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Abstract—Fluorescence microscopy is an essential tool for the anal-
ysis of 3D subcellular structures in tissue. An important step in the

characterization of tissue involves nuclei segmentation. In this paper, a

two-stage method for segmentation of nuclei using convolutional neural
networks (CNNs) is described. In particular, since creating labeled

volumes manually for training purposes is not practical due to the size

and complexity of the 3D data sets, the paper describes a method for

generating synthetic microscopy volumes based on a spatially constrained
cycle-consistent adversarial network. The proposed method is tested on

multiple real microscopy data sets and outperforms other commonly used

segmentation techniques.

Index Terms—nuclei segmentation, instance segmentation, fluorescence

microscopy, convolutional neural network, generative adversarial net-

work

I. INTRODUCTION

Optical fluorescence microscopy enables imaging three dimen-

sional subcellular components in tissue [1]. In particular, two-photon

microscopy allows imaging deeper into the tissue with near-infrared

excitation light [2]. Three dimensional segmentation of subcellular

components, such as nuclei, is required to quantify and analyze the

microscopy volumes. It is tedious to manually create labeled ground

truth volumes for training machine learning methods. Moreover, this

task is further complicated when nuclei are touching.

Watershed techniques which select local maxima of a distance

transform as markers have been used to segment touching nuclei

[3]. In [4] watershed markers are selected based on mathematical

morphology to segment nuclei in time-lapse microscopy. Watershed

approaches generally over-segment nuclei due to their irregular

structures. To circumvent this, deformable models such as active

surfaces have been investigated [5]. A method using multiple active

surfaces was introduced to separate touching nuclei wherein the

energy functional includes a penalty term for overlapping nuclei and a

constraint term for volume conservation [6]. Alternatively, a method,

known as Squassh, couples image restoration and segmentation by

using an energy functional derived from a generalized linear model

[7]. A common issue that arises is that these methods frequently

cannot distinguish nuclei from other biological structures.
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Recently, convolutional neural networks (CNNs), that rely on the

availability of large amounts of labeled training images, have been

used for many computer vision problems [8]. CNNs have very much

impacted biomedical image analysis [9]. A deep contour-aware-

network is described for gland segmentation in [10]. The network

produces object segmented images and contour segmented images

where the contour segmented images are used to separate touching

glands. In [11] weights are assigned to the boundary of nuclei

in hematoxylin and eosin (H&E) stained histology images during

training to ensure touching nuclei are separated. More recently, a

cell detection and segmentation technique is presented in [12] using

a U-Net architecture [13].

One challenge of using CNNs in biomedical image analysis

is the lack of labeled training images due to the expensive and

tedious labeling process. Data augmentation techniques using simple

transformations can be used to generate more training images but

they still require labeled training images. To address the problem of

limited availability of 3D ground truth volumes, we described in [14]

the generation of 3D synthetic microscopy volumes without using

any labeled volumes. The synthetic volumes were generated using a

statistical model and a simple model of the point spread function of

the microscope with ellipsoidal shaped nuclei. The synthetic volumes

are then used to train CNNs to segment nuclei in real microscopy

volumes. We also presented a 3D detection and segmentation method

in [15] using synthetic microscopy volumes generated similar to our

previous work described in [14].

There has been a great deal of work in generating realistic synthetic

images that can be used for training using generative adversarial

networks (GANs) [16]. A CycleGAN was introduced where a GAN

with a cycle consistency term can produce synthetic images that can

be used for training without access to any actual ground truth images

[17]. We described a spatially constrained CycleGAN (SpCycleGAN)

in [18] to generate synthetic images where a spatial constraint term

is included in the CycleGAN. We then trained a CNN using the

synthetic volumes generated by the SpCycleGAN to produce accurate

binary segmentation masks [18]. One problem in [18] is that we could

not distinctly label each nucleus accurately.

In this paper, we present a 3D nuclei instance segmentation

method using two CNNs for fluorescence microscopy volumes. We

define “instance segmentation” as a process where each object is
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detected and segmented with distinct labels. This paper is different

from our work described in [15] that detects locations of nuclei

using a distance transform causing over-detection of irregular nuclei

structures and segments each nucleus using a CNN trained by a

set of blurred and noisy synthetic volumes generating inaccurate

segmentation masks. In the present paper, we use realistic synthetic

training volumes generated by the SpCycleGAN [18] to train one

CNN to detect the location of nuclei and a second CNN to segment

each nucleus accurately. Note no actual ground truth volumes are used

for generating the synthetic volumes. During detection we extract the

central area of nuclei that do not overlap with each other even when

the surfaces of the nuclei may overlap. We evaluate our method using

a ground truth volume generated from a real fluorescence microscopy

volume from a rat kidney. Our data are collected using two-photon

microscopy where nuclei labeled with Hoechst 33342 stain.

II. PROPOSED METHOD

Fig. 1. Block diagram of the proposed method

Figure 1 is a block diagram of our proposed method for 3D nuclei

instance segmentation. A 3D image volume of size X × Y × Z is

denoted as I and the pth 2D focal plane image of size X×Y along the

z-direction is denoted as Izp , where p ∈ {1, . . . , Z}. A subvolume

of I , whose x-coordinate is qi ≤ x ≤ qf , y-coordinate is ri ≤ y ≤
rf , z-coordinate is pi ≤ z ≤ pf is denoted as I(qi:qf ,ri:rf ,pi:pf),

where qi ∈ {1, . . . , X}, qf ∈ {1, . . . , X}, ri ∈ {1, . . . , Y }, rf ∈
{1, . . . , Y }, pi ∈ {1, . . . , Z}, and pf ∈ {1, . . . , Z}. It is required

that qi ≤ qf , ri ≤ rf , and pi ≤ pf . Lastly, a voxel is denoted as v.

Our method consists of two CNNs as shown in Figure 1. The first

CNN, Mdet, is used for nuclei detection and binary segmentation and

the second CNN, M iseg , is used for nuclei instance segmentation. To

segment each nucleus using the second CNN, the first CNN produces

a set of coordinates of the nuclei center locations, denoted as Cdet,

and a nuclei mask volume denoted as Imask. Specifically, Cdet

consists of the centroid coordinates of components in a detection

volume, Idet. To accurately select the elements of Cdet, especially

when multiple nuclei are touching, the components in Idet are chosen

to have no touching regions for distinct nuclei. The second CNN

segments an individual nucleus in a 3D patch from Imask centered

at Cdet and is color-coded to produce the final segmentation volume,

Iiseg . Note that color-coding is done to visually label each nucleus in

Iiseg . To train the two CNNs a SpCycleGAN described in [18] is used

to generate synthetic microscopy volumes, Isyn. Our implementation

is done using PyTorch [19].

A. Synthetic Volume Generation

As indicated above, creating labeled ground truth 3D volumes is

tedious. We use the SpCycleGAN we described in [18] to produce

synthetic microscopy 3D volumes that we use for training. Note we

do not need any actual ground truth volumes to use the approach

described in this section. Synthetic microscopy volumes, Isyn, nuclei

mask ground truth volumes, Imask,gt, and detection ground truth

volumes, Idet,gt, need to be generated. We start by generating a

random 3D nuclei mask volume and then use it to generate the

synthetic volume. To generate Imask,gt we develop two approaches:

the first approach produces N synthetic spherical nuclei and the

second approach produces elliptical nuclei based on nuclei structures

in Iorig. For the first approach the ith synthetic nuclei, Imask,i, is

generated as a sphere with a randomly selected radius, ri, between

rmin and rmax, and centered at a randomly selected coordinate,

Cdet,i, where 1 ≤ i ≤ N . Simultaneously, the ith central region,

Idet,i, is generated where a central region of a nucleus is defined

as a sphere inside the nucleus where the centroid of the central

region matches to the centroid of the nucleus. We intentionally set the

radius of Idet,i to be
ri
2

to avoid multiple connected central regions

although their corresponding synthetic nuclei may be touching. Once

N synthetic nuclei and their central regions are produced, they

are added to Imask,gt and Idet,gt sequentially where Imask,gt and

Idet,gt are initialized to zero. If Imask,i overlaps with any previous

synthetic nuclei in Imask,gt, then Imask,i and Idet,i are not added

to Imask,gt and Idet,gt, respectively.

For the second approach Imask,i is generated as an ellipsoid with

randomly and independently selected three semi-axes between rmin

and rmax, randomly rotated in x, y, and z-axes, and centered at a

randomly selected coordinate, Cdet,i. In our experiments we used

both approaches for generating synthetic images.

Once the nuclei mask ground truth volume, Imask,gt, and the

detection ground truth volume, Idet,gt, are generated, we use the

SpCycleGAN to generate the corresponding synthetic volume, Isyn.

For our experiments we generated 20 sets of synthetic volumes with a

size of 128×128×128. Figure 2 shows examples of a real microscopy

volume, a synthetic microscopy volume, and synthetic ground truth

volumes visualized by Voxx [20], respectively.

(a) (b) (c) (d)

Fig. 2. Example volumes (a) real microscopy volume (b) synthetic microscopy
volume (c) nuclei mask ground truth volume (d) detection ground truth volume

B. Nuclei Detection and Binary Segmentation

Fig. 3. Our first CNN architecture (see Figure 1)

Our first CNN used for nuclei detection and binary segmentation

outputs nuclei center locations, Cdet, and a nuclei mask volume,

Imask (Figure 1). This CNN is shown in more detail in Figure 3 and

uses a modified 3D U-Net architecture [13]. Cdet can be selected by

finding centroids of elements of Idet. To avoid false-detection, labels

in Idet are labeled as background if Imask at the same voxel locations

are labeled as background. Also, components with the number of

voxels less than T are not considered in order to remove noise. A

3D convolutional layer consists of a convolutional operation with a

3×3×3 kernel with 1 voxel padding, 3D batch normalization, and a

rectified-linear unit (ReLU) activation function. Note that the Sigmoid

function is used as an activation function for the last convolutional

layers. In the encoder, 3D max-pooling layer uses 2× 2× 2 window

with a stride of 2. In the decoder, a 3D transposed convolutional



layer followed by 3D batch normalization and a ReLU activation

function is used. In addition, concatenation transfers feature maps

from the encoder to the decoder. The size of input/output volumes

are 64×64×64. If the size of Iorig is larger than 64×64×64, then

a 3D window with size of 64 × 64 × 64 is moved in the x, y, and

z-directions until the entire Iorig is processed [14]. During training,

the Adam optimizer [21] is used with a learning rate of 0.001. The

training loss function is a sum of the Binary Cross Entropy (BCE)

loss of the detection volume and the BCE loss of the nuclei mask

volume. The BCE loss, LBCE , is defined as LBCE(Iout, Igt) =
− 1

V

∑V

v=1

(

Igt(v) log Iout(v)+(1−Igt(v)) log(1−Iout(v))
)

where

Iout is the output volume, Igt is the ground truth volume, and V

is the total number of voxels in the volume. For the training set,

we used 160 synthetic volumes with a size of 64 × 64 × 64. Each

synthetic volume with a size of 128 × 128 × 128 generated in the

synthetic volume generation stage is divided into 8 volumes with a

size of 64× 64× 64.

C. Nuclei Instance Segmentation

Fig. 4. Our second CNN architecture (see Figure 1)

The goal of our method is nuclei instance segmentation which is

segmenting individual detected nuclei with distinct labels. Therefore,

the last step is to segment each nucleus in Imask at a detected

coordinate, Cdet, using our second CNN shown in Figure 4. First,

the jth nucleus is cropped and included in a 3D patch with a size of

32×32×32 from Imask centered at Cdet,j , denoted as Imask,pat,j .

Then the second CNN segments only the jth nucleus in Imask,pat,j

and removes other nuclei structures partially included in the patch.

Here, we denote the segmented nucleus as Iiseg,pat,j . Once the jth

nucleus is segmented, it is color-coded and inserted in Iiseg where

the center location of Iiseg,pat,j lies at Cdet,j .

The second CNN in Figure 1, M iseg , consists of a series of

3D convolutional layers. We use dilated convolutions [22] to have

receptive field larger than the size of the patch. From the kth feature

map, Ik, with a convolution filter, h, the (k + 1)th feature map,

Ik+1, is generated using a d-dilated convolution at a voxel v as

Ik+1(v) =
∑

u
Ik(v − du)h(u) where d is known as the dilation

factor. Figure 4 shows the dilation factors for the convolutional layers

such that the final receptive field is larger than 32 × 32 × 32. Note

the kernel size for the last convolutional layer of the second CNN

is 1× 1× 1. During training, the Adam optimizer [21] is used with

a learning rate of 0.001. The BCE loss is used as the training loss

function. 300 patches from Imask,gt centered at Cdet,gt are used for

the training.

III. EXPERIMENTAL RESULTS

Our method is tested on three rat kidney data sets. All data sets

consist of gray scale images of size X = 512 × Y = 512. Data-I

consists of Z = 512 images, Data-II of Z = 415, and Data-III of

Z = 45. To match resolution in z-direction to resolution in x and

y-directions, Data-II is downsampled in z-direction by a factor of 2

and Data-III is linearly interpolated in z-direction by a factor of 2.

rmin = 4, rmax = 6, and N = 1000 with a spherical model and

T = 10 for Data-I, rmin = 6, rmax = 9, and N = 200 with an

ellipsoidal model and T = 20 for Data-II, and rmin = 6, rmax = 9,

and N = 50 with a spherical model and T = 30 for Data-III are

used, respectively. Note that the size of synthetic nuclei for Data-I is

small, so the size of patches during nuclei instance segmentation is

reduced to 16×16×16 and the fourth convolutional layer in M iseg

is removed. Figure 5 shows original images and segmented images

for Data-I, Data-II, and Data-III.

(a) (b) (c)

(d) (e) (f)
Fig. 5. Original and segmented images in Data-I, Data-II, and Data-III (a)

I
orig
z97 for Data-I, (b) I

orig
z403 for Data-II, (c) I

orig
z14 for Data-III, (d) I

iseg
z97 for

Data-I, (e) I
iseg
z403 for Data-II, (f) I

iseg
z14 for Data-III

Our method was compared to other segmentation methods using

object-wise evaluation criterion [23]. The other segmentation methods

include Squassh [7], watershed [3], our previous detection and

segmentation method [15] that we will denote as Purdue1, and

our previous segmentation method using a SpCycleGAN [18] that

we will denote as Purdue2. Note our method in [18] generates

binary segmentation masks but cannot label nuclei distinctly. To

label touching nuclei distinctly, we added a post-processing step in

Purdue2 using morphological operations with a 3D erosion, a 3D

connected component for color-coding, and a 3D dilation with a

sphere of radius of 1 used as the structuring element. For the object-

wise evaluation, Precision (P ), Recall (R), and F1 score (F1) are

defined as P = NTP

NTP +NFP
, R = NTP

NTP +NFN
, and F1 = 2PR

P+R
,

where NTP , NFP , and NFN are the number of true positive objects,

the number of false positive objects, and the number of false negative

objects, respectively. A segmented nucleus is defined as a true positive

object if it intersects at least 50% of the corresponding ground truth

nucleus. Otherwise, it is defined as a false positive object. A ground

truth nucleus is defined as a false negative object if it intersects less

than 50% of the corresponding segmented nucleus or there is no

corresponding segmented nucleus. In our evaluation, we generated

a 3D ground truth volume, I
gt

(193:320,193:320,31:94) , using ITK-SNAP

[24] from Data-I with size of 128× 128× 64 containing 283 nuclei.

Note that any components whose number of voxels is less than 50

are removed on I
iseg

(193:320,193:320,31:94) and I
gt

(193:320,193:320,31:94) to

remove partially included nuclei on the boundary of the subvolume.

Table I and Figure 6 show the object-based evaluation and the

segmentation results visualized by Voxx [20] of other methods and

our new proposed method for Data-I, respectively. Squassh [7] cannot

distinguish nuclei and non-nuclei structures and cannot successfully

separate touching objects. For watershed [3], Iorig is first binarized

by a manually-selected threshold value of 64. Thresholding cannot

distinguish nuclei and non-nuclei structures and watershed technique

over-segments foreground region. Purdue1 can reject non-nuclei

structures but still have a poor F1 score. Purdue2 can generate an

accurate binary segmentation mask but cannot separate all touching

nuclei. Our proposed method, detecting the locations of nuclei and

individually segmenting nuclei in 3D patches using the SpCycleGAN,

can successfully segment and separate nuclei.



TABLE I
OBJECT-WISE EVALUATION FOR VARIOUS METHODS FOR DATA-I

Precision Recall F1 score

Squassh [7] 85.07% 20.14% 32.57%

Watershed [3] 51.14% 92.13% 65.78%

Purdue1 [15] 68.35% 90.22% 77.78%

Purdue2 [18] 91.20% 82.01% 86.36%

Proposed Method 93.47% 96.80% 95.10%

(a) (b) (c) (d)

(e) (f) (g)
Fig. 6. Comparison of other segmentation methods and our proposed method
of Data-I (a) original volume, (b) ground truth volume, (c) Squassh, (d)
Watershed, (e) Purdue1, (f) Purdue2, (g) our proposed method

IV. CONCLUSIONS

This paper presented a nuclei instance segmentation method using

a center-extraction technique to detect the center locations of nuclei.

We individually segmented nuclei in 3D patches surrounding the

nuclei. Our method can successfully segment nuclei visually and

numerically. In the future we plan to develop a synthetic volume

generation model which can produce synthetic nuclei with other

shapes.
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