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Abstract

Brain tumor analysis is moving towards volumetric assessment of magnetic resonance imaging 

(MRI), providing a more precise description of disease progression to better inform clinical 

decision-making and treatment planning. While a multitude of segmentation approaches exist, 

inherent variability in the results of these algorithms may incorrectly indicate changes in tumor 
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volume. In this work, we present a systematic approach to characterize variability in tumor 

boundaries that utilizes equivalence tests as a means to determine whether a tumor volume has 

significantly changed over time. To demonstrate these concepts, 32 MRI studies from 8 patients 

were segmented using four different approaches (statistical classifier, region-based, edge-based, 

knowledge-based) to generate different regions of interest representing tumor extent. We showed 

that across all studies, the average Dice coefficient for the superset of the different methods was 

0.754 (95% confidence interval 0.701–0.808) when compared to a reference standard. We 

illustrate how variability obtained by different segmentations can be used to identify significant 

changes in tumor volume between sequential time points. Our study demonstrates that variability 

is an inherent part of interpreting tumor segmentation results and should be considered as part of 

the interpretation process.

I. Introduction

Gliomas are the most frequent primary brain tumors in adults, accounting for 70% of all 

malignant primary brain tumors [1–2]. The development of computational methods to 

objectively extract insights out of imaging data is an ongoing challenge [3–4]. For instance, 

current tumor guidelines to assess tumor progression in the clinical setting are often limited 

to one- or two- dimensional orthogonal measurements; standards like the Revised 

Assessment in Neuro-Oncology (RANO) [5] attempt to quantify lesions by assigning 

different evaluation options depending on these linear measurements (longest diameter 

measures) to ascertain significant change.

Assessing tumor change during treatment is important to estimate the effectiveness of a 

therapy or medical procedure, and for comparing results of different treatment options 

among different populations. More sophisticated quantified analyses, such as volumetrics, 

require segmentation – that is, identifying a key region of interest (ROI) on multiple imaging 

sequences. In routine clinical practice, tumor segmentations are drawn manually by an 

expert (e.g., radiologist), which while providing meaningful results are highly labor 

intensive and time consuming. Automating such tumor segmentation is thus an active area of 

research [6–7].

In this paper, we present an approach for characterizing the variability that occurs when 

segmenting complex tumor shapes with heterogeneous textures, and its impact when 

comparing volumetric assessments across time points. We first propose a method for 

generating probabilistic maps of error, characterizing the variability in how edges are 

segmented by different algorithms. We then utilize equivalence testing to determine whether 

volumes measured at two neighboring time points have significantly changed (e.g., disease 

has progressed) given the variability in the ROIs generated by the different segmentation 

algorithms. We believe the presented approach provides a more realistic assessment of 

volumetric change in the presence of variability.
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II. Methods

The steps to quantify volumetric variability in terms of a tumor probability map is 

summarized in Figure 1. Subsequently, the process of taking into account the resultant range 

of volumes given variability in ROIs in order to determine true change is given in Figure 2.

A. Input data

We randomly selected eight patients diagnosed with glioblastoma multiforme with 

preoperative imaging studies available. In total, 32 studies acquired using a 3.0T Magnetic 

Resonance Imaging (MRI) system were analyzed. Each study consisted of standard T1, T1 

with contrast, T2, and Fluid Attenuated Inversion Recovery (FLAIR) sequences.

A reference standard for total tumor volume was manually created. Total tumor volume was 

defined as the contrast enhancing portion and the necrotic core found on T1-weighted with 

contrast enhancement scans. Six manual segmentations were generated for each study by 

three trained annotators (each study was segmented twice during two independent sessions 

to assess intra- and inter-rater reliability). The annotators achieved an inter-rater agreement 

of 91 ± 2% and intra-rater agreement of 93 ±1 %. The reference standard was used to assess 

the accuracy of the four segmentation methods below.

B. Segmentation methods

Significant progress in brain tumor segmentation has been made in recent years due to the 

rapid development of machine learning techniques [3], but none of these methods have 

examined the level of variability that may occur, particularly at the boundary of the tumor. 

Such tumor segmentation is specifically challenging, as tumors are irregular in shape, 

inhomogeneous in texture and have discontinuous edges; along with other challenges 

associated with the acquisition and post-processing processes (e.g., image registration to 

spatially co-align acquired studies for comparison) [3,8]. As such, determining changes in 

size over time is challenging to estimate and comes with several caveats (differences in 

acquisition parameters or segmentation method, intra- and inter-observer variability, 

movement during the scan, etc.).

To explore variability in tumor segmentation, three different approaches were selected based 

on the availability of the code and their capacity to provide automatic contours of the tumor 

boundaries. Additionally, a fourth segmentation method was developed.

1. Classifier-based segmentation: We applied a support vector machine classifier 

that was trained on a set of brain tumors to sort each pixel as normal or not 

normal (tumor) [9]. This generative model outputs a color coded mask that 

contains the tumor boundaries.

2. Region-based active contour segmentation: This geometric active contour model 

is based on the Chan-Vese algorithm [10]. This model evolves an automatically 

specified initial ROI (e.g., bounding box) that contains the expected intensities 

that compose the tumor by using a level-set approach.
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3. Edge-based segmentation: This method follows a geodesic segmentation [11] 

approach by taking an input ROI that surrounds the tumor and then evolve it until 

a state of lower energy located at the boundary is found.

4. Knowledge-based segmentation: An in-house developed algorithm that finds the 

tumor boundary by doing a histogram analysis on the three-dimensional image. 

This algorithm finds the pixels that have the lowest probability of being normal, 

according to a prior distribution of the different cerebral tissues. This prior 

information is obtained in the form of multiple probability masks for each tissue 

(gray matter, white matter, cerebro-spinal fluid and soft tissue) using SPM12 

[12]. Afterwards the ROI is obtained by identifying the regions where the 

intensities on each slice deviate from the expected value for each tissue (i.e. 

lower probability). We then select the boundary of the tumor by doing standard 

histogram analysis.

Prior to the execution of any of the aforementioned segmentation algorithms, different image 

preprocessing steps were employed, including image normalization, bias field image 

correction, rigid registration to a reference atlas using FSL [13] and skull stripping [14].

C. Probability map

Once the segmentation was completed on all input images, the individual results (masks) 

were overlaid and aggregated into a probability map. In this work, as we only examined four 

different methods (i.e., four sources of variation), the map consists of five discrete states: 0% 

(regions without any ROI), 25% (regions with 1 ROI), 50% (2 ROIs), 75% (3 ROIs), and 

100% (full overlap). In summary, higher probabilities correspond to higher agreement 

(overlap) between the methods.

D. Temporal progression

A principal task when evaluating tumor progression over time is to define if an important 

difference between two observed volumes exists. To provide an objective way to determine 

if a tumor has significantly changed over time, an equivalence test can be used to evaluate if 

the volume estimates for both time points are sufficiently similar to be considered equivalent 

or not. This hypothesis can be tested by doing a one-way analysis of variance (ANOVA) by 

taking the different segmentation results that compose the probability map for the different 

follow-ups and computing the actual tumor change over time relative to the significance of 

the statistical test result.

III. Results

The previously described segmentation methods were used to segment the total tumor 

volume found on each of the available sequences for all subjects. A pair of representative 

examples of the tumor outline achieved by each method as well as the probability map can 

be observed on Figures 3 (FLAIR) and 4 (T1 with contrast enhancement).

A comparison against the reference standard was performed to assess the validity of each of 

the individual tumor outlines. Additionally, a tumor mask was produced by taking the 
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superset of the overlapped results for each method. The Dice coefficient found when 

comparing the gold standard and the total abnormality found on T1-weighted contrast 

enhancement sequences for each subject as well as for each method is presented on Table 1.

Figure 5 and Table 2 show the tumor volume progression over time on a single subject with 

multiple follow-ups, as well as the result of the ANOVA test to determine statistical 

significance of volume change for each pair of sequential tumor volume measures.

IV. Discussion

On this work we explored the idea of characterizing variability by aggregating the results of 

several tumor segmentation methods and defining an objective way to define if the overall 

volume mass is significantly changing, which plays an important role in decision making.

It was observed that while in general each algorithm shows some error while segmenting the 

tumor, the probability map was better at describing the distribution of the abnormality and 

was informative in determining which regions of the image were more likely to be part of 

the tumor. This finding leads to the conclusion that repeated measures of tumor volume 

tends to do better than any single measurement and is more robust against errors.

While many have argued that three-dimensional evaluation of tumor size provides a more 

accurate assessment of disease progression/regression over traditional two-dimensional 

measurements, the methods for generating these volumes should not be taken for granted: 

errors that may occur during the segmentation process, whether manual or automated, 

should be considered as part of the interpretation process. Accurately characterizing change 

in time is necessary to understand the aggressiveness of the disease and to evaluate treatment 

response.

Future work includes to explore the variability found on the various tumor sub-components 

of the tumor such as necrosis, edema and enhancing tumor to progressively move to a more 

quantifiable way to understand the disease and ultimately improve treatment effectiveness.
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Figure 1. 
Flowchart that exemplifies the general workflow from the MRI input until the generation of 

tumor probability maps.
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Figure 2. 
The comparison between different time points to define statistical significance can be 

achieved by doing a standard analysis of variance on the output tumor volumes
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Figure 3. 
Segmentation results for the different segmentation approaches on an example T2-weighted 

FLAIR image. Figure 3a is the original input image, Figure 3b is the image with the 

different segmentation results overlapped, Figure 3c–f show the binary images associated 

with the different segmentation methods (knowledge-based, region-based, classifier and 

edge-based). Figure 3g shows the output probability map.
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Figure 4. 
Segmentation results for the different segmentation approaches on an example T1-weighted 

image with contrast enhancement. Figure 4a is the original input image, Figure 4b is the 

image with the different segmentation results overlapped, Figure 4c–f show the binary 

images associated with the different segmentation methods (knowledge-based, region-based, 

classifier and edge-based). Figure 4g shows the output probability map.
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Figure 5. 
Boxplot that indicates tumor volume progression over time as well as the variability 

observed at each time point.
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TABLE 2

Volume Comparison Results

The results from the analysis of variance show statistically significant difference between the different 

measures. Intergroup refers to the variance found between segmentation methods and intragroup to the 

variance between different time points. The F-statistic is computed using the ratio of the intergroup and 

intragroup mean square error (MSE) for each pair of time points.

Scan # MSE F-statistic P value

1 vs. 2 Intergroup .0085 25.68 0.001

Intragroup .0033

2 vs. 3 Intergroup .0148 18.7 0.0025

Intragroup .0007

3 vs. 4 Intergroup .0079 6.27 0.0367

Intragroup .0013
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