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Abstract

Heart transplant rejection is one major threat for the survival of patients with a heart transplant. 

Endomyocardial biopsies are effective in showing signs of heart transplant rejection even before 

patients have any symptoms. Manually examining the tissue samples is costly, time-consuming 

and error-prone. With recent advances in deep learning (DL) based image processing methods, 

automatic training and prediction on heart transplant rejection using whole-slide images expect to 

be promising. This paper develops an advanced pipeline for quality control, feature extraction, 

clustering and classification. We first implement a stacked convolutional autoencoder to extract 

feature maps for each tile; we then incorporate multiple instance learning (MIL) with 

dimensionality reduction and unsupervised clustering prior to classification. Our results show that 

utilizing unsupervised clustering after feature extraction can achieve higher classification results 

while preserving the capability for multi-class classification.
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I. INTRODUCTION

Cardiac allograft rejection is the primary factor limiting long-term survival for patients with 

heart transplant [1]. In order to prepare for a treatment plan after the surgery, early detection 

is required to identify rejection types and grades. One common rejection type is acute 

cellular rejection (ACR) [2]. Usually, this happens in the first three to six months when part 

of the immune system, T-cells, attacks the cells of the new heart. The other non-chronicle 

rejection type is humoral rejection, also known as acute antibody-mediated rejection. This 

type of rejection occurs since antibodies may injure the blood vessels of patients’ body. Each 

type of rejection has three grades, based on the level of rejection. Identifying the type and 

grade of rejection is essential in diagnosis.

Heart biopsies can effectively detect heart transplant rejection before the patients have any 

symptoms [3]. Manually examining pathological whole-slide images (WSI) by the expert 

pathologist is time-consuming, costly and error-prone while computer-aided diagnosis using 

whole-slide imaging has proven its usefulness in the prediction of heart transplant rejection.

Feature extraction is one major focus of pathological image processing. Spatially localized 

features of color, shape, and texture are widely utilized for non-DL based feature extraction 

on pathological whole-slide images. Barker et al. [4] extracted a total of 227 color and 

shape-based features from brain tumor pathological WSI tiles prior to WSI-level 

classification using the elastic net and weighted voting. Tong et al. [5] extracted 461 features 

such as nuclear density and grey level co-occurrence matrix (GLCM) from heart transplant 

WSIs before merging and classifying these features using deep neural networks with 

dropout. Dooley et al. [6] pointed out that additional object-level and pixel-level features 

could be extracted from the heart transplant WSIs. These features include the locations of 

foci of infiltrates and percent of monocyte inflammation, which specifically describe the 

different types and grades of heart transplant rejection. However, understanding these 

features could be theoretically challenging and extracting them could be time-consuming. 

Some of these features can only be applied to pathological WSIs of a certain disease.

Meanwhile, the DL based, convolutional autoencoder (CAE) has also been used for feature 

extraction. Makhzani and Frey proposed the convolutional winner-take-all autoencoder in 

[7] for feature representation. By using a non-symmetric, hierarchical autoencoder whose 

encoder consists of several convolutional layers and decoder consists of a shallow, large-size 

and linear deconvolutional layer, both lifetime (temporal) sparsity and spatial sparsity can be 

learned for each feature map. Competitive classification performance was achieved on 

MNIST, CIFAR-10, and ImageNet. Zerhouni et al proposed DictiOnary Learning 

Convolutional autoEncoder (DOLCE) [8] to generate a signature representative of 

pathological images. The architecture of CAE is similar to that in [7], consisting of a multi-

layer encoder and a one-layer decoder. By soft assigning each tile to a set of dictionary 

elements, this deep-learning based feature extraction method outperformed state-of-art 

results on tumor imaging classification.

On the other hand, since tile-level labels are not provided, we cannot directly perform 

classification on each tile. With only image-level labels, we categorize the problem into the 
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second type of weakly-supervised learning that only coarse-grained labels are given [9]. 

Thus, we need to incorporate multiple instance learning before classification. Durand et al. 

[10] proposed the WELDON model to aggregate the extracted tile-level features (local 

feature descriptors) into image-level features (global feature descriptors) and selected top 

instances and negative evidence for the classifier. Courtiol et al. [11] modified the 

WELDON model into CHOWDER by applying one-dimensional convolution on local 

feature descriptors to generate global feature descriptor. By selecting the top instances and 

negative evidence from the global feature vector, CHOWDER is successful in binary 

classification through end-to-end training, yet its capability of multi-class classification was 

not proven.

In this project, we proposed an automated pipeline (shown in Figure 2) to perform WSI-level 

weakly-supervised classification after extracting features from unlabeled tiles. Even on a 

small sample size of labeled WSIs, through using stacked CAE for feature extraction and 

unsupervised clustering prior to classification, this work increased the classification 

accuracy. Besides, this pipeline can be extended to multi-class classification.

The rest of paper is organized as follows: in Section II, we briefly introduce our data set. In 

Section III, we explain the details of our quality control, stacked CAE, clustering and 

classification as our methodology. In Section IV, we show the experimental results. In 

Section V, we discuss the results from the previous section, the advantage of our pipeline 

and possible improvements in future work.

II. DATASET

Children’s Healthcare of Atlanta (CHOA) provided us with 43 digitized whole-slide images 

from endomyocardial biopsies stained with hematoxylin and eosin (H&E) obtained from 

pediatric heart transplant patients. These whole-slide images are broken into smaller tiles of 

the size of 512 × 512 pixels. Each whole-slide image has 20,000 to 80,000 tiles.

Annotation grades of antibody-mediated rejection (AMR) and acute cellular rejection (ACR) 

were implemented by an expert cardiologist for each whole-slide image. Out of 43 whole-

slide images, 18 were assigned to no rejection class; for the remaining 25 whole-slide 

images that rejection presents, both AMR and ACR present in 14 biopsies, only AMR 

presents in 9 biopsies and only ACR presents in 2 biopsies. We decided to perform binary 

classification, rejection vs. no rejection, other than multi-class rejection grade classification 

due to the limited size of dataset.

III. METHODS

A. Quality Control and Color Normalization

Our quality control consists of an empty tile check step and a color normalization step (see 

Figure 3). The empty tile check is introduced before applying color normalization. A tile 

will be eliminated from further analysis if its mean and deviation of each color channel fail 

to reach a certain threshold. This step is to remove “all white background” empty tiles that 

do not capture any tissues.

Zhu et al. Page 3

IEEE EMBS Int Conf Biomed Health Inform. Author manuscript; available in PMC 2020 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Then we adopted “VB-Reinhard-Weighted” color normalization proposed by Magee et al. 

[12]. The core algorithm is the Variational Bayesian Gaussian Mixture (VBGM) model for 

pixel-level color segmentation. The variational (EM-like) estimation process was 

implemented to maximize the posterior probability that each pixel of the tile belongs to one 

of the three components (two stains and background). Figure 4 shows color normalization 

results.

B. Convolutional Autoencoder (CAE)

Fully connected autoencoder ignores the 2D image structure, introducing redundancy in the 

parameters and causing features to be global. Convolutional autoencoder, however, preserves 

spatial locality through sharing weights among all locations of input [13].

Our stacked CAE architecture shows in Figure 5: the encoder consists of four sets of 2D 

convolution layer, activation layer (“Relu”) and max-pooling layer; the decoder consists of 

four sets of 2D convolution layer, activation layer (“Relu”) and up-sampling layer. For each 

convolution layer, a kernel of size 3×3 is adopted to capture non-linear features of given 

tiles. The use of max-pooling layers increases the desired nonlinearity in feature extraction. 

Cross-entropy is used as the loss function when reconstructing each tile; feature map after 

50 iterations has the size of 32×32×2.

C. Multiple Instance Learning (MIL)

We incorporated multiple instance learning before classification on the unlabeled tiles. For 

baseline, we aggregated local features and selected the top instances as well as the negative 

evidence; for the proposed method, we applied K-means clustering to group feature vectors 

of all tiles from the same WSI into several clusters and generated a normalized distribution 

vector.

The pipeline of our baseline is depicted in Figure 1. Similar to WELDON in [10], we 

aggregated all local feature descriptors of the same tile to be the global features. Then, we 

adopted the top instances and negative evidence by selecting the largest and smallest R 

entries from the global feature vector. These 2R top instances and negative evidence are 

features for our classifier.

Prior to cluster all local feature descriptors, we performed dimensionality reduction to only 

keep the top ranking features. Here, we used principal component analysis (PCA) to keep 

the principal components in each tile’s feature vector that explained 95% of variance.

We performed K-means clustering on the reduced feature vectors. We first stacked these 

local feature vectors from all whole-slide images in the training set. We then calculated the 

Calinski and Harabaz score [14] to find the optimal number of clusters. This score is the 

ratio between the within-cluster dispersion and the between-cluster dispersion. A larger 

score indicates a better clustering performance. Thus, we chose the number of clusters that 

generated the largest score.

We applied the same K-means clustering model with the chosen number of clusters on the 

local feature vectors of each whole-slide image. Consequently, all whole-slide images in the 
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training set and testing set shall have a certain number of tiles (local feature vector) in each 

cluster. We normalized the number of tiles to the total number of tiles for each whole-slide 

image to generate a normalized distribution vector, indicating the percentage of tiles in each 

cluster. These distribution vectors are the features for the classification described in section 

3.3.3.

We used a multi-layer perceptron classifier for classification with five-fold cross validation. 

The four hidden layers have 200, 100, 50 and 25 hidden neurons respectively.

IV. RESULTS

Similar to CHOWDER, we selected 1, 10, and 100 top instances and negative evidence from 

the local feature descriptors. Baseline tends to perform better on classification with more 

instances selected. As shown in Table 1, our clustering method has higher mean value and 

lower standard deviation of classification accuracy and AUC score.

V. DISCUSSION

In [6], 461 hand crafted features led to the highest classification accuracy of 70%. Utilizing 

convolutional autoencoder for feature extraction gave rise to an accuracy of 72.2%. The 

improvement is not significant, largely due to the small data size we have. Stacked CAE, 

nevertheless, has shown its effectiveness in feature extraction, achieving higher accuracy 

with carefully designed, hand-crafted object-level and pixel-level features extraction. 

Consequently, this feature extraction process is more scalable to much larger data size, and 

more robust on different WSI datasets.

Meanwhile, the proposed clustering method achieve higher accuracy and AUC score than 

baseline, which was inspired by the state-of-art WELDON and CHOWDER model. Besides, 

the proposed clustering method preserved the capability of multi-class classification.

Improvement can be made through adopting a pre-trained deep convolutional neural network 

for feature extraction. Furthermore, K-means clustering can be replaced with a deep 

clustering algorithm. In this way, we can perform end-to-end training across the entire 

pipeline.

The limitations of this study are the assignment of rejection grade to the whole slide and the 

sample size. We anticipate the performance of the method to significantly improve with 

larger sample size and further refinement of the classification. We anticipate to validate the 

study using a prospectively acquired robust data set and to test the performance at finer 

granularity rather than the binary classification used here.
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Fig. 1. 
Pipeline for baseline approach through feature aggregation and top instance selection.
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Fig. 2. 
Pipeline for proposed approach through feature selection and clustering.
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Fig 3. 
Preprocessing, including empty tile check and color and normalization.
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Fig. 4. 
Color normalization results using “VB-Reinhard-Weighted” method.
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Fig. 5. 
Architecture of Convolutional Autoencoder. Convolutional layers have kernel size of (3,3), 

and filter size 16, 8, 4, 2, and 2, 4, 8 and 16 respectively.
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Fig. 6. 
Visualization of clustering on titles.
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Table 1.

Classification results for baseline and proposed method. For both accuracy and AUC, average and standard 

deviation values are calculated.

Method # Instances Accuracy AUC

Baseline 1 0.578 ±0.130 0.508 ±0.089

10 0.608 ±0.130 0.558 ±0.126

100 0.697 ±0.114 0.659 ±0.137

Clustering Method 0.722 ±0.115 0.713 ±0.109
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