 

A novel SSVEP detection method inspired by its 
biological characteristics is introduced in this paper. This 
method was shown to not only improve the accuracy but also 
increase the available number of commands by allowing the 
use of stimuli frequencies elicits weak SSVEP responses. The 
BIFB method achieved reliable performance metrics when 
tested on datasets available online and compared with two 
well-known SSVEP frequency detection methods as baseline 
methods: PSDA and CCA. The results show the potential of 
bio-inspired design which will be extended to include further 
SSVEP characteristics (e.g. time-domain waveform) and 
trade-off parameters to link accuracy and ITR with the level 
of training. 

Fig. 3: Sample BIFB design for AVI Dataset. Fig. 4: Sample BIFB design for RIKEN-LABSP Dataset. 
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AVI SSVEP Dataset 

# of Commands= 7  [6Hz, 6.5Hz, 7Hz, 7.5Hz, 8.2Hz, 9.3Hz, 10Hz], MDT= Mean Detection Time 

Subject 
# of 

Trials 

PSDA CCA BIFB 

MDT 

(sec) 

Acc.  

(%) 

ITR  

(bits/min) 

MDT 

(sec) 

Acc.  

(%) 

ITR  

(bits/min) 

MDT 

(sec) 

Acc.  

(%) 

ITR  

(bits/min) 

Subject #1 24 10 83.3 10.4 5.5 87.5 21.2 7.4 91.7 17.7 

Subject #2 26 12 80.8 8 3.5 80.8 27.5 8.2 100 20.7 

Subject #3 21 10 85.7 11.1 4 90.5 31.6 7.4 100 22.7 

Subject #4 21 8 85.7 13.8 7 100 24.1 6.3 100 26.6 

 

TABLE II. PERFORMANCE COMPARISON USING AVI SSVEP DATASET 

RIKEN LABSP SSVEP Dataset  

# of Commands= 3  [8Hz, 14Hz, 28Hz], MDT= Mean Detection Time 

Subject 
# of 

Trials 

PSDA CCA BIFB 

MDT 

(sec) 

Acc.  

(%) 

ITR  

(bits/min) 

MDT 

(sec) 

Acc.  

(%) 

ITR  

(bits/min) 

MDT 

(sec) 

Acc.  

(%) 

ITR  

(bits/min) 

Subject #1 15 10 66.7 2.00 4 73.3 7.2 7.5 100 12.7 

Subject #2 15 9 66.7 2.22 4 60 3.2 7.8 100 12.2 

Subject #3 15 15 60 0.9 5 66.7 4 10 86.7 5.3 

Subject #4 15 15 6.7 - 3 66.7 6.67 8.33 66.7 2.4 

 

TABLE III. PERFORMANCE COMPARISON USING RIKEN-LABSP SSVEP DATASET 


