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Abstract—In this paper, we introduce an emerging quantum
machine learning (QML) framework to assist classical deep
learning methods for biosignal processing applications. Specif-
ically, we propose a hybrid quantum-classical neural network
model that integrates a variational quantum circuit (VQC)
into a deep neural network (DNN) for electroencephalogram
(EEG), electromyogram (EMG), and electrocorticogram (ECoG)
analysis. We demonstrate that the proposed quantum neural
network (QNN) achieves state-of-the-art performance while the
number of trainable parameters is kept small for VQC.

Index Terms—Quantum computing, deep neural network
(DNN), quantum machine learning (QML), electroencephalo-
gram (EEG), electromyogram (EMG), biosignal processing

I. INTRODUCTION

The great advancement of artificial intelligence (AI) tech-
niques based on deep neural networks (DNN) has enabled
practical development of human-machine interfaces (HMI)
including brain-computer interfaces (BCI) through the analysis
of the user’s physiological data [1], such as electroencephalo-
gram (EEG) [2] and electromyogram (EMG) [3]. However,
such biosignals are highly prone to variation depending on
the biological states of each subject [4]. Hence, frequent
calibration is often required in typical HMI systems. Toward
resolving this issue, subject-invariant methods [5]–[11], em-
ploying domain generalization and transfer learning, have been
proposed to reduce user calibration for HMI systems.

In this paper, we introduce an emerging framework “quan-
tum machine learning (QML)” [12]–[31] into biosignal pro-
cessing applications for the first time in the literature, envision-
ing future era of quantum supremacy [32], [33]. Quantum com-
puters have the potential to realize computationally efficient
signal processing compared to traditional digital computers
by exploiting quantum mechanisms, e.g., superposition and
entanglement, in terms of not only execution time but also
energy consumption. In the past few years, several vendors
have successfully manufactured commercial quantum process-
ing units (QPUs). For instance, IBM released 127-qubit QPUs
in 2021, and plans to produce 1121-qubit QPUs by 2023.
It is thus no longer far future when QML will be widely
used for real applications. Recently, hybrid quantum-classical
algorithms based on the variational principle [34]–[37] were
proposed to deal with quantum noise.

The main contributions of this paper are summarized below:
• We introduce the emerging QML framework for biosignal

processing;
• We propose a hybrid quantum-classic DNN model called

quEEGNet;

• We demonstrate the proof-of-concept study on QML for
various physiological datasets.

To the best of our knowledge, this is the very first research on
QML applied to HMI and BCI fields. Although there exist
a few literature [38], [39] discussing the potential use of
quantum computing for BCI, no practical demonstration on
QML-assisted HMI systems is found to date. Note that our
QNN is different from a recurrent QNN (RQNN) employing
quantum stochastic filtering based on the Schrödinger equa-
tion [40]–[43], which is motivated by quantum physics but
does not need real QPUs. In addition, our work is tangential
to quantum sensing technologies such as superconducting
quantum interference devices (SQUID) [44].

II. QUANTUM ARTIFICIAL INTELLIGENCE (QAI) FOR HMI

A. Quantum Bit (Qubit)

In quantum systems, a qubit is expressed as the following
state superposing bases of |0〉 and |1〉: |φ〉 = α0|0〉 + α1|1〉,
where α1 and α2 are complex numbers subject to |α0|2 +
|α1|2 = 1. When qubits are measured, the classical bit 0 or 1 is
observed with a probability of |α0|2 or |α1|2, respectively. The
above ket-notation corresponds to column-vector operations of
the two basis states |0〉 = [1, 0]T and |1〉 = [0, 1]T, whereas
the bra-notation is used for row-vector operations corresponds
to its Hermitian transpose; i.e., 〈φ| = |φ〉† = [α∗0, α

∗
1].

Here, [·]†, [·]∗ and [·]T denote Hermitian transpose, complex
conjugate and transpose, respectively. Note that a multi-qubit
state is represented by sum of Kronecker products of basis
vectors such as |000〉 = |0〉⊗3.

B. Quantum Gates

The basic operations on a qubit is defined as a unitary
matrix, which is called gate. Some of the most common gates
are associated with Pauli matrices: I = [ 1 0

0 1 ], X = [ 0 1
1 0 ],

Y =
[ 0 −
 0

]
, and Z =

[
1 0
0 −1

]
, where  is the imaginary unit

satisfying 2 = −1. The X gate is bit-flip (i.e., NOT operation),
Z gate is phase-flip, and Y gate flips both bit and phase. The
Hadamard (H) gate is used to generate a superposition state
|+〉 = 1√

2
|0〉 + 1√

2
|1〉: H = 1√

2

[
1 1
1 −1

]
. A controlled-NOT

(CNOT or CX) gate is a multi-qubit gate that flips the target
qubit if and only if the control qubit is |1〉.
C. Quantum Machine Learning (QML)

A number of modern DNN methods have been already
migrated into the quantum domain, e.g., convolutional lay-
ers [12], autoencoders [13], graph neural networks [17], and
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Fig. 1. Hybrid quantum-classical neural networks for biosignal processing.
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Fig. 2. Variational QNN for HMI systems.

generative adversarial networks [15], [16]. Interestingly, the
number of QML articles has been exponentially increasing at
the same rate of DNN articles, doubling every year, but just
6 years behind [28]. It suggests that QML will be potentially
used in numerous communities in a couple of years. In fact,
real QPUs are readily accessible through a cloud quantum
server such as IBM QX and Amazon braket.

In analogy with DNN, it was proved that QNN holds the
universal approximation property [45]. Accordingly, increas-
ing the number of qubits and quantum layers may enjoy state-
of-the-art DNN performance. In addition, quantum circuits are
analytically differentiable [46], enabling stochastic gradient
optimization of QNN. Nevertheless, QNN often suffers from
a vanishing gradient issue called the barren plateau [47]. To
mitigate the issue, a simplified 2-design (S2D) ansatz [19] was
proposed to realize shallow entanglers for arbitrary unitary
approximation. It is highly expected that quantum computers
would offer breakthroughs in a wide range of fields.

D. Quantum Neural Network (QNN) for HMI

Fig. 1 shows an HMI system employing quantum-classical
neural network model for biosignal processing. The system
feeds biological waveform arrays to predict a task label
through a neural network, which integrates a QNN model with
a classical DNN model such as EEGNet [2]. The variational
parameters for QNN and other trainable parameters for DNN
are jointly optimized by stochastic gradient methods to mini-
mize a loss function in an iterative manner.

Fig. 2 depicts an exemplar QNN model based on VQC
employing the S2D ansatz [19], which consists of Pauli-Y
rotations and staggered controlled-Z entanglers, to evolve the
quantum states. This ansatz is a simplified variant of a 2-
design whose statistical properties are identical to ensemble
random unitaries with respect to the Haar measure up to the
first 2 moments. For an n-qubit variational quantum circuit,

TABLE I
PARAMETERS OF PUBLIC DATASET UNDER INVESTIGATION

Dataset Modality Dimension Subjects Classes Samples
Stress [48] Temp. etc. 7× 1 20 4 24,000
RSVP [49] EEG 16× 128 10 4 41,400

MI [50] EEG 64× 480 106 4 9,540
ErrP [51] EEG 56× 250 27 2 9,180

Faces Basic [52] ECoG 31× 400 14 2 4,100
Faces Noisy [53] ECoG 39× 400 7 2 2,100

ASL [54] EMG 16× 50 5 33 9,900

there are 2(n−1)L variational parameters {θ} over an L-layer
S2D ansatz.

To feed multi-dimensional data, an input layer based on
batch normalization is used to initialize the quantum state
through the use of an amplitude embedding, which enables
encoding up to 2n − 1 values for n-qubit QPUs. The multi-
label task prediction is provided by quantum measurements in
the Hamiltonian observable of Pauli-Z operations, followed by
a post-processing layer to align the dimension. The variational
parameters as well as input/output layers are optimized by a
gradient method to minimize the softmax cross entropy loss.
While QNN is not necessarily better than DNN in prediction
accuracy, it can be computationally efficient by manipulating
exponentially many quantum states in parallel with a small
number of quantum gates.

We integrate the QNN with EEGNet, where the QNN
performs as feature extraction and EEGNet works as the post-
processing layers. Note that various other different combina-
tions are possible, e.g., two individual VQC layers for temporal
and spatial convolutions; VQC in recurrent networks. We
refer to all such hybrid QNN+DNN concepts (not specific
architectures) suited for biological analysis as a quantum
EEGNet (quEEGNet) by convention.

III. EXPERIMENTAL EVALUATION

A. Datasets

We use publicly available physiological datasets, summa-
rized in Table I. These cover a wide variety of data size,
dimensionality, and subject scale as well as sensor modalities,
including EEG, EMG, and electrocorticography (ECoG).

1) Stress: A physiological dataset for neurological stress
level [48].1 It consists of multi-modal biosignals for 4 discrete
stress states (physical/cognitive/emotional stresses and relax-
ation) from 20 healthy subjects. The data collection consisted
of 7 dimensions of multi-model sensing, i.e., electrodermal ac-
tivity, temperature, three-dimensional acceleration, heart rate,
and arterial oxygen level. A task of 5 minutes long (T = 300
time samples with 1 Hz down-sampling) was executed for a
total of 4 trials per state.

2) RSVP: An EEG-based typing interface using a rapid
serial visual presentation (RSVP) paradigm [49].2 10 healthy
subjects participated in the experiments at three sessions per-
formed on different days. The dataset consists of 16-channel
EEG data for T = 128 samples, which were collected by a

1Stress dataset: https://physionet.org/content/noneeg/1.0.0/
2RSVP dataset: http://hdl.handle.net/2047/D20294523

https://physionet.org/content/noneeg/1.0.0/
http://hdl.handle.net/2047/D20294523


g.USBamp amplifier with active electrodes during keyboard
operations, for 4 labels of emotion elicitation, resting-state, or
motor imagery/execution task.

3) MI: The PhysioNet EEG motor imagery (MI) dataset
[50].3 Excluding irregular timestamps, the dataset consists
of 106 subjects’ EEG data. The subjects were instructed to
perform cue-based motor execution/imagery tasks while 64
channels were recorded at a sampling rate of 160 Hz. We
use the EEG data for three seconds of post-cue interval data
(T = 480 time samples). The subject performed 4-class tasks:
right hand motor imagery; left hand motor imagery; both hands
motor imagery; or both feet motor imagery.

4) ErrP: An error-related potential (ErrP) EEG dataset
[51].4 The dataset consists of EEG data recorded from 16
healthy subjects in an offline P300 spelling task, where visual
feedback of the inferred letter is provided at the end of each
trial for 1.3 seconds to monitor evoked brain responses for
erroneous decisions made by the system. EEG data were
recorded from 56 channels for epoched 1.25 seconds at a
sampling rate of 200 Hz (T = 250). Across 5 recording
sessions, each subject performed a total of 340 trials.

5) Faces Basic: An implanted ECoG array dataset for
visual stimulus experiments [52], [53].5 ECoG arrays were
implanted on the subtemporal cortical surface of 14 epilepsy
patients. 2 classes of grayscale images, either faces or houses,
were displayed rapidly in random sequence for 400 ms.
The ECoG potentials were measured with respect to a scalp
reference and ground, at a sampling rate of 1000 Hz. Subjects
performed a basic face-vs-house discrimination task. We use
the first 31 channels to analyze for T = 400.

6) Faces Noisy: The implanted ECoG arrays dataset for
visual stimulus experiments [52], [55]. The experiment is
similar to Faces Basic dataset, while pictures of faces and
houses are randomly scrambled. There are 7 subjects with 39
channels. Refer ethics statement to reuse the dataset.

7) ASL: An EMG dataset for finger gesture identification
for American Sign Language (ASL) [54].6 5 healthy, right-
handed, subjects participated in experiments with surface
EMG (Delsys Trigno) recorded at 2 kHz from 16 lower-
arm muscles. Subjects shaped their right hand into an ASL
posture presented on a video screen (33 postures, 3 trials per
posture). Dynamic letters ‘J’ and ‘Z’ were omitted, along with
the number ‘0’, which is confusing with the letter ‘O’. The
participants were given 2 seconds to form the posture and
6 seconds to maintain. The signal is decimated to be T = 50.

B. Model Implementation

We use PennyLane and PyTorch libraries to train quEEG-
Net. The trainable parameters are optimized by the adaptive
momentum (Adam) with a learning rate of 0.1 for 50 epochs
with a batch size of 128.

3MI dataset: https://physionet.org/physiobank/database/eegmmidb/
4ErrP dataset: https://www.kaggle.com/c/inria-bci-challenge/
5Faces dataset: https://exhibits.stanford.edu/data/catalog/zk881ps0522
6ASL Dataset: http://hdl.handle.net/2047/D20294523

TABLE II
PERFORMANCE RESULTS IN TEST ACCURACY (%)

Dataset EEGNet quEEGNet
Stress 85.87 87.23
RSVP 93.73 95.12

MI 59.61 60.22
ErrP 74.36 75.92

Faces Basic 63.30 64.92
Faces Noisy 75.94 78.01

ASL 23.64 25.16

C. Performance Results

Table II shows the performance comparison between EEG-
Net and quEEGNet. It was verified that the hybrid quantum-
classical model outperforms classical neural networks for all
of the physiological datasets. Since we have not explored
different variants of quantum ansatz yet, it is expected that
the performance can be further improved via AutoQML [30].

IV. CONCLUSIONS

We proposed an emerging QML framework for HMI/BCI
systems, considering the recent rapid advancement of quantum
technology. Our hybrid quantum-classical neural network was
demonstrated to achieve the state-of-the-art performance for
various physiological datasets. As the application of QML
to HMI/BCI fields is still at a proof-of-concept phase, there
remain many open problems to explore for future work.
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