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Abstract— Clinical measurements that can be represented as
time series constitute an important fraction of the electronic
health records and are often both uncertain and incomplete.
Recurrent neural networks are a special class of neural net-
works that are particularly suitable to process time series data
but, in their original formulation, cannot explicitly deal with
missing data. In this paper, we explore imputation strategies
for handling missing values in classifiers based on recurrent
neural network (RNN) and apply a recently proposed recurrent
architecture, the Gated Recurrent Unit with Decay, specifically
designed to handle missing data. We focus on the problem of
detecting surgical site infection in patients by analyzing time
series of their blood sample measurements and we compare the
results obtained with different RNN-based classifiers.

I. INTRODUCTION

Surgical Site Infection (SSI) is one of the most common
types of nosocomial infection [1] and represents up to
30% of hospital-acquired infections [2]. Studies have shown
that being infected with SSI both increases the risk of re-
admissions [3], and prolongs the postoperative stay for up to
two weeks and thereby also the cost per patient [4]. Hence,
being able to detect infections is of utmost importance both
for the patients and for the healthcare system.

Blood sample measurements represent a fundamental
source of information for predicting the risk of getting SSI
in a given patient. In some studies blood tests have been
jointly analyzed together with other electronic health record
data for detecting the presence of SSI [5], [6]. However, due
to the fact that blood samples are recorded frequently with
low burden for the patients and describe the health status
of a patient with certainty, other studies have successfully
focused on the analysis of blood tests alone for predicting
SSI [7], [8].

Blood samples are usually collected for each patient in
given periods both before and after the surgery. The data are
series of several indicators, measured on a patient over time
and, due to the presence of important relationships in time
among the measurements, data can be naturally represented
as multivariate time series. An effective machine learning
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framework used to model and analyze multivariate time
series (MTS) is the Recurrent Neural Network (RNN).

RNNss are a special class of Neural Networks characterized
by internal self-connections, which are capable of modeling
sequential data of variable lengths [9]. Thanks to their
recurrent nature, an RNN captures temporal dependencies in
the MTS to perform prediction or classification. At each time
step, the RNN output depends on past inputs and previously
computed states. This allows the network to develop a
memory of previous events, which is implicitly encoded in
its internal state. Thanks to these properties, RNNs have
proven powerful in a number of different healthcare appli-
cations [10], [11].

Although a vanilla RNN, or Elman RNN (ERNN), can in
principle learn how to model very complex relationships,
an optimal training is often difficult to achieve and the
network often performs poorly on unseen data and fails
to capture long-term dependencies. A more sophisticated
architecture, called Gated Recurrent Unit [12] (GRU), imple-
ments recurrent units that adaptively captures dependencies
at different time scales and it demonstrated to outperform
other architectures on several tasks [13].

Most clinical data, including blood sample measurements,
are corrupted by the presence of missing values. Indeed,
for each patient some measurements may not be registered
and, at some time, data might be not collected at all.
Most machine learning models, including RNNs, are not
designed to deal with missing data and their presence often
complicates the training and deteriorate performances [14].
A commonly used approach is to replace missing data with
imputation methods [15], trying to introduce as less bias as
possible.

The Gated Recurrent Unit with Decay (GRUD) [16] is a
recently proposed RNN, specifically designed to handle MTS
with missing data and to leverage on the missing patterns to
achieve better prediction results. GRUD takes as input two
representations of missing patterns: a masking that informs
the model which inputs are observed or missing and time
intervals that encapsulate the input observation patterns.

In this work, we study the problem of identifying surgical
site infection by only relying on blood measurements that
contain many missing data. We evaluate the classification
performance of three types of RNN-based classifiers, to
discriminate between MTS relative to infected and non-
infected patients. Specifically, we compare ERNN and GRU,
where missing data are imputed, and GRUD, which handles
missing data without having to resort to imputation.



II. METHODS

Let us consider a dataset of N multivariate time series
with V' variables of same length 7. Since a time series
X, € RT*V may contain missing entries, according to
the procedure in [16] we associate to X,, a binary mask
M, € RT*V, whose element m? = 0 if x} is missing,
otherwise my = 1.

A. Approaches for handling missing data

To replace missing values from the input data, we consider
three baseline imputation techniques [15].

e Zero imputation: the missing values in each time series
are replaced with 0. The main drawback of this impu-
tation is the introduction of a strong bias in the data.

o Last value carried forward: for each variable v in
X,, the missing values are replaced by the last value
observed for v. The main problem with this method is
the assumption that there will be no change from one
observed value to the next.

o Mean substitution: for each variable v in X,, the missing
values are replaced by the mean value of v across all the
N time series. Mean values are computed only relative
to values that are observed, i.e. that are associated to a
“1” in each matrix M. As main drawback, this method
can lead to under-estimates of the variance.

B. Elman RNN

The state update in a ERNN is governed by the difference
equation h, = f (Wrh;_; + W;x; 4+ by,), where W, and
W, are the recurrent and inputs weights respectively, by
is a bias vector, and f() is the activation function usually
implemented by a tanh. The network output is computed as
v = g(W,hr +b,), where hy is the last hidden state of
the RNN produced once the whole MTS is processed, W,
and b, are the output weights and bias respectively, and g()
is a softmax function. The parameters W;, W;,, W, and
b, are trained with gradient descent so that the y matches a
desired output y.

C. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) [12] is a gated ar-
chitecture that can store information for longer periods of
time, with respect to ERNNs. While the ERNN neuron
implements a single squashing nonlinearity, GRU has a more
elaborated processing unit called cell, which is composed of
different nonlinear components interacting with each other
in a particular way. The internal state of a cell is modified
by the network only through linear interactions. This permits
information to backpropagate smoothly across time, with a
consequent enhancement of the memory capacity of the cell.
A schema of the GRU cell is depicted in Fig. 1.

A GRU protects and controls the information in the cell
through two gates. The update gate, controls how much the
current content of the cell should be updated with the new
candidate state. The reset gate if closed (value near to 0) can
effectively reset the memory of the cell and make the unit act
as if the next processed input was the first in the sequence.
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Fig. 1. Schema of the GRU cell.

The activation of each gate depends on the current external
input, the previous state of the GRU cells and their output.
The state equations of the GRU are the following:

reset gate : vy, = 0 (W, h;_1 + R,x; + b,)
current state : h'y = g (W (h;_; ©®ry) + Rx; + b)
update gate : uy = 0 (W, h;—1 + Ryx; + by)

new state : hy = (1 —uw;) ©h;_1 +u; © h'y

Here, g(-) and o(-) are a non-linear functions usually
implemented as hyperbolic tangent and logistic function,
respectively. The parameters are the rectangular matrices
W,., W, W,, the square matrices R.., R, R,,, and the bias
vectors b,., b, b,,. To control the behavior of each gate, those
parameters are trained with gradient descent to solve a target
task.

D. Gated Recurrent Unit with Decay

In the GRUD cell the standard GRU architecture is
modified to implement a decay mechanism for the input
variables and the hidden states, according to the missing
values in input. Such decays capture two different properties
that characterize health care data. First, the values of the
missing variable tend to be close to some default value if its
last observation occurs far in time [17]. Second, the influence
of the last seen input variables diminish over time when the
next values are missing [18].

Beside the mask M,,, to track missing values in each
MTS X,,, GRUD maintains the last time interval when each
variable v was observed in a matrix A € RT*V_ Specifically,
an element §; of A is defined as

St —S—1+00 4, t>1ml =0
St — St—1, t> l,mf_1 =1
0, t=1

where s; are the time stamps relative to each measurement.
A vector of decay rates 7y is defined as

vt = exp {—max (0, W,4; + b,)}, (D

v
0 =

where W, and b,, are trained on data along with the other
parameters. GRUD employs two different decays. First, ,,
decays the input over time toward its empirical mean

af = mizy + (1—mi)yay + (1-mi) (1 —7;)i, ()

where z¥, is the last value observed for variable v and 74
is its empirical mean. Secondly, v, decays the extracted
features before computing the next hidden state

hy_ 1 v ©Oh_y. 3)



The state update equations for GRUD are
r=0(W,h; 1 +R,x; + V,m; +b,)
h'y = g(W(h;_1 ©r¢) + Rx; + Vm; + b)
w=0(W,h;_; +R,x; + V,m; + b,)
hy=(1-w)Oh;+u,0h
where x; and h;_; are respectively updated according to
Eq. 2 and Eq. 3, while V., V and V, are additional trainable

weights for the masking values m; in M. A schema of the
GRUD architecture is depicted in Fig. 2.
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Fig. 2. Schema of the GRUD cell. Modification with respect to the original
GRU architecture are highlighted in blue.

Contrarily to the GRU and ERNN, in GRUD it is not
necessary to apply an imputation on the input data and the
model can be trained end-to-end in presence of missing
values.

E. Loss function

In all three RNNGs, the weights are trained using the same
loss function, implementing binary cross-entropy combined
with a Ly regularization term. Due to the class imbalance in
the dataset, we implemented a weighting scheme to penalize
mistakes on the minority class by an amount proportional to
how under-represented it is. In particular, errors relative to
class i are weighted by a term «; = 1 — n; /N, where n; is
the number of training samples of class ¢ and N the size of
the training set. In this way, classification errors on the class
with less elements contribute more than errors on the other
class. The resulting loss function is

1N
L=——=> o [yilog@i+(1—yi)10g(1—@i) + AWz,
i=1
where y; and g; are the true and predicted class respectively,
[[W]|2 is the Lo norm of all network weights (biases ex-
cluded), and A weights the regularization strength.

III. EXPERIMENTS

The purpose of the current study is to discriminate with
RNN-based classifiers between MTS of blood samples rel-
ative to patients with and without surgical site infection.
The blood samples are continuous variables over time and
represented as MTS. In our analysis, we discretized time
and let each time interval be one day. Ten different blood
tests were extracted over 20 days after surgery, namely,
alanine aminotransferase, albumin, alkaline phosphatase, cre-
atinine, CRP, hemoglobine, leukocytes, potassium, sodium
and thrombocytes.

The dataset consist of patients that underwent a gastroin-
testinal surgical procedure at UNN in the years 2004 - 2012.
To extract the cohort for this study, we considered both
the International Classification of Diseases and NOMESCO
Classification of Surgical Procedures codes related to severe
postoperative complications. A patient that did not have any
of these codes was considered as a control, otherwise, as a
case. We removed patients with less than two measurements
during the postoperative window from the cohort. We ended
up with a total of 232 infected patients (cases) and 651 not
infected (control).

20 % of the dataset was used for validation. The remaining
part was randomly split into a training (60 %) set and a test
set. This procedure was repeated 10 times, using each time
a new random initialization of the parameters in the RNNs.
To measure performance we used Fl-score and area under
the ROC curve (AUC), which are more suitable performance
measures in presence of imbalanced data [19].

A. Network configuration

In the experiments, we used identical network architec-
tures and only switched the internal processing units to
be ERNN, GRU or GRUD. More specifically, we used a
network with a single layer and 22 hidden units. On the
output layer we applied dropout with probability 0.2 and
we set the regularization parameter A = 0.001. To train
model parameters we used mini batches of size 40 and
Adam as optimization algorithm. Each network is trained
for 10, 000 epochs, with data shuffled each time. The models
used for testing are the ones yielding the best F1 score on
the validation set.

B. Results

In Table I we report the mean classification results and
standard errors obtained by a RNN classifier configured
either with ERNN, GRU or GRUD on the validation set
during training and on the final classification of the test
set once the training is over. When using ERNN and GRU,
missing values in the inputs are filled using mean substitution
(-m), zero imputation (-z) or last value carried forward (-1).

TABLE I
F1 SCORE AND AREA UNDER THE ROC CURVE (AUC) ACHIEVED ON
VALIDATION (VAL) AND TEST BY ERNN, GRU AND GRUD. IN ERNN
AND GRU WE USED THREE DIFFERENT IMPUTATIONS: MEAN
IMPUTATION (-M), ZERO IMPUTATION (-Z) AND LAST VALUE CARRIED
FORWARD (-L). BEST AVERAGE RESULTS ARE IN BOLD.

Model ‘ AUC (val) F1 (val) AUC (test) F1 (test)

ERNN-m | 0.76 £0.02 0.31+0.13 0.76+0.02 0.33+0.16
ERNN-1 | 0.834+0.02 0.544+0.05 0.8440.02 0.5740.06
ERNN-z | 0.86£0.01 0.60+0.06 0.86+0.01 0.63+0.04
GRU-m | 0.90+0.01 0.744+0.02 0.90+0.01 0.70=+0.06
GRU-1 0.90 £0.02 0.73£0.04 0.90+0.02 0.68+0.06
GRU-z 0.90 £0.02 0.73+£0.04 0.89+0.02 0.69+0.03
GRUD 0.91+0.02 0.754+0.05 0.914+0.02 0.70+0.05




As we can see, the best classification results in terms
of Fl-score and AUC are achieved by GRUD and GRU
configured with mean imputation, which achieve similar per-
formance in both validation and testing. Interestingly, GRUD
can handle missing values as well as the standard GRU cell
and provides the advantage of an end-to-end training, without
requiring imputation procedures to be applied in advance.
On the other hand, the ERNN configurations perform worse
than the other architectures. This is somehow expected, since
the presence of the gating mechanisms in GRU and GRUD
provide more flexibility and computational capability.

To analyze the quality of the representations learned by
GRUD compared to ERNN, we performed principal com-
ponent analysis (PCA) on the final hidden states of the
networks. The classification outcome heavily depends on
those states since they are the input to the last softmax layer,
which produces class assignment. Each last state is therefore
the high-level static representation of the sequential input
learned by the network. In Fig. 3 the representations relative
to the MTS in the test set are mapped to two dimensions. As
we can see, the GRUD separates the two classes well, while
in the case of ERNN the test elements are highly overlapped.

PCA of GRUD states PCA of ERNN-m states

5 :
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Fig. 3. First two principal components of the last states in GRUD and
ERNN, when the MTS in the test set are processed. ERNN states relative
to different classes are highly overlapped, as shown in the green box zoom.

We observe that, in contrast to GRU, the performance
of ERNN is heavily affected by the choice of imputation
method. Indeed, each technique introduces a different kind
of bias in the data and the optimal choice depends on type
of task at hand. Using the wrong imputation may complicate
the training. While this can represent an issue in the weaker
ERNN, the higher computational capability of GRU permits
to handle well the presence of stronger biases.

IV. CONCLUSIONS

In this work we focused on the classification of blood
sample data relative to patients with surgical site infections.
Data are represented by multivariate time series and are char-
acterized by a large amount of missing values. To classify the
data, we used three different RNNs configured either with
ERNN, GRU or GRUD. While GRUD can process MTS
with missing values, ERNN and GRU require imputation
to replace missing values. In the experiments, we observed
that GRUD and GRU with imputation achieves better perfor-
mance than ERNN in classifying the MTS. We also noticed
that different imputations yield a substantial variation in
ERNN classification results, while the performance in GRU

are more stable. Since selecting the best imputation method
is often difficult and requires expertise on the data domain,
a critical sensitivity in this configuration may represent an
issue. Therefore, the stability provided by GRU and the
GRUD, which does not require using imputation at all, is
an important advantage in many practical applications.
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