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Abstract— A cross-analysis study was conducted to compare 

proteomic platforms in classifying patients with Systemic 

Autoinflammatory diseases, using proteins extracted from 

different profiling experiments. The datasets used were 

obtained from SomaScan assays and Mass Spectrometry (MS). 

A separate analysis was performed to each dataset based on the 

false discovery rate (FDR) in order to extract statistically 

important proteins. Conventional machine learning algorithms 

were subsequently employed to evaluate the denoted proteins as 

candidate biomarkers and compare the predictive capabilities 

of the two proteomic platforms. Using the SomaScan assay, we 

managed to achieve higher classification metrics compared to 

the MS dataset. An improvement was also attained on the 

classification results when the features used were extracted from 

the MS data and applied on the SomaScan dataset, compared to 

the opposite combination. Finally, the proteins derived from the 

FDR analysis in both datasets proved to be highly correlated 

regarding their importance score. 

Keywords—Proteomics, SomaScan, Mass Spectrometry, 

Systemic Autoinflammatory Diseases 

I. INTRODUCTION 

Systemic autoinflammatory diseases (SAIDs) is a group of 
no-age specific conditions that encompasses several rare 
disorders and are characterized by extensive inflammation [1]. 
Physical manifestations of SAIDs mainly include fever, rash, 
joint pain or swelling and in most cases, have a strong genetic 
mutation background underlying the dysregulation of the 
innate immune system [2-3]. Inability for a distinct diagnosis 
to be met, amounts for at least 40 - 60% of patients with 
phenotypes typical for SAIDs [4]. Mainly, the diagnosis 
process consists of clinical evaluation along with the 
exclusion of other possible disorders and as such, delays and 
inadequate treatment decisions are prevalent to patients with 
SAID-related conditions. Contrary to autoimmune pathology 
whose autoantibodies are diagnostic tools, even today, there is 
no SAID-defining biomarkers. 

SomaScan assays are highly sensitive and reproducible 
tools for clinical diagnosis across a vast range of diseases, 
capable of measuring up to 7000 protein analytes in only a 
very small amount of biological matrix [5]. Slow Off-rate 
Modified Aptamers (SOMAmers) are chemically constructed 
reagents, from the transformation of each individual protein 
concentration of native in-matrix proteins to corresponding 
reagent concentrations. This process grants to SOMAmers the 
properties of a protein affinity-binding reagent along with the 
properties of a unique recognizable nucleotide sequence. 
Being single-stranded DNA-based protein affinity reagent, 
also renders them highly suitable for aptamer discovery 
technology [6]. SomaScan assays have enabled significant 
advances in the identification of plasma proteome signatures. 
In [7] the proteomic signature of surgery is characterized in 
association with postoperative surgery outcomes, while in [8] 
the plasma brain natriuretic peptide measurements were 
correlated with the Alzheimer’s disease. Biomarker 
identification and evaluation through SomaScan assays have 
also yielded promising results in the last couple of years in 
kidney disease [9-10], as well as, in systemic juvenile 
idiopathic arthritis [11]. 

Mass spectrometry-based proteomics is a complex high-
throughput technology used widely to analyze biological 
samples. It measures the mass-to-charge ratio (m/z) of 
molecules, quantifying known compounds, and determining 
their chemical properties and structure. In the field of SAIDs, 
proteomic mass spectrometry (MS) techniques have enabled 
the protein analysis of serum exosomes in the post intravenous 
immunoglobin therapy period of Kawasaki patients [12] and 
the identification of novel candidate biomarkers [13]. 
Regarding Behçet's disease, MS methods have proven crucial 
for the profiling of the peripheral blood mononuclear cell 
proteome [14], as well as for the analysis of metabolomic 
alteration associated with the disease [15]. 
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In this study, two recently acquired proteomic datasets 
from the European Union’s Horizon 2020 ImmunAID project 
were exploited, corresponding to the two platforms described 
above. We implemented a novel cross-analysis able to identify 
non-previously examined candidate protein biomarkers 
between SAIDs and control patients and further classify them. 
Therefore, we could assess the efficacy of the two platforms 
in the classification of SAID patients, along with the 
importance of the extracted features in a cross-platform 
schema. 

II. MATERIALS AND METHODS 

A. SOMAcan Assay 

To remove systematic biases in the raw SomaScan assay 
data, normalization and calibration procedures were applied. 
Hybridization control normalization was performed to 
correct for systematic effects on the data introduced during 
the hybridization readout, followed by median signal 
normalization across calibrators to adjust for systematic 
variability within a single plate. Plate scaling is accomplished 
based on unique-to-SOMAmers scale factors, due to the 
idiosyncratic nature of SOMAmers binding reagents. The 
final assay is provided in the form of a tab-delimited ASCII 
file containing the measurements in Relevant Fluorescent 
Units for a series of analytes across a set of samples.  

B. Mass Spectrometry 

The Liquid Chromatography procedure (LC-MS/MS) was 
performed for the acquisition of the mass spectrometry results 
and the Andromeda search engine [16] was utilized for the MS 
spectra analysis. Extracted proteins from plasma samples were 
injected on a 2D-nanoAquity UPLC (Waters, Corp., Milford, 
MA, USA) coupled online with an ESI-Q-Orbitrap (Q 
Exactive, Thermo Fisher Scientific, Waltham, MA, USA) in 
positive ion mode. The final dataset is provided as a comma 
separated values file containing the raw measurements in parts 
per-notation units for a series of analytes across the samples. 
The missing values were imputed with zeroes for the analysis. 

C. Datasets 

 For the purpose of this study, the datasets were 
preprocessed to include only the common samples and 
proteins. The identification of the proteins was based on the 
UniProt IDs, as provided from both approaches, taking also 
into account the corresponding protein chains. The final 
datasets have both dimensions 24𝑥460 , with 24 common 
sample labels (subjects) and 460 common proteins. Overall, 
they include four Adult-Onset Still’s Disease samples, three 
Schnitzler disease, two Systemic-Onset Juvenile Idiopathic 
Arthritis, two Chronic Osteitis, two Cryopyrin-Associated, 
two Takayasu, one Behçet's, one Tumor Necrosis Factor 
Receptor-Associated Periodic Syndrome, one Kawasaki, one 
Recurrent Pericarditis, one inflammation disease of unknown 
origin and four negative control (healthy) samples. 

D. False Discovery Rate Analysis 

On each dataset, a False Discovery Rate (FDR) analysis 
was applied using the SelectFdr class [17] of the scikit learn 
Python package, which implements the Benjamini-Hochberg 
procedure [18]. The statistical importance of the dataset 

features was computed based on the Analysis of Variance 
(ANOVA) value, by examining the null hypothesis of no 
significant difference between the feature vectors (proteins) 
and the binary target vector (SAIDs or control). For the 
SomaScan dataset, an alpha value threshold 0.001 was 
selected, resulting in ten statistically important proteins 
regarding the differentiation of SAID samples from controls. 
In order to get a similar number of features, as that from the 
SomaScan dataset, an alpha value threshold 0.01 was selected 
for the MS dataset, resulting in seven statistically important 
proteins. The ANOVA values of the features extracted from 
the SomaScan dataset ranged from 15 - 27, compared to the 8 
- 20 range for the features extracted from the MS dataset. 

E. Classification 

Machine learning techniques were implemented to 
explore whether the extracted proteins can be utilized as 
SAIDs biomarkers. The statistically important proteins of 
each FDR analysis were used as the features for a binary 
classification between SAIDs and healthy controls on their 
corresponding dataset. Moreover, we compared the data 
quality of the two platforms in a classification accuracy 
context. This was managed by conducting the same 
classification task, using on each dataset, the extracted 
proteins of the other dataset as input features. Lastly, by using 
both sets of extracted features on both datasets for the 
purposes of classification, we were able to evaluate the 
feature importance score for each dataset. Thus, two vectors 
of feature importance for each set of extracted proteins were 
obtained. For those two sets of vectors, the Pearson’s 
correlation index [19] was calculated. This is to assess the 
linear correlation between the vectors, meaning how similar 
the importance of the features is between both datasets, for 
each set of extracted features. 

For the tasks of classification and the feature importance 
score estimation, the Random Forest Classifier (RF) [17] was 
used. The Gradient Boosting Classifier (GB) and the Logistic 
Regression (LR) estimators [17] were also employed for 
classification scrutiny. RF and GB are robust supervised 
ensemble machine learning algorithms, which utilize a 
multitude of decision trees for training, improving their 
capabilities by ensemble learning and through error reduction 
boosting. LR is a simpler and more efficient estimator that 
excels in binary outcome scenarios and determines whether a 
new sample that fits best into a category is also important 
[20]. All estimators were employed with their default 
parameter settings, as we opted for classification comparison 
and not performance optimization. 

To assess the significance of the extracted proteins, the 
accuracy, sensitivity, and specificity metrics were used, based 
on the leave one out cross validation schema. To address the 
high sample imbalance, for each dataset, the classification 
process was repeated five times, each with a different set of 4 
SAID samples against the 4 controls. Hence, the 
classification metrics are given as the means along with the 
standard errors. Due to the stochastic nature of the RF 
classifier, the process of calculating the feature importance 
scores and the Pearson’s index was repeated fifty times for all 
samples, resulting in the mean score for those values. Fig. 1 
summarizes the workflow of the study. 
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III. RESULTS AND DISCUSSION 

A. Classification 

Tables I and II show the metrics of the classification, using 
the extracted set of proteins of each FDR analysis, as features 
in their corresponding dataset. Tables III and IV show the 
same metrics, but in the case where the extracted set of 
proteins of each FDR analysis were used as input features in 
the other dataset. Fig. 2 depicts the feature importance score 
in both SomaScan and MS datasets of the proteins extracted 
from the FDR analysis of the first dataset. While Fig. 3 shows 
the same feature importance scores but for the proteins 
extracted from the FDR analysis of the MS dataset. These 
figures include also the Pearson’s correlation index of the 
feature importance scores between both datasets, for the two 
sets of extracted proteins. 

B. Discussion 

Our results show the improved classification metrics using 
the SomaScan assay in comparison to the MS one, when 
selecting features based on FDR analysis on both datasets. 
More specifically, the derived scores were equal or higher 
than 90% for all estimators on the SomaScan data (Table I), in 
comparison to the 55% - 80% range on the MS dataset (Table 
II). It should be noted that the above results correspond to 
analyses performed on the same proteins for both datasets, as 
the scope of this work is to compare the data quality and 
accuracy of the two platforms. This is further stressed by the 
cross-classification results. 

TABLE I. SOMA dataset classification metrics (mean and standard error) 
using the proteins derived from the FDR analysis of the SOMA dataset. 

Classifier Accuracy Sensitivity Specificity 

GB 0.925 (0.045) 0.950 (0.045) 0.900 (0.089) 

RF 0.975 (0.022) 0.950 (0.045) 1.000 (0.000) 

LR 0.950 (0.027) 0.900 (0.055) 1.000 (0.000) 

TABLE II. MS dataset classification metrics (mean and standard error) 
using the proteins derived from the FDR analysis of the MS dataset. 

Classifier Accuracy Sensitivity Specificity 

GB 0.675 (0.076) 0.800 (0.084) 0.550 (0.084) 

RF 0.725 (0.055) 0.800 (0.084) 0.650 (0.055) 

LR 0.775 (0.042) 0.800 (0.084) 0.750 (0.000) 

 TABLE III. SOMA dataset classification metrics (mean and standard 
error) using the proteins derived from the FDR analysis of the MS dataset. 

 
TABLE IV. MS dataset classification metrics (mean and standard error) 

using the proteins derived from the FDR analysis of the SOMA dataset. 

 

Using the proteins extracted by the MS FDR analysis as 
classification features in the SOMA dataset, the accuracy and 
specificity (Table III) are notably higher than those of the 
same-dataset classification for the MS (Table II). To discard 
the possibility that the SomaScan dataset inherently allows for 
high classification metrics, a number of tests using random 
proteins as input features were conducted, none of which 
produced such high results. Furthermore, the feature 
importance scores across the datasets for both sets of extracted 
proteins follow the same high correlation trend, but with the 
features extracted for the SomaScan FDR analysis having a 
slightly higher Pearson index. This implies that both platforms 
produce measurements that are highly comparable and 
reliable. 

Figure 2. Feature importance score in both datasets of the proteins 
derived from the FDR analysis on the SomaScan dataset. 

Figure 3. Feature importance score in both datasets of the proteins 
derived from the FDR analysis on the MS dataset. 

Classifier Accuracy Sensitivity Specificity 

GB 0.850 (0.042) 0.800 (0.045) 0.900 (0.055) 

RF 0.850 (0.045) 0.800 (0.045) 0.900 (0.055) 

LR 0.900 (0.022) 0.850 (0.055) 0.950 (0.045) 

Classifier Accuracy Sensitivity Specificity 

GB 0.600 (0.089) 0.550 (0.164) 0.650 (0.055) 

RF 0.750 (0.035) 0.750 (0.071) 0.750 (0.000) 

LR 0.725 (0.074) 0.700 (0.084) 0.750 (0.071) 

Figure 1. Workflow of the study. 
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Two proteins with UniProt IDs P06732 and P43121 were 
found in both sets of the FDR extracted proteins. They refer to 
the proteins Creatine kinase M-type and Melanoma-associated 
antigen MUC18 (Table V). The scores yielded from the 
Analysis of Variance were 27 and 20, respectively, in the 
SomaScan dataset, and 17 and 11 in the MS. According to the 
National Center for Biotechnology Information (NCBI) [21], 
Creatine kinase M-type is a cytoplasmic enzyme, reversibly 
catalyzing the transfer of phosphate between ATP and various 
phosphogens. It is an important serum marker for myocardial 
infarction [21] and elevated levels have been associated with 
neuromyopathy [22] and myopathy in Behçet's disease [23]. 
Likewise, Melanoma-associated antigen MUC18 is a 
biomarker of uveal melanoma and chronic obstructive 
pulmonary disease [21] and plays a role in lymphocyte 
endothelium interaction [24]. 

TABLE V. The statistically most important proteins of the two FDR 
extracted sets of proteins examined in the present study, alongside their 

description and known biological associations [21]. 

IV. CONCLUSIONS 

We presented a novel cross-analysis study in which we 
utilized proteomic data from two different high-throughput 
platforms, SomaScan and Mass Spectrometry, to extract 
statistically important proteins for the classification of SAID 
patients. We compared the two approaches in terms of 
accuracy, specificity and sensitivity, using protein 
measurements of the same sample labels and proteins. The 
SomaScan assay provided higher classification results than 
MS, using both same and cross-dataset features. We believe 
this is due to the more sensitive and less noisy measurements 
compared to MS. Both methods proved to be highly 
correlated regarding the significance of the derived features. 
Furthermore, we managed to identify informative proteins, 
based on the results of both the FDR analysis and the feature 
importance scores of the machine learning estimator, which 
could potentially be characterized as candidate SAID 
biomarkers. Additional data for SAIDs are currently being 
collected under the framework of the ImmunAID project, and 
consequently an extensive validation of this study’s approach 
in terms of both performance optimization and candidate 

biomarkers identification will be carried out in our immediate 
future work, to provide further clinical insight to the 
insufficiently examined SAIDs. 
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Protein Description/Association 

CK-MM 
• Member of the ATP: guanido phosphotransferase 

protein family. 

• Biomarker for myocardial infarction. 

MUC18 

• Located in the external side of the plasma 
membrane, acting upstream of or within 
angiogenesis. 

• Biomarker of uveal melanoma and chronic 
obstructive pulmonary disease. 

LAMA2 

• Extracellular protein and a major component of 
the basement membrane. 

• Organizes cells into tissues during embryonic 
development. 

• Biomarker of congenital merosin-deficient 
muscular dystrophy. 

SLC3A2 

• Cell surface transmembrane protein, member of 
the solute carrier family. 

• Participates in the intracellular calcium levels 
regulation and L-type amino acids transportation. 
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