
Segmentation of COVID-19 Lesions in CT Images
Joana Rocha*
INESC-TEC

Faculty of Engineering, University of Porto
Porto, Portugal

0000-0002-4856-138X

Sofia Pereira*
INESC-TEC

Faculty of Engineering, University of Porto
Porto, Portugal

0000-0001-6754-6495

Aurélio Campilho
INESC-TEC

Faculty of Engineering, University of Porto
Porto, Portugal

0000-0002-5317-6275

Ana Maria Mendonça
INESC-TEC

Faculty of Engineering, University of Porto
Porto, Portugal

0000-0002-4319-738X

*The first two authors contributed equally to this work.

Abstract—The worldwide pandemic caused by the new coron-
avirus (COVID-19) has encouraged the development of multiple
computer-aided diagnosis systems to automate daily clinical tasks,
such as abnormality detection and classification. Among these
tasks, the segmentation of COVID lesions is of high interest to
the scientific community, enabling further lesion characterization.
Automating the segmentation process can be a useful strategy to
provide a fast and accurate second opinion to the physicians, and
thus increase the reliability of the diagnosis and disease strati-
fication. The current work explores a CNN-based approach to
segment multiple COVID lesions. It includes the implementation
of a U-Net structure with a ResNet34 encoder able to deal with
the highly imbalanced nature of the problem, as well as the
great variability of the COVID lesions, namely in terms of size,
shape, and quantity. This approach yields a Dice score of 64.1%,
when evaluated on the publicly available COVID-19-20 Lung CT
Lesion Segmentation GrandChallenge data set.

Index Terms—computer-aided diagnosis, corona virus, deep
neural network, medical imaging, radiology, thorax.

I. INTRODUCTION

The new coronavirus disease (COVID-19) has brought
devastating worldwide health consequences. As the pandemic
progressed, the scientific community quickly started to work
on several aspects of the situation, including disease diagnosis
and stratification. Considering that the manifestation of the
virus in the lungs is among the first signs of infection by
SARS-CoV-2 [1], detecting lung abnormalities early on is
crucial for clinical management and prognosis, which is why
it is a standard procedure for patients to undergo a Computed
Tomography (CT) scan. In fact, the CT is currently the gold
standard imaging technique to assess lung morphology and de-
tect several associated pathologies, and so it is commonly used
to validate emerging automated image analysis techniques [2].
The 3D data resulting from a scan can be analyzed as a whole
or alternatively via cross-sectional images (known as slices)
retrieved from the volume. Particularly in COVID positive
patients, the most common findings in CT scans are ground
glass opacities, even though the type and size of the lesions are

highly variable and might be correlated with several factors,
such as the severity of the infection or the patient’s age [1].

Computer-Aided Diagnosis (CAD) systems haven proven
to be highly valuable within a diverse range of clinical
applications in the past, and therefore it is not surprising
that these systems are now being developed for COVID-19
screening, with a strong focus on the analysis of medical
image data through deep learning techniques. Image-based
CAD systems often include a segmentation task, which seeks
to outline a Region of Interest (ROI) represented in the
image. Here, the end goal is to obtain segmentation masks for
COVID-related lesions in the images. This will later on allow
further characterization of the lesions, which can be crucial
for evaluating disease severity.

The current benchmark for image analysis are the convo-
lutional neural networks, and when it comes particularly to
medical image segmentation, the U-Net is one of the most fre-
quently employed architectures. Its U-shaped architecture has
the ability to extract relevant features from the input data and
precisely locate the ROI [3]. It is quite challenging to navigate
through the work developed in the context of CAD systems
for COVID-19 screening. First, the urgency of the matter
resulted in a boom of research papers entering the academic
literature, some of which are poorly reported and lack proper
peer-reviewing. Additionally, most studies developed so far use
relatively small data sets, most likely due to annotation and
privacy constraints. The lack of statistically relevant data and
prior knowledge on the disease puts the developed algorithms
and their performance scores at high risk of bias and excessive
optimism [4]. Nevertheless, several publications report the use
of deep learning approaches for COVID-19 lesion segmenta-
tion. Among them, the use of 3D methods based on a V-
Net architecture is a possible approach [5]. For instance, one
of the most relevant articles at the present moment develops
an architecture called VB-Net, which is an adaption of the
conventional V-Net [6]. It has gained attention due to its faster
execution time, achieved by its integrated bottle-neck structure.
Alternatively, opting for 2D approaches is also plausible for
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(a) Slice after trun-
cation and normal-
ization.

(b) Slice at the end
of the preprocess-
ing.

Fig. 1: Preprocessing stage result for a single CT slice. The HUs were truncated and the pixel intensities normalized (a).
Then, the image was center cropped, resized back to 512 × 512 pixels, and enhanced using the CLAHE technique (b).

reduced computational requirements [7], as exemplified in [8]
through the implementation of DeepLabv3. More recently, the
COVID-19 Lung CT Lesion Segmentation GrandChallenge
achieved very interesting results [9] for this particular exercise
that will be used as reference in the current work, whose
main contribution lies in the implementation of a 2D U-Net,
as a means to reduce the required computational power for
COVID lesion segmentation while maintaining a satisfying
model performance. A detailed overview of the data set and
framework is presented in Section II. The results are further
discussed in Section III, and the main conclusions presented
in Section IV.

II. METHODOLOGY

The data set employed in this work was provided in the
COVID-19-20 Lung CT Lesion Segmentation GrandChal-
lenge, whose annotation process resulted from the joint work
of the Children’s National Hospital (Washington DC, USA),
NVIDIA and National Institutes of Health (NIH). The data set
contains unenhanced chest CTs from a total of 199 patients
with positive RT-PCR for SARS-CoV-2, and ground truth 3D
annotations of COVID-19 lesions in the lungs [10].

A. Data Preprocessing

To improve the overall performance of the classifier, several
preprocessing steps enumerated in this section were defined
and implemented. Please note that the process will be de-
scribed for a specific patient, but was equally applied to the
remaining subjects. First, considering the axial plane, each CT
volume consists of multiple slices represented by 512 × 512
pixels and matching a single patient. It is important to high-
light that the current work focuses on a slice-by-slice approach,
rather than a straightforward 3D analysis of the data. For
this reason, each loaded grayscale image and corresponding
ground truth binary mask were decomposed into multiple 2D
slices. Additionally, the slices with corresponding null masks
were not regarded as input for further lesion delimitation, and
were discarded from this data set. The remaining images’
Hounsfield Units (HUs) were truncated, meaning that only
the intensities between -1000 and 400 were considered. By
doing so, foreign bodies (such as gold, steel, and copper) are
eliminated from the image, and thus it is easier to analyze
the lung structures. Besides truncating the HUs, the intensity

Fig. 2: Example of preprocessed masks, exhibiting the high
variability in terms of shape, size, and quantity of the lesions.

values were normalized to the [0,1] range. Considering that the
abnormalities are necessarily within the lung and all images
are centered, this ROI was further delimited by eliminating all
pixels in the outer frame that do not encompass these organs
and do not carry relevant information. After cropping the outer
pixels, the images were resized back to 512 × 512 pixels.
The same operation was applied to the corresponding masks.
Furthermore, the images were enhanced using the Contrast
Limited Adaptive Histogram Equalization (CLAHE) technique
to ease the identification of the lesions. The CLAHE technique
is an adaption of the standard histogram equalization technique
that improves the images’ contrast while simultaneously avoid-
ing noise amplification. Following the preprocessing stage,
the data set is composed of multiple enhanced 2D images
and masks per patient (Figure 1), totalling 4981 observations.
Furthermore, the four preprocessed masks displayed in Figure
2 draw attention to the high variability in terms of shape, size,
and quantity of the lesions present in this data set.

B. Experimental Setup

The patients were split into training, validation and test sets
to ensure a trustworthy model evaluation, in a way that images
belonging to a single patient cannot be present in multiple sets.
As such, the test set contains preprocessed images correspond-
ing to 30% of the patients, while the remaining data was used
to train and validate the model. More specifically, 5-fold cross
validation was used for hyperparameter optimization using
the training subjects. These percentage splits ensure that both
the validation and test sets have a wide representation of all
types of lesions that, as described in this section, present great
variability in terms of size, shape, and number. The images
in the training set were augmented to increase the number
of samples and prevent overfitting, by introducing shear and
zoom transformations, as well as vertical and horizontal flips.



TABLE I: Evaluation scores.

Publication Dice Jaccard
COVID-19-20
GrandChallenge*

66.6 ± 23.9 54.0 ± 23.6

Proposed U-Net 64.1 ± 26.4 52.1 ± 25.7

*https://covid-segmentation.grand-challenge.org/evaluation/
challenge-second-phase-new-data/leaderboard/

The segmentation was performed using a U-Net architec-
ture, since it is considered a state-of-the-art method designed
for biomedical image segmentation [3]. The encoder portion
of the network was built with a ResNet34 pre-trained on
ImageNet weights. The data set is highly imbalanced, with
approximately 99% of the total number of pixels belonging to
the negative class rather than to the class to be segmented, and
therefore the network was trained with a Dice-based loss. The
optimization of this objective function was performed using
the Adam optimizer with an initial learning rate of 10−4. In
addition to setting a batch size of 8 and a maximum number
of epochs of 100, several callbacks were considered to en-
hance the model’s performance - these include decreasing the
learning rate on plateau and interrupting the training routine
when the validation loss shows no further improvements. The
predictions were obtained using a final sigmoid activation
function, establishing a 50% probability threshold for the final
pixel classification.

III. RESULTS AND DISCUSSION

In order to assess the results, it is necessary to define a
specific evaluation system, and consequently decide on the
metrics that will be used for such purpose. In the current
work, the accuracy, precision, and recall, as well as the Dice
coefficient and Jaccard index were selected to further analyze
the ability of the network to make correct predictions in a
class imbalanced setting. Before presenting the results, it is
important to analyze the performance of the model during its
training routine, described in Section II. The loss exhibited a
convergent behavior and the training process ceased after 23
epochs. In addition, the model did not present any clear signs
of overfitting (28% training loss vs. 41% validation loss), and
yielded an average Dice score of 61.3% across all validation
folds.

The implemented algorithm reported a final test accuracy of
98.7%, recall of 62.4%, and precision of 80.6%. Looking into
the individual classes, the proposed methodology presented an
accuracy of 99.6% and 62.4% for the majority (background)
and minority classes, respectively. The results for the Dice
and Jaccard coefficients are displayed in Table I, and are
similar to the final scores in the COVID-19-20 Lung CT
Lesion Segmentation GrandChallenge leader board. While
these results cannot be directly compared, considering that
their methodology employed all available 3D data, it is still
valuable and relevant to present their values not only to
understand the achieved scores, but also the overall difficulty
of this particular segmentation exercise.

To illustrate the method’s performance, several examples
were selected and displayed in this section. Figure 3a-d shows
four slices from different patients in which the proposed
methodology exhibited a very satisfying performance, while
Figure 3e-h shows other cases in which the methodology
underperformed. The plots displayed in the mentioned figures
highlight the true positive pixels in green, false positive in
yellow, and false negative in red. This way, it is possible to
understand the differences between the achieved segmentation
and the ground truth masks.

Minding these results, one can infer that the model is able
to generalize and correctly predict positive pixels in spite of
the lesion’s size, shape, or quantity. When the model fails, it
misses a certain lesion (Figure 3e-g), or does not recognize
its full extent (Figure 3h). Even so, the results proved to be
highly consistent, as consecutive slices belonging to the same
patient exhibit similar segmentation masks (Figure 4).

IV. CONCLUSIONS

The successful segmentation of lung lesions in CT scans of
COVID-19 positive cases can be extremely useful for patient
diagnosis, prognosis and management. Moreover, being able to
do so in an automated fashion can bring crucial advantages in a
pandemic context, in which the medical and financial resources
are often scarce. The current work aimed to contribute to
the location and characterization of these lesions through
automated deep learning based segmentation, thus helping the
specialists in this highly relevant clinical task.

Consequently, the developed architecture faces three ma-
jor challenges: the inherent complexity associated with the
anatomical structures of the lung, the often noisy, blurred
and/or low contrasted nature of medical images, and the
significant class imbalance of the data set. To tackle these
difficulties, a slice-by-slice 2D approach is considered by
implementing a U-Net architecture with transfer learning (i.e.
with a pre-trained ResNet34 encoder). Overall, the network is
able to correctly segment abnormalities with diverse sizes and
shapes, and can easily be incorporated in a CAD workflow
following a detection step that removes the null slices. The
proposed approach is beneficial mainly in terms of required
computational power and more extensively documented in the
literature.

On the other hand, this approach may lead to loss of
inter-slice information, and ultimately to a sub-optimal per-
formance. The 2D methodology contributes to the great vari-
ability in the lesion types, considering that different slices of
a lesion imply smaller and larger representations of the same
abnormality. This is due to the fact that the CT slices that
do not contain any lesions are excluded from the framework,
which also impairs the reconstruction of the result back
into a 3D volume. For this reason, the network occasionally
miscalculates the lesion’s extent or misses smaller lesions.
Therefore, future work should focus on the integration of a
slice-wise classification step, prior to segmentation, capable
of automatically detecting normal slices and excluding them
from the lesion segmentation step, but save them for the



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Example of four slices in which the U-Net performed highly (a-d), and performed less satisfactorily (e-h). True positive
pixels in green, false positive in yellow, and false negative in red.

(a) (b) (c) (d)

Fig. 4: Example of patient-wise coherence in the segmentation results. True positive pixels in green, false positive in yellow,
and false negative in red.

posterior reconstruction of the result into a volume. This would
approximate the approach to a 3D scenario without having to
change the model’s architecture or use additional significant
computational resources.
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