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Abstract

As the volume of biomedical literature increases, it can be challenging for clinicians to stay up-to-

date. Graphical summarization systems help by condensing knowledge into networks of entities 

and relations. However, existing systems present relations out of context, ignoring key details such 

as study population. To better support precision medicine, summarization systems should include 

such information to contextualize and tailor results to individual patients.

This paper introduces “contextualized semantic maps” for patient-tailored graphical 

summarization of published literature. These efforts are demonstrated in the domain of driver 

mutations in non-small cell lung cancer (NSCLC). A representation for relations and study 

population context in NSCLC was developed. An annotated gold standard for this representation 

was created from a set of 135 abstracts; F1-score annotator agreement was 0.78 for context and 

0.68 for relations. Visualizing the contextualized relations demonstrated that context facilitates the 

discovery of key findings that are relevant to patient-oriented queries.

I. INTRODUCTION

The domain of non-small cell lung cancer (NSCLC) is fertile ground for new developments 

in precision oncology. The Lung Cancer Mutation Consortium recently characterized ten 

driver mutations in lung cancer, and the Federal Drug Administration has approved targeted 

therapies for patients with epidermal growth factor receptor (EGFR) mutations and 

anaplastic lymphoma kinase (ALK) rearrangements [1]. Improvement of clinical outcomes 

with targeted therapies has been demonstrated in clinical trials, and new advances continue 

to be made [2].

Biomedical literature is an abundant source of knowledge, but clinicians have a limited 

amount of time to review the literature. Summarization systems help by presenting 

knowledge in a condensed form. Furthermore, in accordance with the efforts of precision 

medicine, a summarization system should be capable of providing information that is 
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tailored to a specific patient’s characteristics, such as mutation status, treatment history, and 

mechanism of resistance.

One approach to summarization involves representing scientific claims as propositions, such 

as “chemotherapy improves survival.” These propositions can then be represented 

graphically, as nodes (“chemotherapy” and “survival”) and edges signifying a relation 

between nodes (“improves”). However, existing graphical summarization systems depict 

these relations out of context, ignoring key information such as study population 

characteristics. To judge a relation’s applicability to a specific patient and capture its full 

meaning, these contexts are crucial.

This paper describes the “contextualized semantic map,” a representation that ties relations 

to their associated contexts. This approach to graphical summarization is demonstrated in 

the domain of driver mutations in NSCLC.

II. BACKGROUND

The idea of representing propositional knowledge as nodes and edges in a graph was first 

introduced by Novak in 1977 [3]. Since then, many in the biomedical domain have used 

relations to summarize knowledge about protein-protein interactions [4], [5], gene-protein 

interactions [6], [7], and relationships between treatments and diseases [8], [9]. Notably, 

SemRep extracts concepts and relations from the Unified Medical Language System [10] to 

summarize biomedical journal articles [11].

While the artificial intelligence community has long recognized the importance of context in 

knowledge-based systems [12], few biomedically-oriented relation extraction systems fully 

leverage context in their information retrieval and summarizations. BioContext is a text 

mining system that contextualizes biomolecular events in terms of species, anatomical 

location, speculation, and negation [13]. BIO-SMILE augments relations with the 

surrounding words signifying the location, manner, and timing of an event [14]. Semantic 

MEDLINE, a biomedical graphical summarization system based on SemRep relations, uses 

statistical features (such as frequency of occurrence in the corpus) and graph-based features 

(such as adjacency to a node of interest) to focus its graphical summary [15]. The PICO 

representation leverages study population for information retrieval and question answering, 

but not for summarization or relation contextualization [16].

This paper describes the development and use of a detailed representation of study 

population for the purpose of contextualizing relations in the domain of non-small cell lung 

cancer. The contributions of this work are: 1) a semantic approach to graphical 

summarization that includes contextual information; 2) an annotated gold standard of 

relations and study population context in NSCLC; and 3) a first pass at visualization of 

contextualized relations.
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III. METHODS

A. Representation

1) Study population context—We first define the representation for study population 

context. This representation was based on the National Lung Cancer Audit (LUCADA), an 

effort in the United Kingdom to create a registry of lung cancer patients and their treatments 

and outcomes [17]. The LUCADA representation includes information on patient 

demographics, risk factors, treatment history, and tumor features. The representation was 

augmented based on expert opinion (EG, DA) to include information on driver mutations, 

targeted therapy, imaging features, and clinical response. An overview of the representation 

is given in Figure 1.

2) Targeted concepts and relations—Next, we define the sets of targeted concepts and 

relations of interest. In our previous work, we identified four common study objectives: 

mutation characterization, mutation detection, treatment, and prognosis [18]. These study 

objectives are used to develop a set of targeted relations. Definitions of targeted concepts are 

described in Table I. When possible, definitions from resources such as the National Cancer 

Institute Thesaurus [19] or Unified Medical Language System [10] were used. Relations 

appropriate for each study objective are given in Table II. Any relation may be augmented 

with study population context, indicating that the relation was found in a population 

possessing certain clinical features.

B. Data collection and annotation

To validate the coverage and specificity of the representation, an annotated gold standard of 

relations and concepts was created manually from a set of abstracts on EGFR mutation in 

lung cancer. These abstracts were obtained from two sources: a snapshot of PubMed and 

archives from the annual meeting of the American Society of Clinical Oncologists. In a 

previous study, we searched these two sources for articles published in 2013 containing 

“EGFR” and “lung” in the title, resulting in 157 abstracts [18]. Studies identified as out of 

scope (e.g., case reports, pre-clinical studies) were excluded, resulting in a total of 135 

abstracts.

Annotation guidelines were created to formalize the annotation of relations and population 

context. The annotation guidelines provided definitions of each concept and relation, as well 

as specific directions regarding the scope of the annotations. For example, study population 

context is limited to eligibility criteria rather than descriptive statistics of the cohort. 

Relations of interest expressing the findings of the study were limited to the Results and 

Conclusion sections of the abstracts.

Mentions of concepts and relations within the abstracts were annotated using brat rapid 

annotation tool1 by the lead author (JG) and a biomedical informatics graduate student 

(NJM). The readers annotated the corpus independently; agreement was then calculated, and 

entities with low agreement were selected for discussion. After discussing several points of 

1http://brat.nlplab.org
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clarification, annotation guidelines were updated. The readers corrected their annotations per 

the updated guidelines until consensus was achieved.

Annotator agreement was calculated in terms of F1-score, holding JG’s annotations as the 

ground truth for the purposes of evaluation [20]. Agreement was calculated for each relation 

as well as semantically related groups of relations (e.g., improves and associated with, 

predicts better and predicts, positive correlation and correlation).

The resulting gold standard is publicly available at http://jigarcia.bol.ucla.edu.

C. Visualization

A contextualized semantic map was produced by loading the manually-annotated relations 

and contexts into a graph structure using the Python library networkx2. Each relation (edge) 

has a set of attribute-value pairs corresponding to the concepts in the representation and their 

instances from the annotated document set. The user may filter the network according to 

population attributes of interest. In this evaluation, we visualize networks produced by two 

filters: targeted therapy history=EGFR-tyrosine kinase inhibitors (TKIs) and 

biomarker=EGFR+. These filters were chosen to simulate queries provided by a clinical 

expert (EG).

IV. RESULTS

A. Annotator agreement

1) Study population context—Ten concepts in our representation collectively 

contributed to over 90% of the total annotations. Among these, F1-score agreement ranged 

from 0.56 for progression to 0.92 for surgery history. F1-score agreement over all concept 

types was 0.78.

2) Relations—Thirteen relations collectively contributed to roughly 90% of the total 

annotations. F1-score agreement for these relations ranged from 0.40 for associated with to 

0.80 for does not predict and predicts worse. Overall agreement for relations was 0.68. 

Combining semantically similar relations proved beneficial to F1-score agreement. Notably, 

the combined relation improves or associated with had an F1-score of 0.79.

Table III presents the agreement values for study population context and relations.

B. Visualization

The resulting contextualized semantic map contains 570 nodes and 591 edges. Filtering the 

graph by study population context reduces the size of the graph significantly, facilitating 

discovery of key findings that are relevant to a patient-oriented query. For example, filtering 

on targeted therapy history=EGFR-TKIs produces a subgraph pictured in Figure 2a. In pre-

treated populations, TKI resistance is associated with with poor outcomes; however, one 

study showed that TKIs used with chemotherapy or radiotherapy yields an improvement in 

overall survival.

2http://networkx.github.io
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Figure 2b depicts a subgraph depicting a set of improves relations. A number of 

chemotherapies and targeted therapies are identified; however, after applying a filter to 

identify relations exclusively from studies on EGFR+ cohorts, a smaller number of 

treatment-oriented relations appears (outlined in bold). Thus, the summary includes 

information specific to the user’s query, including relations only from studies on EGFR+ 

populations.

V. DISCUSSION

The substantial inter-annotator agreement on the majority of concept and relation types 

validates the precision of our representation and the suitability of our annotations as a gold 

standard for development of automatic extraction systems. Furthermore, while the study 

population representation is specific to lung cancer, many of the features could be applied to 

cancer in general, opening the possibility of contextualized semantic maps in other cancer 

domains. Capturing numeric data such as effect sizes and confidence intervals remains an 

open issue for future work.

We also developed a technique for visualizing contextualized relations, which includes an 

edge-filtering mechanism that enables the user to view studies relevant to specific patient 

characteristics. Future improvements to the visualization include vocabulary standardization 

(i.e., combining synonymous nodes) and semantic clustering (i.e., edges with similar 

contexts are placed near each other).

Development of a representation for relations and their associated study population context 

is a first step toward informing clinical decisions through patient-tailored summarization. 

Ultimately, our goal is to create an end-to-end summarization system, including automatic 

extraction of relations and context, and evaluation of our representation on a clinical 

information retrieval task.
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Fig. 1. 
A representation for study population context.
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Fig. 2. 
Manually diagrammed depictions of contextualized semantic maps.

(a) The contextualized semantic map after filtering for “targeted therapy history = EGFR 

TKIs.” The graph has been significantly reduced in size, facilitating knowledge discovery.

(b) A fragment of improves relations. Nodes outlined in bold indicate that the associated 

relations were discovered in a cohort of EGFR+ patients.
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TABLE I

Definitions of concepts that participate in relations.

Concept Definition

Biomarker A characteristic that serves as an indicator for normal biologic processes, pathogenic processes, state of health or disease, 

the risk for disease development and/or prognosis, or responsiveness to a therapeutic intervention.1

Clinical feature Clinical-pathologic features of a patient, see Figure 1.2

Detection method A procedure, method, or technique used to determine the nature or identity of a disease or disorder.3

Material An aggregation of similarly specialized cells and the associated intercellular substance.3

Outcome A place of termination or completion, such as a primary or secondary outcome variable used to judge the effectiveness of 

a treatment.1

Treatment Any type of intervention intended to treat a condition in a patient, including targeted therapy, chemotherapy, radiotherapy, 

and surgery.1,3

Rate The ratio of the number of occurrences of a disease or event to the number of units at risk in the population.1

1
Source: National Cancer Institute.

2
Source: National Lung Cancer Audit.

3
Source: Unified Medical Language System.
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TABLE II

List of permitted relations, organized by study objective.

Study objective Description Relation

Mutation characterization Studies that correlate clinical-pathologic features (e.g., age, 
race, smoking status) with biomarker status, or report the 
prevalence of mutation within a population or in comparison to 
another population.

biomarker {positively, negatively, not} 
correlated with clinical feature
biomarker has rate rate
biomarker has {higher, lower, similar} rate in 
clinical feature

Mutation detection Mutation detection studies demonstrate a method for detecting 
mutation status, sometimes specifying the type of biological 
specimen used.

detection method detects biomarker
biomarker detected in material

Treatment Treatment studies examine the association between treatments 
and outcomes. Treatments can improve outcomes (e.g., longer 
survival), worsen outcomes (e.g., side effects), or have no 
effect on outcomes. Treatments may also be recommended for 
a specific sub-population.

treatment {improves, worsens, does not 
improve, associated with} outcome
treatment recommended for clinical feature

Prognosis Prognosis studies associate clinical-pathologic features and 
biomarkers with outcomes.

{biomarker, clinical feature}
{predicts, predict better, predicts worse, 
does not predict} outcome

IEEE EMBS Int Conf Biomed Health Inform. Author manuscript; available in PMC 2017 July 16.
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TABLE III

Annotator agreement for each concept and relation type.

Concept Total Precision Recall F-1

biomarker 151 0.68 0.88 0.77

stage 146 0.80 0.85 0.82

histology 93 0.75 0.90 0.82

targeted therapy history 91 0.78 0.80 0.79

ethnicity nationality 67 1.0 0.63 0.78

chemotherapy history 40 0.94 0.77 0.85

progression 32 0.53 0.60 0.56

other treatment history 29 0.56 0.91 0.69

resistance 27 0.71 0.77 0.74

surgery history 26 0.86 1.0 0.92

All concepts 759 0.75 0.81 0.78

Relation

has rate 207 0.60 0.90 0.72

improves 131 0.88 0.70 0.78

does not predict 113 0.87 0.74 0.80

predicts better 112 0.82 0.66 0.73

predicts worse 112 0.92 0.71 0.80

predicts 107 0.61 0.67 0.64

detects 94 0.66 0.58 0.62

positive correlation 93 0.80 0.63 0.71

detected in 56 0.67 0.77 0.71

correlation 47 0.48 0.78 0.60

associated with 45 0.33 0.50 0.40

has higher rate in 41 0.87 0.50 0.63

recommended for 25 0.75 0.69 0.72

All relations 1320 0.68 0.68 0.68

Combined relations

predicts better, predicts 215 0.82 0.80 0.81

improves, associated with 173 0.80 0.77 0.79

positive correlation, correlation 140 0.84 0.84 0.84
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