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Abstract—COVID-19 causes significant morbidity and mortal-
ity and early intervention is key to minimizing deadly complica-
tions. Available treatments, such as monoclonal antibody therapy,
may limit complications, but only when given soon after symptom
onset. Unfortunately, these treatments are often expensive, in
limited supply, require administration within a hospital setting,
and should be given before the onset of severe symptoms. These
challenges have created the need for early triage of patients likely
to develop life-threatening complications. To meet this need, we
developed an automated patient risk assessment model using
a real-world hospital system dataset with over 17,000 COVID-
positive patients. Specifically, for each COVID-positive patient,
we generate a separate risk score for each of four clinical
outcomes including death within 30 days, mechanical ventilator
use, ICU admission, and any catastrophic event (a superset of
dangerous outcomes). We hypothesized that a deep learning
binary classification approach can generate these four risk scores
from electronic healthcare records data at the time of diagnosis.
Our approach achieves significant performance on the four tasks
with an area under receiver operating curve (AUROC) for any
catastrophic outcome, death within 30 days, ventilator use, and
ICU admission of 86.7%, 88.2%, 86.2%, and 87.8%, respectively.
In addition, we visualize the sensitivity and specificity of these
risk scores to allow clinicians to customize their usage within
different clinical outcomes. We believe this work fulfills a clear
clinical need for early detection of objective clinical outcomes
and can be used for early screening for treatment intervention.

I. INTRODUCTION

Several treatments are available to improve COVID-19
patient outcomes. These include medications that help the
body fight the infection early on in the course of the illness,
such as monoclonal antibody treatments, preventing high-
risk patients from progressing to more severe diseases. It is
important to quickly establish a patient risk of severe COVID-
19 outcomes to provide an early treatment that maximizes
patients’ chances of recovering [1], [2]. Thankfully, electronic
health records (EHR) provide efficient access to patient data
which has created unprecedented opportunities to investigate
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TABLE I
PATIENT DEMOGRAPHICS

Demographics Patients (%) Any Catastrophic (%) Ventilator (%) ICU (%) Death30 days (%)

Sex
Male 7694(43.2) 988(55.5) 562(57.2) 892(55.5) 249(55.5)
Not Male 10111(56.8) 793(44.5) 420(42.8) 715(44.5) 200(44.5)

Race
African American 7367(41.4) 949(53.3) 565(57.5) 865(53.8) 208(46.3)
Asian 506(2.8) 55(3.1) 29(3) 51(3.2) 13(2.9)
Caucasian 5050(28.4) 576(32.3) 279(28.4) 502(31.2) 183(40.8)
Hispanic 964(5.4) 127(7.1) 67(6.8) 125(7.8) 20(4.5)
Other 3918(22) 74(4.2) 42(4.3) 64(4 25(5.5)

Total 17805 1781 982 1607 449

the properties of clinical events using data-driven approaches
[3].

Clinical decision support systems enabled by artificial intel-
ligence (AI) have been shown to successfully develop patient-
specific mortality risk assessments by analyzing available
patient clinical data [4]. This work focused on elucidating the
clinical features most associated with patient mortality using
generalized linear modeling (GLM). They found that past
medical history, specifically past history of pneumonia, was an
important predictor of mortality. In addition, recent work has
also focused on COVID-positive patient risk assessment using
EHR early in the disease course. Heldt et al. sought to predict
which COVID-positive patients would require mechanical ven-
tilation, had to be admitted to an intensive care unit (ICU), or
died due to complications [2]. They used XGboost, a machine
learning technique which takes advantage of model boosting
and tree-based modeling, to achieve an AUROC of 84%.
Many other related studies [5]–[7] of COVID-19 related health
outcomes compile demographic statistics offering information
focused on single risk factors.

We expand upon existing works by introducing a simple
yet effective data-driven approach to asses patient risk for
four severe COVID-19 complications. Specifically, we convert
the risk assessment task into a binary classification problem
to predict whether patients will experience severe COVID-
19 complications based on EHR data available during initial
COVID-19 diagnosis.

To this end, we generate four separate risk scores for each
patient using a dataset of over 17,000 COVID-19 patients
and 71 clinical features. These data are obtained from de-
identified patients in the Emory University Hospital system.
We then implement a deep learning model to generate four
negative clinical outcome risk scores for COVID-positive
patients. Precisely, we predict the risk of death within 30 days,
ICU admission, mechanical ventilation, and a more general
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”any catastrophic outcome” score encompassing all available
negative outcome metrics available (death within 90 days, any
hospital admission within 90 days, and ventilator use).

We demonstrate that our proposed method outperforms sev-
eral baseline models and achieves state-of-the-art performance
for risk prediction tasks with an area under receiver operating
characteristic (AUROC) curve for any catastrophic risk pre-
diction of 86.7% and 88.2% for future mechanical ventilator
requirement. We believe this work lays the foundation for
rapid patient risk assessment for aggressive intervention and
treatment prioritization.

II. DATASET

We used a dataset composed of 17,805 unique patients from
the Emory University Hospital system who tested positive
for COVID-19 (Table I). A total of 71 clinical features
were associated with each patient from the electronic health
records from the time of their diagnosis. Specifically, 26
drug categories, 21 vitals and labs, 16 chronic conditions, 6
demographic, and 2 prior hospital visit features (number of
prior ER visits and number of prior hospital admissions) were
available. In addition, four post-COVID diagnosis binary clin-
ical outcome variables were obtained for use in generating risk
scores including death within 30 days (death30), mechanical
ventilator use (vent), and ICU admission. In order to generate
a more general patient risk score, a binary outcome variable
called ”anyCatastrophic” was created and set to 1 if the patient
died within 90 days after diagnosis, used a ventilator, was
admitted to ICU, or was admitted to hospital within 90 days.

III. APPROACH

A. Feature Selection

We made as few assumptions as possible about the effects of
features on clinical outcomes and allowed all available clinical
features at the time of diagnosis to be included in the model if
they were not excluded after quality control. This quality con-
trol included data cleanup and outlier removal. We removed
discrete features with a non-zero value in less than 1% of
patients to eliminate the noise that may be introduced in the
data by rare, or incorrectly-entered, medications or conditions
(i.e. potential outliers). We also removed any features that were
missing in more than 75% of patients because these features
may not be reliably filled in with data imputation.

After selection, we retained 56 of the 71 original features.
These include 17 drug categories, 17 vitals and labs, 14
chronic conditions, 6 demographic, and 2 prior hospital visit
features.

B. Data Preprocessing

Patients in the original dataset were randomly assigned into
training (60%), validation (20%), or testing (20%) datasets.

To preprocess the data, we normalized the continuous
features and used k-Nearest Neighbors (KNN) imputation
(K=5) with attention paid to prevent data leakage from the
test set into the training and validation sets, and also prevent
validation data leakage into the training dataset. Training set

Fig. 1. Histogram of baseline model validation results after training on the
training dataset. Gaussian Naive Bayes (NB) achieves an AUROC of 72.6%,
outperforming all other baseline classifiers. Results show the best model
performance after hyperparameter tuning.

Fig. 2. Optimized risk assessment model architecture. Hyperparameter tuning
was conducted on number of model layers, learning rate, and dropout intensity.
Four models are trained using this architecture (one for each clinical outcome).
Input is 56 clinical features obtained at time of COVID diagnosis from the
patient’s electronic health records. Model output is a number between zero
and one representing the risk score for a given patient.

preprocessing did not use data from either validation or test
sets. For the validation set, we normalized and imputed on
the combined training and validation sets to mirror the real-
world approach. The testing dataset was preprocessed using
data from the full dataset. This strategy reflects the real-world
implementation of our model where training data is available
during preprocessing and contains patients from the same
hospital system to inform normalization and imputation.

C. Baseline Models

To establish baseline classification performance for our
four clinical outcomes, we trained nine of the most common
machine learning classifiers: support vector machines (SVMs)
with four different kernels (linear, radial, polynomial, and
sigmoid), random forest, AdaBoost, Gaussian Naı̈ve Bayes,
and K-Nearest Neighbors (KNN). We used ‘anyCatastrophic’
as the outcome variable for hyperparameter tuning and per-
formance measurement because it encompasses all negative
outcomes relevant for meaningful patient risk assessment.
When comparing results for the validation set, we found that
Gaussian Naı̈ve Bayes outperformed the others with an area
under the receiver operating curve (AUROC) of 72.6%. Figure
1 shows the AUROC for each shallow learning classifier.

D. Deep Learning Classifiers

To improve upon our baseline models, we developed a
deep learning model due to its proven track record in clinical
decision support [8]. Hyperparameter tuning was conducted
on number of hidden layers, dropout intensity, and learning
rate. Dropout intensity refers to the probability of setting each



0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91
Training AUROC

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

Va
lid

at
io

n 
AU

RO
C

Validation vs Training AUROC
M1: Layers:3 Dropout:0.0 LR:E-3
M2: Layers:3 Dropout:0.2 LR:E-3
M3: Layers:3 Dropout:0.4 LR:E-3
M4: Layers:3 Dropout:0.4 LR:E-4
M5: Layers:3 Dropout:0.6 LR:E-3
M6: Layers:3 Dropout:0.8 LR:E-3

M7: Layers:2 Dropout:0.0 LR:E-3
M8: Layers:2 Dropout:0.2 LR:E-3
M9: Layers:2 Dropout:0.4 LR:E-3
M10: Layers:2 Dropout:0.6 LR:E-3
M11: Layers:2 Dropout:0.8 LR:E-3

Fig. 3. Validation vs. Training Performance across deep learning model
hyperparameters. Models with three hidden layers slightly outperformed those
with two. Increasing dropout intensity slightly improved model performance.
Learning rate (LR) of 10E-4 was tested for the best performing model, but
resulted in slower training times with no significant improvement in validation
performance.

input to zero in the first dropout layer. The first dropout layer
was always 10% more than the second dropout layer. We
used ‘anyCatastrophic’ performance to compare with baseline
models. Parameter optimization was conducted on the training
dataset and performance (AUROC) was measured in the
validation dataset. To reduce the effects of class imbalances,
the label with the most samples was randomly undersampled
within each epoch to match the size of the smaller label
dataset. Validation versus training performance for each set of
hyperparameters was examined to identify the best model for
testing (Figure 3). The highest validation AUROC was 88.1%
for Model 3. We found the hyperparameter set that yielded
the highest validation AUROC had three hidden layers, 0.5
intensity for the first dropout layer, 0.4 intensity for the second
dropout layer, and a learning rate of 1E-3 (Figure 2).

Our deep learning classifier outperformed all the baseline
classifiers by a considerable amount on the validation data.
Therefore, we chose the deep learning classifier on the final
testing set. Using the optimal hyperparameters, we trained
four deep learning classifiers on the combined training and
validation sets, one model for each outcome variable (‘any-
Catastrophic’, ICU admission, ventilator use, and death within
30 days of diagnosis). Final model performance was measured
on the unseen test dataset using AUROC, MCC, sensitivity,
and specificity (Figure 5).

IV. RESULTS

Figure 4 shows the AUROC for the testing set for each of
these outcome variables. Since the model outputs a continuous
value between 0 and 1, we need to select a threshold to

Fig. 4. Area under receiver operating curve (AUROC) of our four models
achieves over 85% on the unseen test dataset. Orange lines represent the theo-
retical results of an uninformative model. Blue lines represent the relationship
between true positive rate (TPR) and false positive rate (FPR) of our models.

(a) (b)

(c) (d)

Fig. 5. Risk assessment model sensitivity, specificity, and MCC when applied
to an unseen test set. As the risk score increases, specificity for the positive
class (poor clinical outcome) increases as sensitivity decreases, as expected. a)
Prediction of any catastrophic outcome achieves a maximum MCC of 41.9%.
around risk score of 80% b) Ventilator classification achieves a maximum
MCC of 34.8%. c) Death within 30 days model obtains 25.4% MCC. d)
ICU admission classifier reaches 38.1% MCC. Clinicians may select the
optimal risk score thresholds based on their clinical need by understanding
the relationship between sensitivity and sensitivity.

classify the final output as a binary value. Figure 5 shows the
sensitivity, specificity, and Matthews Correlation Coefficient
(MCC) for different threshold values for each of the outcome
variables. The model yields high AUROC scores for each
of the outcome variables, as well as high sensitivity and
specificity scores across different thresholds for each of the
outcome variables.

V. DISCUSSION AND CONCLUSION

In this work, we developed a risk score for four clinical
outcomes using EHR data available at time of diagnosis to as-



sist healthcare workers in prioritizing patients for monoclonal
antibody treatment. The risk scores were developed using deep
neural networks that achieved state-of-the-art performance for
this task (Figure 5). We used a real-world clinical dataset
with over 17,000 patients from the Emory University Hospital
system. Available data for patient risk assessment include
past diagnoses and prescriptions, demographics, and basic
laboratory, and vital sign measurements.

Our initial training endpoint was the binary label, ’any-
Catastrophic’, which encompassed any patients that a) required
mechanical ventilation, b) were admitted to the ICU, c) died
within up to 90 days of their COVID-19 diagnosis, or d)
were admitted to a hospital within 90 days of their COVID-
19 diagnosis. Using this binary label, we trained a total of 9
different shallow learning models, of which Gaussian Naive
Bayes had the best performance in the validation set, with an
AUROC of 72.6%. Following this, we designed 11 different
deep learning models with the different architectures shown
in Figure 3, and selected the model with the best performance
on the validation set (model 3, AUROC of 88.1%). This
performance constitutes a 15.5% improvement over our best
baseline classifier.

To determine the efficacy of our model to effectively detect
future negative clinical outcomes, we separately assessed
classification performance for the following: a) patients that
required mechanical ventilation (’vent’), b) patients that died
within 30 days after their COVID-19 diagnosis (’death30’),
and c) patients that were admitted to the ICU (’ICU’). We
examined model performance using AUROC, MCC, sensitiv-
ity, and specificity (Figures 4 and 5). Interestingly, for the
test set, the AUROC of the more granular labels ’vent’ and
’death30’ (88.2% and 87.8%, respectively) were higher than
the test set AUROC of ’anyCatastrophic’ (86.7%), suggesting
that the model is generalizable to labels that were not used
during hyperparameter tuning.

Finally, an important decision was how to present the overall
output of the classifier. While a binary output could simplify
the output, we reasoned that it would be easier for clinicians to
interpret if the output were to be provided as a numeric value
from 0 to 1, obtained using the sigmoid activation function on
the output layer of the neural network (Figure 2). This severity
score can then be generated for each patient. Using a display,
such as those shown in Figure 5, a clinician would be able to
customize their use of the score to fit their goal (e.g. screening
vs. medication administration).

There are several potential future directions to take this
work. For example, it will be important to find ways to enhance
the interpretability of the model. Out of the total of 56 features
used by the model, it would be of interest to identify the most
important ones used for each classification task. Methods such
as local interpretable model-agnostic explanations (LIME) [9]
or SHapley Additive exPlanations (SHAP) [10] can be used
to establish feature importance.

Another potential expansion on the current work may be to
make the model more robust to missing data. Several features
had to be removed because they had a high percentage of

missing data, but they could otherwise have been informative.
Even for the features that were retained, imputation can create
bias in the dataset by making assumptions on the underlying
data distribution. One way to increase the robustness of the
model might be to add dropout to the input layer during
training, such that a random subset of the features are initially
set to zero for each iteration. During testing of the trained
model, if there are features with missing data, they can be set
to zero without substantially affecting the performance, since
the model would have already been trained to manage this
issue.

Finally, we will seek to test the hypothesis that our ap-
proach can be generalized for use with other hospital datasets.
This will involve obtaining de-identified EHR from COVID-
positive patients from multiple healthcare systems. If success-
ful, our models have the potential to help clinicians across
institutions triage COVID-19 patients in order to provide more
targeted care to those at highest risk for severe complications.
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