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Abstract—Electroencephalography (EEG) signals have been
recently proposed as a biometrics modality due to some inherent
advantages over traditional biometric approaches. In this work,
we studied the performance of individual EEG channels for the
task of subject identification in the context of EEG-based biomet-
rics using a recently proposed benchmark dataset that contains
EEG recordings acquired under various visual and non-visual
stimuli using a low-cost consumer-grade EEG device. Results
showed that specific EEG electrodes provide consistently higher
identification accuracy regardless of the feature and stimuli
types used, while features based on the Mel Frequency Cepstral
Coefficients (MFCC) provided the highest overall identification
accuracy. The detection of consistently well-performing electrodes
suggests that a combination of fewer electrodes can potentially
provide efficient identification performance, allowing the use of
simpler and cheaper EEG devices, thus making EEG biometrics
more practical.

Index Terms—EEG, biometrics, visual stimulus.

I. INTRODUCTION

The use of electroencephalography (EEG) signals for bio-
metrics has recently attracted interest [1]–[3] due to some
advantageous characteristics over traditional biometric modali-
ties, including their resilience to many physical injuries, being
extremely hard to reproduce artificially, and the inability to
capture them at a distance [4]. Common drawbacks of previ-
ously proposed EEG-based biometric approaches are the use
of proprietary datasets, the use of medical-grade EEG devices
that although offering high quality and high resolution EEG
signals, they do not allow the use of EEG-based biometrics in
practical scenarios, and the evaluation of proposed methods
on EEG signals acquired during a single session, thus not
examining the effect of template ageing, i.e. “the increase in
error rates caused by time-related changes in the biometric
pattern, its presentation and the sensor” [5]. Furthermore,
the absence of public benchmark datasets for EEG-based
biometrics has led many studies to utilise EEG datasets that
were designed for other tasks, e.g. emotion recognition [6]–
[8], thus not allowing the study of specific signal acquisition
protocols that would be more suited for biometrics.

To address these drawbacks, a public benchmark dataset
called “Biometric EEG Dataset” (BED) [9] was recently
proposed for EEG-based biometrics. The BED dataset contains
EEG recordings from 21 individuals that were acquired during
three separate sessions, each one week apart. Furthermore,

EEG signals were captured while the subjects were exposed
to various visual and non-visual stimuli in order to allow the
study of various EEG acquisition protocols. Furthermore, EEG
signals in the BED dataset were acquired using a relatively
inexpensive consumer-grade wireless EEG device in order
to facilitate the creation and evaluation of algorithms and
protocols that would be suitable for practical use. Subject
identification performance on the BED dataset was originally
evaluated by combining the features extracted from the 14
available EEG channels (electrodes) and using them to train
machine learning models. However, if similar identification
performance can be achieved using less electrodes, then sim-
pler and cheaper EEG devices could potentially be used, thus
significantly enhancing the practicability of EEG biometrics.

To this end, in this work we studied the performance of
individual EEG channels for the task of subject identification.
We modified the baseline evaluation experiments of the BED
dataset by first extracting the proposed features from each
individual EEG channel and then training separate machine
learning models for each EEG channel for the task of subject
identification. Results using three different types of features
and the EEG recordings associated with nine different visual
stimuli showed that some EEG electrodes provided consis-
tently high identification accuracy regardless of the feature and
stimuli types. Furthermore, similar to the available baseline
results, features based on the Mel Frequency Cepstral Co-
efficients (MFCC) provided the highest overall identification
accuracy, as well as the best identification accuracy for each
EEG electrode apart from F4 and F7. Furthermore, the high-
est single-channel identification accuracy achieved was lower
than the previously reported baseline multi-channel accuracy,
indicating that different electrodes contain complementary
biometric information.

II. METHODOLOGY

The BED dataset [9] was selected for studying the perfor-
mance of individual EEG channels for the task of biometric
subject identification. BED is a recently released dataset
designed for EEG-based biometrics using low-cost consumer-
grade EEG devices. BED contains EEG recordings acquired
from 21 healthy individuals while presented with 12 different
types of stimuli. Stimuli consisted of images aiming at eliciting
specific emotions (IM), mathematical computations, Visual



Evoked Potentials (VEP) at 3, 5, 7, and 10 Hz with the
standard checker-board pattern with pattern reversal (VCx,
x = 3, 5, 7, 10), and flashing VEP with flashing black colour
at 3, 5, 7, and 10 Hz (VFx, x = 3, 5, 7, 10). Furthermore, EEG
signals where acquired during three separate sessions spaced
one week apart, in order to allow the study of template ageing.
The Emotiv EPOC+ [10] wireless EEG headset was used in
order to record a 14-channel EEG signal via contact sensors
placed in locations that closely align with the AF3, F7, F3,
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4 locations of
the international 10-20 system.

Baseline results for subject identification were provided for
BED in [9], where the EEG signals were segmented into
segments of 5 s length with 50% overlapping, pre-processed
to remove noise and artefacts, and MFCC features, Autore-
gression Reflection Coefficients (ARRC) features, and Spectral
features (spectral centroid, spectral bandwidth, spectral crest
factor, and spectral flatness) were computed for each segment.
The problem of subject identification was then modelled as a
multi-class classification problem where each class referred to
an individual subject (21 classes). To account for the issue of
template ageing, the multi-class models were trained with the
data from the first two sessions and tested with the data from
the third session. A multi-class ensemble classifier was trained
and tuned for each type of stimulus and features. Baseline
results showed that for all types of features, the highest
accuracies were achieved for the “Resting with eyes closed”
stimulus, reaching 47.79% for the MFCC features. When
only visual stimuli are considered, the highest classification
accuracies were achieved for the “Images with emotional
content” stimulus, reaching 40.25% for the MFCC features [9].

In this work, contrary to [9], to examine the performance
of individual EEG channels, each model was trained and
tested using features extracted from each individual channel,
resulting in the creation of 14 multi-class models for each
of the three features and each of the nine visual stimuli.
Similar to [9], the EEG signals were pre-processed using
the EEGLAB toolbox [11] to apply the PREP pipeline [12],
consisting of line-noise removal via filtering, referencing the
signal relative to the estimate of the “true” average reference,
and finally detecting and interpolating bad channels relative to
the reference. Then, similar to the baseline BED experiment
[9], the MFCC features were computed by first applying the
Fourier Transform, followed by a filterbank in the Mel scale,
and the Discrete Cosine Transform. A filterbank with 18
filters was used and the first 12 coefficients after dropping
the DC component were selected as the MFCC features.
Then, 12 ARRC features were computed using a 12th order
autoregressive model, created by solving the Yule-Walker
equations. Finally, the spectral centroid, spectral bandwidth,
spectral crest factor, and spectral flatness features [13] were
computed from the theta (4-8 Hz), alpha (8-12 Hz), beta (12-
30 Hz), and gamma (30+ Hz) bands of the EEG signal, leading
to a total of 16 spectral features.

The computed features were then used in order to train
and test multi-class ensemble classification models for all the
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Fig. 1: Identification accuracy using the ARRC features.

combinations of electrodes, features, and stimuli, resulting in
a total of 14 electrodes× 3 features× 9 stimuli = 378 trained
models. Similar to [9], the subject identification problem was
modelled as a 21-class classification problem were each class
was associated with one individual from the dataset. Matlab
(R2016b) was used for training and tuning the classifiers. To
this end, the built-in Matlab’s hyperparameter optimisation
approach was used in order to select the optimal ensemble ag-
gregation method, as well as the optimal learning parameters,
by exhaustively testing configurations and selecting the one
that results to the minimum estimated cross-validation loss.
The examined ensemble aggregation approaches used decision
trees as the week learners and included bootstrap aggrega-
tion, random subspace aggregation, adaptive boosting, linear
programming boosting, random undersampling boosting, and
totally corrective boosting. It must be noted that the results
reported in the next section refer to the optimal configuration
for each trio of electrode, feature, and stimulus.

III. RESULTS

The results of the supervised classification experiments for
subject identification are presented for each EEG electrode
(channel) and stimulus in Fig. 1, 2, and 3 for the ARRC,
MFCC, and Spectral features respectively. In these figures,



accuracies have been plotted as a heat map in relation to the
location of each electrode on the human scalp. By examining
these heat maps, it is evident that some electrodes, such
as AF3, P7, P8, O1, and O2, led to higher identification
accuracies in most cases compared to other electrodes. This
observation is consistent with the findings of previous studies
[14], [15] that utilised the same EEG device as the BED dataset
for the task of EEG biometrics and suggested that biometric
signatures should be extracted from the P7, P8, O1, and O2
electrodes when users are exposed to visual stimuli. To further
investigate this observation, we selected the four electrodes
that provided the highest accuracy for each stimulus and each
feature type and we measured how often each electrode was
among the top four performing for each feature and stimulus
type (3 features×9 stimuli = 27 cases per electrode). Results,
were consistent with the above observation, with electrode
AF3 being in the top four for 67% of the cases, P7 for 63%
of the cases, P8 56%, O1 44%, and O2 41%, as shown in
TABLE I.

The highest subject identification accuracy achieved for
each electrode and each feature type is reported in TABLE II.
The highest accuracy (29.69%) was achieved using the P8
electrode and the MFCC features for the flashing VEP at
7 and 10 Hz (VF7 and VF10). For the Spectral features,
the highest accuracy of 25.26% was achieved using again
the P8 electrode for the image stimulus, whereas for the
ARRC features, the highest accuracy of 23.14% was achieved
using the AF3 electrode and the checker-board VEP at 5 Hz
(VC5). Another interesting observation is that different types
of stimuli performed better for each type of features used.
From TABLE II, it is evident that the flashing VEP at 5
Hz provided the best accuracy for most electrodes when the
ARRC features were used, the checker-board VEP at 5 Hz
for the MFCC features, and finally the images with affective
content (IM) performed best for the Spectral features.

Comparing the acquired results for the single-electrode
approach with the results for the baseline approach [9] that
utilised all electrodes, it is evident that the single-electrode
approach underperformed considerably (29.69% vs 40.25%
accuracy). This finding indicates that the biometric information
encoded in the EEG signal of various electrodes is comple-
mentary and the combination of multiple electrodes can lead
to higher identification accuracy, as also suggested in [14]
and [15], where the authors combined the signals from the
P7, P8, O1, and O2 electrodes. Nevertheless, similar to the
baseline approach in [9], the MFCC-based features provided
the highest overall accuracy, while consistently achieving the
highest accuracy among the three feature types for each EEG
electrode apart from electrodes F4 and F7 where they per-
formed marginally worse, as shown in TABLE II. In addition,
the detection of consistently well performing electrodes (AF3,
P7, P8, O1, O2) across various feature and stimuli types shows
that less electrodes can potentially be used for the task of EEG-
based biometric identification, allowing simpler and cheaper
EEG sensors to be used, thus increasing the potential user-
friendliness and viability of EEG-based biometrics.
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Fig. 2: Identification accuracy using the MFCC features.

TABLE I: Frequency of each electrode being among the
four best performing electrodes for each feature and visual
stimulus.

Electrode 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Location AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4

ARRC 8 1 4 1 1 6 3 3 4 2 1 1 2 1
MFCC 5 0 1 3 1 5 3 4 7 3 1 0 1 2
SPECG 5 2 2 2 2 6 6 4 4 3 0 1 0 1

SUM 18 3 7 6 4 17 12 11 15 8 2 2 3 4
(%) 67 11 26 22 15 63 44 41 56 30 7 7 11 15

IV. CONCLUSION

In this work, we examined the performance of individual
EEG channels for the task of EEG-based subject identification
using a low-cost consumer-grade EEG device. The results of
the supervised classification experiments showed that the AF3,
P7, P8, O1, and O2 electrodes provided the best identifica-
tion accuracy for the majority of feature and stimuli types,
while the MFCC-based features provided the highest overall
accuracy, as well as the highest accuracy among the features
examined for each electrode apart for F4 and F7. However,
the lower identification accuracy of the single-electrode ap-
proach, compared to using all the electrodes, indicates that
there is complementary biometric information across different
electrodes. The detection of consistently well performing
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Fig. 3: Identification accuracy using the Spectral features.

TABLE II: Highest identification accuracy achieved for each
electrode and feature using visual stimuli.
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1 AF3 23.14 VC5 28.82 VC5 22.81 VF5
2 F7 18.42 VF5 19.21 VC5 19.65 VC5
3 F3 20.09 VC5 25.67 IM 19.71 IM
4 FC5 19.30 VF5 24.45 VC5 19.67 VF3
5 T7 22.81 VF5 23.14 VC5 21.56 IM
6 P7 19.47 VC7 28.38 VC5 23.61 IM
7 O1 19.67 VF3 23.82 IM 20.18 VF5
8 O2 18.34 VF10 28.95 VF5 24.59 VF3
9 P8 19.30 VF5 29.69 VF7/10 25.26 IM
10 T8 18.42 VF5 27.95 VF7 21.65 VC3
11 FC6 13.54 VF7 20.09 VF10 16.63 IM
12 F4 20.35 VC7 19.30 VF5 22.94 VC3
13 F8 18.58 VC7 25.41 VF3 18.48 IM
14 AF4 18.42 VF5 27.43 VC7 19.71 IM

electrodes suggests that a combination of fewer electrodes
can potentially provide efficient identification performance,
thus allowing the use of simpler and cheaper EEG devices
with less electrodes that would make EEG-based biometrics
significantly more practical and user-friendly.
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