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Abstract—Functional connectivity computed from
electroencephalograms (EEG) can be used to better
understand how the brain works. Unfortunately,
estimating such connectivity is fraught with many pitfalls
and can be confounded with artifacts due to volume
conduction, common sources, reference scheme, etc.
Devising a method to compute surrogate EEG that would
be free of functional connectivity but that would reliably
reproduce the effect of confounders such as volume
conduction would be invaluable for statistical inference on
functional connectivity. We developed such a method by
simulating EEG from estimated sources and by
reproducing the properties of local (but not long-range)
functional connectivity in intracranial recordings. We
present an example of how this approach can be used to
improve the estimation of functional connectivity in EEG.
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I. INTRODUCTION

The electroencephalogram (EEG) records neural
activity using scalp electrodes. For this to be possible,
the electric field generated by the neuronal sources has
to propagate through the different tissues of the head to
reach the scalp, a process referred to as volume
conduction. At the frequencies relevant for EEG
(typically < 100 Hz), the reactance of head tissues is
negligible such that volume conduction is essentially
instantaneous [1]. When comparing the activity picked
up by pairs of EEG electrodes to determine their
statistical dependence (i.e., functional connectivity), any
interdependence can be due to a mixture of 1) volume
conducted activity being propagated simultaneously to
both electrodes and 2) neuronal activity being
communicated between brain regions through bundles
of long-range axons relaying action potentials. The first
component is normally considered to be a confounder of
no interest while the second is the phenomenon of
interest when studying functional connectivity between
brain regions. To estimate the effect of the latter without
being biased by the former, the common approach is to
reject any instantaneous (unlagged) synchronization
between pairs of channels [2]. However, it is well
understood that although neural networks are linked
through delayed connections (i.e., synaptic transmission
and propagation of action potentials along axons are not
instantaneous), they can nevertheless synchronize with
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no lag due to reciprocal interactions between brain
regions [3]. To demonstrate the existence and
importance of zero-lag connectivity, we previously used
intracranial recordings which are known to be
susceptible to volume conduction only up to around 20
mm [4]. In doing so, we demonstrated robust and
ubiquitous zero-lag connectivity between long-range
(>100 mm) homotopic brain regions [5].

Since intracranial recordings and EEG are sensitive
to patterns of synchrony at different spatial scales, it is
yet unclear to what extent zero-lag connectivity is
important in EEG. Gaining more clarity on this topic is
not trivial since zero-lag synchrony is markedly more
difficult to study in EEG than in intracranial recordings
because volume conduction can propagate at least up to
100 mm in EEG [4]. A reliable method to obtain
surrogate EEG that faithfully captures the effect of
volume conduction without containing any functional
connectivity would be invaluable for this study. For
example, surrogate EEG could be used to remove the
contribution of volume conduction from estimated
connectivity. In this communication, we propose an
approach to computing such realistic surrogate EEG.

2. METHODS

A. Datasets

We used two open-access datasets in this study. The
first one contains intracranial recordings from 106
patients (54 males; mean age of 33.1 + 10.8 years) who
were candidates for surgical treatment of drug-resistant
epilepsy [6]. Only channels from brain regions
considered “very likely to be healthy” by a consensus of
two epileptologists we included. Recordings were
sampled at 200 Hz and filtered to the 0.5-80 Hz band.
Sixty seconds of artifact-free recording is available for
each recording channel (1772 in total) in wakefulness
and sleep. We used only the recording in wakefulness.

The second dataset (MPI-LEMON) contains
multimodal recordings (magnetic resonance imaging
(MRI), EEG, cognition, emotion, peripheral physiology)
in young (N=153, 25.143.1 years, range 20-35 years, 45
females) and elderly (N=74, 67.6+4.7 years, range
59-77 years, 37 females) healthy adults. We only used
the 10 first epochs (for computational reasons) of
eyes-open resting-state EEG for the subset of 82
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subjects who had structural MRI (T1lw and FLAIR),
digitized electrode positions, and EEG sampled at 250
Hz. EEG was recorded with a BrainAmp MR plus
amplifier and an active ActiCAP 62-channel net (Brain
Products GmbH, Gilching, Germany) following the
10-10 system and referenced to FCz. Electrode
positions were digitized using a Polhemus PATRIOT
system (Polhemus, Colchester, VT, USA) [7].

B. Source estimation and EEG simulation

We used the following approach to compute realistic
surrogate EEG that captures the dynamics of volume
propagation but contains no functional connectivity: 1)
estimate the EEG cortical sources, 2) remove any
functional connectivity between these sources, and 3)
simulate the scalp EEG that such source distribution
would generate. For this process, we used the fSaverage
head model, as available in MNE-Python. Although the
MPI-LEMON dataset includes structural MRI which
can be used to compute individual subject head models,
we used the fsaverage template to derive a solution that
does not depend on subject-specific MRI and is
therefore usable in any EEG studies with sufficient
sensor coverage to support proper source reconstruction.
We first co-registered the subject's electrode montages
to this head model (Fig. 1l.a) and we fixed the
orientation of the dipolar sources perpendicular to the
cortical mesh. Then, we computed the source
activations using a diagonal noise matrix and the
eLORETA inverse operator.
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Fig. 1. Validation of the source estimation and EEG simulation
process. a) Co-registration of the EEG channels with the fsaverage
head model. b) Comparison between a recorded EEG epoch and the
EEG simulated from the corresponding cortical sources (SNR=18.4
dB). ¢) Quality of the simulation (SNR) across epochs for 10 typical
subjects.

Using the same head model, we can simulate the
EEG that such a source distribution would produce and
verify that it reproduces accurately the recorded EEG
(Fig 1.b). The degree to which the simulation
successfully reproduce the original EEG can be assessed
by computing the following signal-to-noise ratio (SNR)

SNR:1Ob&0<X+y> 1

2x —y

with x and y being respectively the recorded and the
simulated EEG for a given epoch. The example shown
in Fig 1.b has a 18.4 dB SNR and it is representative of
the quality obtained across recordings (Fig 1.c).

C. Functional connectivity

We used the absolute value of the coherency
(hereafter just referred to as coherence) to estimate the
functional connectivity between pairs of channels

E [Sxy(f))]
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where E/...] indicates the average across epochs and Sxy

stands for the cross-spectral density.

D. Surrogate computation

Surrogate EEG can be computed using the same
process used to simulate EEG from estimated cortical
sources, but removing functional connectivity between
sources before using them for simulation. Depending on
the objectives pursued by a given analysis, different
approaches can be considered. We compared three
alternatives: 1) spatial randomization, 2) phase
randomization, and 3) phase randomization corrected to
account for local synchrony. The first approach simply
randomizes the position of the sources. It has the
advantage of being conceptually simple and of not
altering in the source time-series themselves, only their
spatial relationship to one another. This approach,
therefore, destroys any systematic spatial pattern of
functional connectivity, allowing the comparison of
surrogate data with recorded EEG (e.g., using
cluster-based permutation tests) to assess if the topology
of functional connectivity is statistically significant. It
does not, however, remove the functional connectivity
between individual pairs of sources.

In the second approach (phase randomization), the
Fast Fourier Transform (FFT) of the source time-series
is computed, its phase is randomized, and the inverse
FFT of the phase-randomized spectrum is computed to
obtain signals that have the same spectral power as the
original signals, but which phase has been scrambled. In
doing so, we preserve the spectral power of the sources,
but we eliminate any phase dependency (i.e., functional
connectivity) between these sources.

The third approach is based on the second but
further compensates for the fact that local cell
assemblies need to be synchronized (i.e., functionally
connected) for scalp EEG to be produced. It is
nonsensical to consider EEG generated by
unsynchronized neuronal populations because for EEG
to have sufficient amplitude to travel up to the scalp, it
must be produced by locally synchronized neuronal
activity. An ideal surrogate dataset would simulate the
properties of EEG sources as they were before being
smeared by volume conduction (i.e., spatially extended
sources produced by sufficient local synchrony), but
devoid of long-range functional connectivity. To
reproduce the properties of the EEG cortical sources
before they get smeared by volume conduction, we
turned to intracranial recordings which capture local
field potentials (LFP) in the brain. We modeled how the
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absolute coherency decreases with distance (d) between

intracranial electrodes by fitting a decreasing
exponential function o(d) (see Fig. 2).
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Fig. 2. Adjusting the EEG sources to reproduce the level of

coherence found in LFP. We fitted a decreasing exponential (black
line; equation below the legend) to the coherence computed between
implanted electrodes. The coherence has been computed between
every pair of implanted electrodes, within every subject. These values
have been sorted by inter-electrode distance and average by bins of 50
pairs (blue points). We tested different ¢ values, from 0.1 to 0.6.

To correlate the phase-randomized sources so that
their local synchrony reproduces the relationship
captured by o(d), we used a distance threshold
7=20 mm to select sources that are in a range
susceptible to local coherence (see Fig 2). For a source
s, we used a k-d tree [8] to find the set of neighbor

defined as the ; such that
d(si, s},) < T with d(si, sj) standing for the Euclidean

sources, sources S,
distance between s, and S Then, we randomly selected
a sub-sample @i containing ¢ % of these neighbor

sources. This step models the fact that within a local
region, not all neurons are tightly correlated in the brain
and it allows for patterns of activity with higher spatial
frequencies. Further, correlating all local sources results
in local coherence larger than what is observed in LFP

(see Fig. 2). The corrected source s, is obtained as a
weighted sum of the original source S, and its selected
set of neighbor sources S; € G)i, using o(d) as a

weighting function

Si=si+ Z o(d(si, s5))s;

et (3.2)
sl

Si = Si— (3.b)
Isil

with (3.b) used to normalize the sources computed in
(3.a) so that s, and s, have the same average amplitude.

We tested different values for the proportion c (Fig 2)
and selected ¢=0.35 as a good approximate.

We further note that the sources s, are less locally

correlated than the sources estimated from EEG. This
suggests that common approaches for estimating EEG
sources overestimate the local source correlation. It also
means that our surrogate EEG will have a smaller
amplitude than the recorded EEG since the
contributions of locally uncorrelated sources do not sum
constructively to generate high amplitude electrical
fields. To compensate for this effect, we take advantage
of the fact that the sources and the simulated EEG are
associated through a linear relationship. Thus, the

amplitude of the sources s, and the surrogate EEG can

be adjusted by scaling them by the ratio between the
amplitude of the recorded and the surrogate EEG.

3. RESULTS

We compared the coherence obtained with an
average reference and the scalp current density (SCD)
[9] within (wtn) and between (btwn) subjects (Fig 3.,
left panel). The SCD provides reference-free estimates
of neuronal activity. Compared to the average reference,
it is more sensitive to higher spatial frequencies and less
impacted by volume conduction [10].
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Fig. 3. Impact of using the average reference (ave) or SCD to

compute the coherence between channels or sources. The left panel
also compares coherence within-subject (wtn) and between-subject
(btwn). The middle and right panels further compare the effect of
different values of A% on the sources and the estimated EEG. Shaded
regions indicate the bootstrapped 95% interval of confidence.

The between-subject comparison is a sanity check
since no functional connectivity is expected to be
present when comparing EEG signals between subjects.
We observed a small but nonnull average coherence
between subjects, as expected for any noisy process
bound to the [0, 1] interval. This bias can be removed
by subtracting the coherence from a surrogate dataset as
we do below (see Fig. 5).

We then estimated the cortical sources using
different values for the regularization parameter A* and
simulated EEG from these sources (Fig. 3, middle and
right panels). Since the regularization parameter A’
spatially smooths the sources, it is expected to have a
detrimental impact on the spatial resolution of the
sources. As shown in Fig. 3, large values of A* can have
an impact on our ability to reproduce the original EEG
from the sources as it introduces too much coherence
between the sources, which is reflected in turn in the
estimated EEG. For the following analyses, we used
2A*=10" as it appears to be sufficiently small to estimate
sources that can accurately reproduce the original EEG.
SNRs in Fig. 1 were also obtained from simulations
using this A* value.

We then compared the coherence from the average
reference EEG, SCD, and cortical sources using the
recorded EEG (rec) and the three surrogate approaches
previously described: spatial randomization (spa), phase
randomization (pha), and phase randomization corrected
to account for local synchrony (cor) (Fig. 4). We also
added to the source plot the coherence for the
intracranial recordings (intra). An inset added to the
right panel of Fig. 4 shows that the coherence computed
using the corrected surrogate with ¢=0.35 closely
follows what was found in LFP.
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Fig. 4. Comparison of the coherence computed on the recorded

EEG (rec), three types of EEG surrogates (spa: spatial randomization;
pha: phase randomization; cor: corrected phase randomization), and
intracranial recordings (intra). Shaded regions indicate the
bootstrapped 95% interval of confidence.

Using the corrected phase-randomized surrogate
dataset, we computed the 95th percentile of the
coherence distribution per channel pair and subtracted it
to the coherence estimated on the recorded EEG so that
any remaining positive coherence would indicate
statistical significance (before any correction is applied
for multiple tests) (Fig. 5).
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Fig. 5. Circular connectivity plot for the real (top) and imaginary
(bottom) part of coherency computed on SCD of recorded EEG after
removing the 95th percentile of the corrected phase-randomized
surrogate distribution. The Oz channel is placed at the bottom of these
circles. Turning clockwise, the channels from the left side of the head
are positioned by increasing anteroposterior coordinate. The right side
channels are positioned correspondingly on the other half of the circle.
The connections are color-coded with a “hot” colormap, going from
black (0) to white (value shown at the top of each circular graph). All
midline channels except Oz (i.e., Fz, Cz, AFz, Pz, CPz, POz) were
rejected to avoid creating left-right asymmetry in the graphs.

4. DISCUSSION

In this paper, we developed and compared different
ways to compute surrogate EEG to untangle volume
conduction from functional connectivity without
systematically discarding zero-lag synchrony. This
approach can be deployed to investigate the property of
zero-lag connectivity in the brain. In a previous study,
we showed using intracranial recordings that the most
significant long-range functional connectivity in LFP is
happening at zero-lag between homotopic brain regions
[5]. It is therefore worth noting the predominance of
interhemispheric connectivity in the theta band (Fig. 5)
for the real component of the coherency (i.e., the
component that is sensitive to zero-lag synchrony) after
correcting for the potential confounding effect of
volume conduction.

Further, comparing the real (sensitive to zero-lag
synchrony) and the imaginary (not sensitive to zero-lag
synchrony) part of coherency suggests that neuronal
activity in the brain is likely to be dominated by zero
and near-zero lag synchrony. Actually, the imaginary
part of coherency did not survive the correction using
the surrogate dataset for any connections.

Although a proper demonstration of the statistical
significance of these observations and the detailed study
of zero-lag connectivity is out of the scope of this short
communication, these results are coherent with what we
observed in more detailed analyses (manuscript being
prepared for publication). By describing this surrogate
approach we hope to motivate members of the
neuroimaging community to improve their methods to
estimate functional connectivity so that they deal with
volume conduction in a more nuanced way and provide
a more faithful description of the functional
connectivity in the brain that includes any physiological
zero-lag synchrony.

The code written for these analyses is available on
GitHub (https://github.com/christian-oreilly).
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