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Abstract—Breast cancer remains one of the leading cancers
worldwide and is the main cause of death in women with cancer.
Effective early-stage diagnosis can reduce the mortality rates
of breast cancer. Currently, mammography is the most reliable
screening method and has significantly decreased the mortality
rates of these malignancies. However, accurate classification
of breast abnormalities using mammograms is especially
challenging, driving the development of Computer-Aided
Diagnosis (CAD) systems. In this work, subtraction of temporally
consecutive digital mammograms and machine learning were
combined, to develop an algorithm for the automatic detection
and classification of benign and malignant breast masses. A
private dataset was collected specifically for this study. A total
of 196 images were gathered, from 49 patients (two time
points and two views of each breast), with precisely annotated
mass locations and biopsy confirmed malignant cases. For
the classification, ninety-six features were extracted and five
feature selection techniques were combined. Ten classifiers were
tested, using leave-one-patient-out and 7-fold cross-validation.
The classification performance reached 91.7% sensitivity, 89.7%
specificity and 90.8% accuracy, using Neural Networks, an
improvement, compared to the state-of-the-art algorithms that
utilized sequential mammograms for the classification of benign
and malignant breast masses. This work demonstrates the
effectiveness of combining subtraction of temporally sequential
digital mammograms, along with machine learning, for the
automatic classification of benign and malignant breast masses.
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I. INTRODUCTION

The World Health Organization (WHO) estimates that, by
2030, there will be 2.7 million new Breast Cancer (BC)
cases and 857 thousand women will die worldwide [1].
Mammograms are currently assessed by two radiologists, and
a third, if consensus is not reached. However, the identification
of breast masses is very challenging due to images of dense
breast tissue with increased intensity and variations that are
very similar to some abnormalities [2].

A breast mass can be radiologically classified as benign
or suspicious depending on key parameters such as shape,
intensity, texture, etc. [3]. One of the most challenging tasks
for radiologists is to accurate classify benign vs. malignant
masses, thus, Computer-Aided Diagnosis (CAD) systems are
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being developed, to assist in that task. Several algorithms
have been proposed for the classification of breast masses [4].
However, in the majority of the studies, only the most recent
mammogram is being used for the diagnosis, which does not
allow comparison with prior images from the same woman.
Such comparisons are routinely performed by the radiologists
to discover new abnormalities, or regions changing rapidly
between screenings, and are considered features indicative of
malignancy. Temporal analysis is a technique proposed for the
comparison of consecutive mammograms and has already been
applied to breast mass detection and classification [5], [6]. This
technique offers no benefit when the findings are new and with
no traces of an abnormality in the prior mammogram.

In this work, an algorithm for the automatic classification
of benign and malignant masses is introduced, based on the
subtraction of temporally consecutive digital mammograms
and machine learning. Temporal subtraction, developed by
this group, has already been applied with great success, to
the diagnosis of breast micro-calcifications [7]. A dataset was
collected specifically for this study with a total of 196 images,
from 49 patients. Mammograms were at first pre-processed,
and then image registration, along with temporal subtraction,
took place. Mass detection and segmentation followed and,
subsequently, 96 features were extracted from each mass,
which were ranked using 5 feature selection algorithms. After
testing several classifiers and validation schemes, the masses
were classified as benign or malignant.

II. MATERIALS AND METHODS

A new, custom, dataset was collected specifically for
this study, since publicly available databases do not include
sequential mammograms and in some cases, the available
images are scanned or/and outdated. It also includes precise

Fig. 1. Dataset example. (A) Mammogram of a 68-year-old woman with
benign and malignant masses. (B) Zoomed region marked by the red square
in A, including the masses. (C) The region in B with precise marking of mass
locations (green for benign, red for malignant), as annotated by two expert
radiologists.



Fig. 2. Effect of pre-processing on a 69-year-old woman. (A) Most recent mammogram without any processing. (B) Zoomed region marked by the green
square in A, showing an area without masses. (C) Zoomed region marked by the red square in A, showing an area with a mass (indicated by the arrow). (D)
Recent image after CLAHE. (E) Following image after gamma correction. (F) Final pre-processed image after border removal. (G) Zoomed region marked
by the green square in F, showing the same area as B, after the pre-processing. (H) Zoomed region marked by the red square in F, showing the same area
as C, after the pre-processing.

Fig. 3. Example of temporal subtraction in a 69-year-old woman with a malignant mass. (A) Most recent mammogram. (B) Prior mammogram. (C) The
result of subtracting the registered version of B from A. (D)-(F) Zoomed regions marked by the red squares in A-C, where the green squares enclose a new
malignant mass that was not subtracted. The contrast ratio (CR) has increased 14 times after subtraction.

annotation of each individual mass, which served as the
ground truth (Fig. 1). The mammograms were collected
from various screening centers across Cyprus and for every
participant two mammographic views, the Cranio-Caudal
(CC) and Medio-Lateral Oblique (MLO) were included.
Two images from two sequential screening rounds, resulted
in a database with a total of 196 mammograms. Two
radiologists selected and assessed the images to mark
the masses as benign or suspicious. The suspicious cases
were then confirmed as malignant with biopsies, followed
by histopathology. Thirty-four patients had at least one
biopsy-confirmed malignant mass in the most recent screening.
The remaining 15 patients exhibited only benign masses
in the most recent mammograms. In all cases, the prior
mammograms were normal. The study was approved by the
Cyprus National Bioethics Committee.

The recent and prior mammograms were processed in
parallel. Pre-processing started with the normalization, to
adjust the range of pixel intensity values, followed by
Contrast Limited Adaptive Histogram Equalization (CLAHE)

[8], gamma correction [9] and border removal [10]. Figure 2,
displays the effect of pre-processing.

For an effectively subtraction between the prior and the
recent image, a very robust image registration algorithm
is required. Registration is very challenging, since the
mammograms vary significantly between screenings due to
variations in breast compression and breast tissue changes
[11]. In this work, Demons registration [12] was selected, since
it can better account for the non-linear shape deformations
of the breast. Demons is a local registration technique that
aligns the moving image (prior) to the fixed (recent), using
regional similarity and location [12]. Following, the prior
registered image was subtracted from the recent one and
the high intensity areas on the periphery of the breast were
removed, since they correspond to skin regions that cannot
contain masses and were a result of misalignment (Fig. 3). To
evaluate the performance of pre-processing, registration and
temporal subtraction, the Contrast Ratio (CR) of the subtracted
image was compared to the CR of the recent image after
pre-processing. Unsharp-mask filtering [13] was then applied,



TABLE I
COMPARISON OF THE CLASSIFICATION RESULTS OF THE MASSES AS

BENIGN OR MALIGNANT IN A LEAVE-ONE-PATIENT-OUT
CROSS-VALIDATION SCHEME

Classifier Sensitivity
[%]

Specificity
[%]

Accuracy
[%] AUC

LDA 76.19 74.14 75.32 0.76
9-NN 83.33 91.38 86.62 0.87
SVM 52.38 98.28 71.13 0.75
NB 91.67 43.10 71.38 0.67
RF 84.52 81.03 83.10 0.83
ADA 84.52 75.86 80.99 0.8
BAG 82.14 82.76 82.39 0.81
GB 83.33 87.93 85.21 0.86
Voting 86.90 87.93 87.32 0.87
NN 91.67 89.66 90.85 0.91

to enhance the high spatial frequencies. Thresholding using
Otsu’s method eliminated the remaining low intensity areas.
The threshold value was selected by optimizing the global
classification rate. Subsequently, morphological operations
were applied to identify the margins of the breast masses. For
the training of the algorithms, the ground truth provided by
the radiologists was used.

In total 96 features were extracted from the detected
regions, divided in four major categories: shape-based,
intensity-based, First-Order Statistics (FOS) and Gray Level
Co-occurrence Matrix (GLCM) features. The selection of
these features was based on characteristics that radiologists
routinely check to assess if a mass is benign, or whether it
warrants further investigation. They included: area, circularity,
compactness, convex area, eccentricity, equivalent diameter,
Euler number, extent, filled area, major and minor axis
length, orientation, perimeter, solidity, shape ratio, average,
minimum and maximum intensity, entropy, kurtosis, skewness,
smoothness, standard deviation, variance, contract, correlation,
energy and homogeneity. For each GLCM feature the mean
and standard deviation were obtained. To determine the most
appropriate offset, three different values were tested (D1 = 5,
D2 = 15 and D3 = 25). Thus, a total of 72 GLCM features
were extracted.

Feature selection is critical for an effective classification.
Five feature selection algorithms were compared including:
feature importance, using random forest and extra trees,
Maximum Relevance-Minimum Redundancy (MRMR),
SelectKBest and t-test. Since each algorithm is based on
different principles, they result in different rankings of the
features. Thus, to select the most significant features and
to assure high classification performance, the rankings were
combined by applying a majority rule (i.e. keep the common
features from all the methods) and a new feature vector was
created for the classification. The selected features were:
major and minor axis length, convex area, solidity, extent,
perimeter, correlation 0◦ D1, correlation 45◦ D1, correlation
0◦ D2, correlation 45◦ D2, correlation 135◦ D2, correlation
mean D2, correlation 0◦ D2, correlation 45◦ D3, correlation
135◦ D3, correlation mean D3, circularity, compactness and
shape ratio. Synthetic Minority Oversampling Technique
(SMOTE) was applied to create new instances of the minority

Fig. 4. Comparison of the classification results of the masses as benign or
malignant using various classifiers and cross-validation methods.

class in the training set [14]. Least squares (l2) normalization
was applied to the features of each mass, to scale all the
samples and adjust the range of their values.

Nine classifiers were evaluated: Linear Discriminant
Analysis (LDA), k-Nearest Neighbor (k-NN), Support Vector
Machine (SVM), Naive Bayes (NB), Random Forest (RF),
AdaBoost (ADA), Bagging (BAG), Gradient Boosting (GB)
and Voting, using Python (v. 3.7.7) and Scikit-learn (v. 0.23.1).

Different Neural Network (NN) architectures were also
evaluated using Python (v. 3.7.7) and Keras (v. 2.3.1). All the
available parameters of the network were tested and optimized
based on the classification accuracy. The selected architecture
consisted of 1 fully connected layer, with 6,050 trainable
parameters. A Rectified Linear Unit (ReLU) was used as
an activation function and batch normalization, along with
dropout regularization (0.2), were included. Gaussian noise
was added after dropout, as a regularization term, in order to
increase the robustness of the network. The batch size was
set to 128, the learning rate was 0.0001 and the network was
trained for 100 epochs. The features were added to the network
without any pre-processing due to the limited sample size and
the complexity of the network.

For the training, Leave-One-Patient-Out (LOPO)
cross-validation was applied. All the images associated
with a single patient were combined as a test set, while the
images of the remaining patients were used as a training
set, repeating until all the 49 cases were classified. In
addition to LOPO cross-validation, 7-fold cross-validation
was also applied, to verify the classification performance.
In a similar manner, the folds were created per patient and
not by randomly dividing the masses. Grouping the data per
patient is of critical importance to avoid any bias resulting
from the same patient included both in the training and test
set. Sensitivity, specificity, accuracy and the Area Under
the receiver operating characteristics Curve (AUC) were
calculated to evaluate the effectiveness of the classification.

III. EXPERIMENTAL RESULTS
After registration and subtraction, the average CR of the

subtracted images increased by ∼30%, compared to the
corresponding average CR of the most recent images even
after pre-processing. The selected features were incorporated



into the classifiers that were optimized using LOPO
cross-validation. The optimization resulted in a radial basis
function kernel for the SVM, 9-nearest neighbors for the
k-NN, and for the ensemble voting, 9-NN, BAG and GB were
combined, in a soft voting scheme. NN achieved the highest
and most robust classification performance, with 91.67%
sensitivity, 89.66% specificity and 90.85% accuracy (Table
I). In addition, 7-fold cross-validation was used to prove the
robustness of the algorithms (Fig. 4).

IV. DISCUSSION

For the classification of breast masses, NN reached 90.85%
accuracy using LOPO cross-validation, with an average of
0.06 false positives and 0.07 false negatives per image. Out
of 58 benign masses, 6 were wrongly detected as malignant,
affecting 3 patients. Similarly, out of 84 malignant masses, 7
were misclassified as benign, again in 3 patients. In addition
to LOPO cross-validation, 7-fold cross-validation was also
applied, to evaluate the robustness of the algorithm. The
performance dropped slightly, since 42 patients were used in
each training round, compared to the 48 patients in the LOPO
scheme. This drop exemplifies the need for additional training
data, but also proves the potential of the algorithm to correctly
classify new data.

This is the first demonstration of temporal subtraction for
the classification of breast masses, thus, direct comparison
with other studies is not possible. The current state-of-the-art
in the analysis of sequential mammograms is temporal
analysis. The results in this study are slightly better than those
reported in the literature for the classification of benign vs.
malignant masses using sequential mammograms (0.91 AUC
vs. 0.9 Bozek et al., 2014 [5] and 0.90 Ma et al., 2015 [6]),
in terms of the AUC. Additionally, temporal analysis offers
no benefit over using just the recent mammogram, when the
findings are new and there is no traces of an abnormality in
the prior image. Temporal subtraction proposed in this study,
overcomes this limitation, since it tracks and classifies newly
developed abnormalities, or regions that changed significantly
between the screenings. Unfortunately, direct comparison of
different algorithms is challenging due to differences in the
method of cross-validation applied [5], [15].

A key limitation of this work, is the relatively small dataset.
Publicly available databases cannot be exploited, since they do
not contain sequential digital mammograms, nor they include
detail annotation of each individual mass. Other limitations
include the fact that the patients with benign masses were not
followed for further diagnostic evaluation and, although the
masses were identified by two expert radiologists, differences
might appear if more experts perform the same task.

V. CONCLUSION

In this work, an algorithm for the automatic classification
of benign and malignant breast masses based on subtracting
temporally consecutive mammograms and machine learning
was proposed. Ninety-six features were extracted and using
five feature selection techniques, the most statistically
significant features were included in the classification. The

highest classification performance was 90.85% accuracy
and it was achieved using a NN and leave-one-patient-out
cross-validation. Compared to the state-of-the-art techniques
that use sequential mammograms and temporal analysis,
the results in this study were superior (0.90 vs. 0.91
AUC). However, given the relatively small dataset, further
studies must be conducted with more cases and different
cross-validation methods. The findings of this study, if
expanded and improved have the potential to encourage the
development of automated CAD systems, with a major impact
on patient prognosis.
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