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ABSTRACT

Continual learning denotes machine learning methods which can adapt to new environments while
retaining and reusing knowledge gained from past experiences. Such methods address two issues
encountered by models in non-stationary environments: ungeneralisability to new data, and the
catastrophic forgetting of previous knowledge when retrained. This is a pervasive problem in
clinical settings where patient data exhibits covariate shift not only between populations, but also
continuously over time. However, while continual learning methods have seen nascent success in
the imaging domain, they have been little applied to the multi-variate sequential data characteristic
of critical care patient recordings. Here we evaluate a variety of continual learning methods on
longitudinal ICU data in a series of representative healthcare scenarios. We find that while several
methods mitigate short-term forgetting, domain shift remains a challenging problem over large
series of tasks, with only replay based methods achieving stable long-term performance.

Code for reproducing all experiments can be found at https://github.com/iacobo/continual
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I. INTRODUCTION

Clinical and healthcare-related machine learning studies
have grown rapidly in recent years, with over a thousand
publications annually since 2018 [I1]. However many
models suffer from ungeneralisability: the distribution
of their training data is not representative of the setting
in which they are deployed, and hence their real-world
performance and utility is overestimated. Further, the dis-
tribution of data in a given environment itself continually
shifts with time, limiting the use even of models trained
on initially representative domains [2, 3].

Unfortunately, naively retraining networks on new data
as it becomes available ("fine tuning") commonly results
in forgetting of past knowledge. Models can overfit
to the specific features of the new dataset, degrading
performance on previous tasks in a process known

as catastrophic forgetting. This occurs since training
on the current task propels updated parameter values
far from the previously optimized values (see fig 1).
This effectively overwrites learned features pertinent to
previous tasks when they are not useful for the current
one. While accumulating data and periodically retraining
models theoretically alleviates catastrophic forgetting,
such approaches are practically encumbered by privacy,
storage, and computational hurdles.

Continual learning (CL) has recently emerged as a field to
tackle these issues. Models are designed to incrementally
update on new datasets while retaining and reusing
past knowledge where relevant. Concretely this refers
to models which can sequentially train on a series of
tasks, while retaining predictive power on previously
encountered examples.
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Fig. 1: Under naive transfer learning (grey arrow), there is
no guarantee that the parameter values (6, ) remain within a
region of low error for the previous task 7% (blue oval) after
training on subsequent task 7%. Regularization techniques like
Elastic Weight Consolidation (EWC) enforce such behaviour by
penalising the loss, constraining parameter updates to a locus
of learned values for previous tasks (figure adapted from [4]).

However a number of state of the art techniques rely
on storing past examples and hence may be infeasible
in clinical settings due to privacy or data storage limita-
tions. Generative models which create simulated pseudo-
examples face further issues of computational limitations.

Further, while a large proportion of Electronic Health
Records (EHR) used in patient monitoring and prog-
nostics consists of periodic tabular readings (i.e. multi-
variate time-series), most current evaluations of continual
learning methods are in the image domain [5, 6]. Current
benchmarks do not adequately capture the realistic issues
faced in a clinical context (e.g. highly imbalanced classes,
large multivariate sequences, sparse recordings) [7], and
hence the generalisability of their results to these contexts
is unclear.

Contributions: In this work we present a set of rep-
resentative continual learning scenarios in the medical
domain derived from the open-access eI[CU-CRD and
MIMIC-II ICU datasets [8, 9, 10]. We evaluate a range
of methods on these problems, the first (to our knowledge)
comprehensive study of Continual Learning methods
on medical time-series data. Benchmarks demonstrate
common domain shifts encountered by clinical systems in
the real world, across geographies, time, and population
demographics.

Related work: Cossu et al. [11] present a comprehensive
evaluation of methods on a set of proposed benchmarks
for sequence data. We extend on this work by eval-
uating such methods on real-world clinical scenarios,
over a broader array of model architectures (including
Transformers and alternative recurrent networks). Aljundi
et al. [12] examine imbalanced classification problems
and the effect of dropout regularisation but from a
task incremental perspective on imaging data. Kiyasseh
et al. [13] investigate domain incremental learning on
univariate physiological signals but examine only replay
based methods. Churamani et al. [14] investigate domain
incremental learning across ethnicity and gender but for
facial image data, only evaluating regularization based
methods. Guo et al. [15] and Alves et al. [16] investigate
temporal and institutional domain shift in ICU data, but

from a domain adaptation perspective, considering only
a single source and target dataset.

II. BACKGROUND
A. Continual Learning Scenarios

The typical continual learning problem consists of a
model encountering a sequence of discrete batches of
data, corresponding to different ‘tasks’, where data cannot
be stored between tasks.' For example a clinical decision
model updated annually on new hospital data. The
data cannot be retained longer than this due to privacy
limitations, but we aspire for the model to generalise to
the population with each dataset encountered, and not
overfit to the most recent batch as is seen in traditional
supervised learning.

Problems are typically split into three scenarios [17]:

e Task Incremental Here each task is nominally
different. In a classification setting this typically
corresponds to each pair of tasks having non-
overlapping target sets Y; NY; = 0 Vi # j.

o Class Incremental Here the set of potential targets
expands with each task: Y; C Y; Vi < j.

« Domain Incremental Here tasks are nominally the
same (i.e. the set of targets is identical for all tasks
Y; = Y; Vi # j), but the distribution of input-
features changes with each task.

However, as noted by Cossu et al. [11], this does
not capture the full breadth of potential scenarios. For
example, newly encountered datasets may introduce a mix
of domain shifted instances of old classes, new classes,
or novel combinations of classes. Maltoni and Lomonaco
[18] divide scenarios into multi-task, single-incremental
task, and multiple-incremental tasks, along with a sec-
ondary classification for new examples containing new
instances of old classes, new classes, or both. However, as
discussed by [11], several of the proposed categories are
unrealistic or rare. For simplicity we use the terminology
of Van de Ven and Tolias [17].

B. Ontology of methods

A number of methods have been proposed in recent
years to mitigate catastrophic forgetting, falling under
three general archetypes [19]:

o Regularization A regularization constraint is added
to the loss function, enforcing updated parameter
values to lie within a radius of the current value. This
has the benefit of a natural Bayesian interpretation
where the posterior values after training on task

"More general settings exists in which models encounter
a stream of incoming data, sometimes referred to as online
learning. However, since many CL methods are not designed
for such settings we stick to the batch case to allow a broader
comparison of methods.
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T; inform the priors for task 7;, ;. Methods differ
in strategies for choosing which parameters to
constrain, and to what degree.

o Rehearsal A subset of examples (or generated
pseudo-examples) from previous tasks are cached
and mixed in with each new task’s training set.
Methods differ chiefly in the criteria used for
choosing examples. Also known as replay.

o Dynamic architectures A broad variety of tech-
niques where the network architecture itself adapts
with new task presentation. Approaches range from
hyper-networks with task-specific subnetworks, to
initially small networks which add neurons as
resources are required to model new tasks. They
are broadly characterised by increasing network
complexity with number of tasks.

Such architectural features are not mutually exclusive,
and may be hybridised in a number of ways. For example,
GEM [20], iCARL [21], and FRoMP [22] employ both
rehearsal and regularisation elements. More complex
ontologies have been proposed to finer categorise such
methods [7].

Replay methods achieve state of the art in many scenarios
examined in the literature [23, 1. However, such
techniques are often infeasible in real-world settings,
where previous examples cannot be stored or shared due
to data privacy constraints [5, 25]. Such a problem is not
unique to clinical settings, and while generative replay
models simulating past examples have been proposed
[26], sparse and complex sequential data can prohibit
learning of an adequate generative distribution function

[27].

For an in depth review of continual learning methods
generally, we refer to Delange et al. [7], Parisi et al.
[19], Luo et al. [28]. For convenience, we briefly outline
the methods evaluated in this work below:

Regularization approaches:

« Elastic Weight Consolidation (EWC) [4] Pe-
nalises changes in parameter values relative to
the importance of parameters to previous task(s).
Importances determined via Fisher’s information
matrix. Parameters which are important to previous
task(s) are highly constrained, and ones of less
importance are less constrained during updates.

e Online EWC [29] An adaptation of EWC using
a running average of task importance penalties, as
opposed to distinct penalties for each previous task.
Computationally more efficient and tractable for a
large number of tasks.

o Synaptic Intelligence (SI) [30] Similar to EWC,
enforces parameter specific regularization but im-
portances are calculated online (i.e. during training)
by approximating the effect on loss and gradient
update, as opposed to during an additional pass of
the network post training.

o Learning without Forgetting (LwF) [31] A copy
of the model parameters before updating on the
current task is stored and compared to the updated
version. Parameter values are distilled between both
versions for final update. Hence may be categorised
as a functional regularization strategy.

Replay approaches:

« Replay Naive storage of a set of random examples
per task, which are mixed in with each subsequent
task’s training data. May employ more specific
storage policies such as class or task-wise balancing
of memories.

e GDumb [32] A greedy rehearsal method in which

the memory buffer is filled with the -2uffer size_
n tasks seen

most recently encountered examples per task. Ex-
amples replayed with each new task.

o Gradient Episodic Memory (GEM) [20] Stores a
set of examples from each task. Selectively updates
gradient for a given minibatch on the current task
only if the gradient can be projected in a plane which
maintains the positivity of the gradient updates for
all stored examples.

o Averaged Gradient Episodic Memory (A-GEM)
[33] Adaptation of GEM considering only the
average gradient for a randomly sampled subset
of the stored examples.

Dynamic approaches:

o Progressive Neural Network (PNN) [34] A copy
of parameter weights before updating on a new task
is stored. If any parameters shift beyond a certain
threshold, the previous weights are frozen and cloned
to produce a sister neuron with the updated weights.
Relies on task identity at inference to ensure shifted
‘sister’ neurons do not interfere with predictions for
prior tasks.

III. EXPERIMENTS
A. Problem definitions

Domain Incremental: We consider 3 natural Domain
Incremental experiments, corresponding to n patient ICU
datasets encountered sequentially across time or location.
Domain increments correspond to changing:

o time (season) (n = 4)
« hospital (n = 155)
o region (n =4)

We also consider the following 3 artificial Domain Incre-
mental experiments, simulating imbalanced populations
between healthcare environments (due to demographic-
specific care in a given institution, or general population
imbalance). Domain increments correspond to groups of
patients split by:

e age group (n=17)
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« ethnicity (broad) (n = 5)
e ICU ward (n = 8)

The majority of the above domain splits are self explana-
tory. ICU WARD refers to different types of critical care
(i.e. intensive care) unit, which may specialise in cardiac,
trauma, neurological etc injuries.

For each task the setting is supervised prediction of a
binary outcome (48hr in-hospital mortality). Input data
are multivariate time-series, consisting of periodically
recorded patient vital signs from an ICU admission. These
are sampled at a rate of 1 per hour, and are of duration
t = 48 time steps. Static covariates are repeated to the
length of the time-varying sequence and concatenated to
enable processing by sequential models.

Further experiments on alternative outcomes (acute res-
piratory failure; shock) and different sequence/prediction
window lengths (¢ € {4,12}) can be found in Appendix
A.

Note that REGION and ETHNICITY (BROAD) can be seen
as easier, lower resolution versions of the HOSPITAL and
ETHNICITY (NARROW) experiments respectively since
their domains correspond to non-overlapping supersets
of the formers’.

Work in progress #¢

Note: not all experiments described have been
completed (e.g. PNN strategy, Region experi-
ment, transformer architecture for HOSPITAL,
class incremental experiments, class incremental
experiment, and supplementary experiments on
memory size, traditional regularization, alternative
outcome definitions, and sequence length).

B. Experimental setup

Model architectures: For each problem, we evaluate 4
basic neural network architectures:

1) a dense feedforward network (MLP)

2) 1d convolutional neural network (CNN)

3) long- short-term memory network (LSTM); and
4) transformer
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Fig. 2: Generic structure of binary classification model. Example
contains 2 hidden ‘feature’ layers of width 4 (green), and 2
fully connected ‘classification’ layers of width 3 (blue).

These were chosen to give a breadth of sequential
models, along with a data-structure agnostic model (MLP)
for baseline comparison. Further recurrent models are
evaluated in Appendix A-B. Models consist of 1 to 4
architecture-specific layers, followed by two dense linear
layers (see fig 2).

To enable more fair comparison of methods, model-
level parameters (such as number and width of layers)
were tuned for the naive baselines and frozen for all
other methods (for a given architecture and experiment).
Standard regularization features such as dropout were
omitted to clearer investigate the effect of the continual
learning mechanisms themselves. Additional experiments
on the effect of regularization strategies on catastrophic
forgetting are found in Appendix C-A. Batch Normali-
sation was not used in the CNN due to its intensifying
effect on catastrophic forgetting [35].

Strategies: Each model is equipped with one of the 8
continual learning strategies listed in Table I:

Archetype Method Abbreviation Source
Baseline Naive fine-tuning Naive
- Cumulative multi-task training Cumulative

Elastic Weight Consolidation EWC [4]

Regularization  Online EWC Online EWC  [29]
Synaptic Intelligence SI [30]
Learning without Forgetting LwF [31]
Naive replay Replay

Rehearsal GDumb GDumb [32]

’ Gradient Episodic Memory GEM [20]

Averaged Gradient Episodic Memory ~AGEM [33]
TABLE I: Continual Learning methods evaluated.

Rehearsal based methods are given a fixed budget of
256 samples per task, corresponding to approximately
5% and 0.5% of the training data for MIMIC and
elCU experiments respectively. See Appendix C-C for
experiments on increasing storage capacity.

We further evaluate all models using two baseline
methods:

o Naive: Naive fine-tuning on each additional task.
This is a soft lower bound on performance, equiva-
lent to serial transfer learning with no continual
learning mechanism. It is expected to undergo
catastrophic forgetting.

o Cumulative: Cumulative multi-task training on all
tasks seen thus far. This is a soft upper bound on
performance, equivalent to transfer learning on a
continually expanding dataset, or a rehearsal method
with unlimited storage capacity. Note that continual
learning methods may outperform this in the instance
of strong backwards transfer of information, or on
tasks with considerable imbalance in dataset sizes.

Data: We use the open-access e[CU-CRD [9] ICU
dataset for all experiments bar seasonal and narrow
ethnicity domain increments, for which such information
was not available. For these we use the open-access
MIMIC-III [8, 10] ICU database. For standardisation of
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preprocessing and outcome definitions, datasets were
preprocessed with the FIDDLE pipeline [36]. Data
can be accessed at https://www.physionet.org/content/
mimic-eicu-fiddle-feature/1.0.0/.

Relevant domain shifts identifiable in both datasets is
listed in Table II. Full list of domain shifts, along
with number of samples in each task, domain, and
train/validation/test partition are available in Appendix
Table IX.

MIMIC-III eICU Domain increment Number of domains
v Region (US) 4

v Hospital 155

v v Unit 5-8

v v Sex 2

v v Age 6-7

v v Ethnicity (broad) 5

v Ethnicity (narrow) 20

v Time (season) 4

TABLE II: Domain shifts annotated in the MIMIC-III and
eICU-CRD datasets. When a range of values are given,
these correspond to different domains represented across sub-
populations with different outcomes (i.e. mortality, Shock, ARF)
or datasets (MIMIC-III, eICU).

Metrics: We compared the methods using Balanced
Accuracy as the main metric.

Since class sizes are highly imbalanced in all experiments
(mortality outcome averaging 10% across tasks, see
Table IX), and the degree of class imbalance is not
constant across domain splits, accuracy is an inappropriate
measure of model performance [37]. In minority-event
detection, metrics such as sensitivity and specificity (i.e.
true positive and true negative rates) are often preferred
depending on the relative importance of Type I and Type
II errors in the given medical context [38]. To simplify
presentation of results, we report the Balanced Accuracy,
an average of specificity and sensitivity. Full presentation
of sensitivity, specificity, precision, class-accuracy, Area
Under the Receiver Operating Curve (AUROC), and Area
Under the Precision Recall Curve (AUPRC) can be found
in Appendix A.

Pipeline:

1) Task split Data is initially split into several tasks
via the task identity (i.e. demographic category
for Domain Incremental experiments). For some
demographics there were no positive outcomes (e.g.
some low volume ethnicity groups). These groups
were excluded from the dataset for that experiment.
Task order was randomized.

2) Train, validation, test split Data within each
task is then split into train, validation, and test
subsets for the first two tasks, and into train, test
subsets only for all subsequent tasks in proportions
70:15:15 and 70:30 respectively. Since multiple
ICU admissions can pertain to the same patient,
train/validation/test streams were split along patient
identities to avoid data leakage of similar records

Task 1 Task 2 Task 3

Validation Test

Fig. 3: Data is initially divided into sequential ‘tasks’ split by
domain shift. Task order is randomized. The first two tasks are
split into training (85%) and validation (15%) sets, the latter
used for hyperparameter tuning. Subsequent tasks are assumed
to be unavailable for hyperparameter tuning and are split into
training (85%) and test data (15%) only. Different colours refer
to different domain shifts within the complete dataset.

[39]. Sample counts for each experiment can be
found in Table IX.

3) Hyperparameter optimisation Hyperparameter
optimisation requires careful consideration in a
continual learning setting, since we should not
have access to validation sets from future tasks
during the hypothesis generation phase (i.e. model
specification). As such, tuning was performed using
validation data from the first two tasks only. For
setups with a large (> 5) number of tasks, these first
two tasks are excluded from the final training and
testing phase. Otherwise, training and validation
data are combined at this stage. This setup is
consistent with validation regimes proposed in
[33] for Continual Learning setups with a limited
number of tasks.

For fairer comparison of methods, generic hyper-
parameters (i.e. learning rate, batch size, number
of layers, hidden depth) were tuned for the Naive
baseline run only and frozen for all other meth-
ods. Strategy specific hyperparameters were tuned
independently for each method.

Hyperparameters were sampled from a range of
reasonable values determined from the literature
[36, 11]. Where methods shared identical or analo-
gous parameters, the search-space was also shared
to ensure fair comparison (for example, regular-
ization strength in EWC, SI, and LwF). A full
list of hyperparameter search spaces and the best
performing configurations for each model can be
found in Appendix B-A.

Hyperparameters were chosen which maximised
the average balanced accuracy of the validation
predictions for the first two tasks.
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4) Training Once hyper-parameters were selected,
each model/strategy combination was trained from
scratch on the sequence of tasks’ training data.
In Appendix C-D we present an extra experiment
on the impact of task ordering (cf. curriculum
learning). The objective function of training was
minimising the weighted cross entropy of pre-
dictions. Weights are determined by the inverse
proportion of class examples in the first two tasks’
training data.

5) Evaluation Models were evaluated on each task’s
test data, with balanced accuracy, forgetting, and
weighted cross entropy loss recorded. Per-task
and average metrics were recorded at the end of
each training epoch. Training and evaluation was
repeated from random initialisation 5 times. Mean
performance and bootstrapped 95% confidence
intervals are reported.

Naive Cumulative EWC OnlineEWC Si LwF Replay GEM AGEM
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Fig. 4: Domain Incremental results for an outcome of mortality (48h) across domain shift of different ICU WARD. Coloured
lines show the training balanced accuracy for each task as it is encountered, for each model and strategy. Shaded regions (left)
and black bars (right) refer to bootstrapped 95% confidence intervals. Naive methods (first column) notably undergo catastrophic
forgetting as new tasks are introduced. Cumulative training (second column) mitigates this. Regularization methods mitigate this
to a degree for the most recently encountered task(s), but do not maintain performance across the entire history of tasks (with
the notable exception of LwF). Regularization techniques appear most effective in combination with CNN’s. Rehearsal methods
achieve greater success across a range of architectures, achieving top performance in most experiments.
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AGE ETHNICITY (BROAD) ICU WARD TIME (SEASON)
CNN  LSTM  MLP  Transformer | CNN  LSTM  MLP  Transformer | CNN  LSTM  MLP  Transformer | CNN  LSTM  MLP  Transformer
Baseline Cumulative  64.9+16 643408 63.0+64 59.0+40 61.6411 60.6£12 60.6408 53.7+4s 592400 582418 588+10 573141 641411 659114 655120 535168
Naive 64.0107 628112 50.0400 578438 67.610.9 67.6107 688109 50.0:100 642417  56.6420 587112 537444 672423 67.8+115 67.6410 50.040.0
EWC 638415 636100 S00s00 S557ss7 | 673s11 668:16 690bos S3Sies | 629211 S88uss S86urs S19:sr | 664iis 669:00 680106 50.0:00
Reeularization LwF 647109 644105 643107 584442 6754102 67.8:11 692406 526150 643405 618410 6241235 545i55 671420 670414 678408 524447
< OnlineEWC 637408 63.1+06 64.6+05 611107 678105 667117 700105 532163 642008  59.5i24 589119  50.0+0.0 677411 678105 681104 50.0+0.0
SI 639414 628419 637103 573443 67.5:1.0 673116 699104 548165 645:05 589411 606115  50.0+0.0 661106 67.6:06 67.6:06 527454
AGEM 645410 622:009 64106 58014 648102 673115 687102 56.di73 639+13 592415 608109 539147 684116 672121 68.6109 50.0+00
Rehearsal GEM 63.1408 60.6:11 617106 585114 582411 57.8:11 602404 508116 60.3+16 574415 573113 538432 60.141.1 601424 637100 544452
Replay 60.0412 58.1i1s Slliaa 590116 61.6437 603136 61.6421 515130 59.0£17 557416 587115 53243 659430 6l4ia3 652418  55.6447
HOSPITAL (7) HOSPITAL (14) HOSPITAL (21) HOSPITAL (28) HOSPITAL (35)
CNN LST™M MLP ‘ CNN LST™M MLP ‘ CNN LST™M MLP CNN LST™M MLP ‘ CNN LST™M MLP
Baseline Cumulative 573112 552408 565103 | 622+25 61.6+408 615103 | 57910 603+112 609i0s | 546106 55.5+09 56.1i07 | 56.0£1.7 569115 561116
Naive 52.6401 524403 550401 | 574114 579418 619108 | 583118  57.0409 6l.dliog | 52.0405 52.6407 S4lioa | 522104  52.0404 525101
EWC 52.6+0.0 52.5+01 S545:+11 | 579+14  589i05 612410 | 588:17 574416 618110 | 524106 547115 542104 | 519100 525i0s 525101
Reeularization  =VF 52.640.1 52.6401 55.040.1 | 56.6404 574410 O6lliro | 588112 578110 618109 | 5S1.8+05 539109 S4lioe | S1.9+01  51.8+03 524400
€ OnlineEWC  52.6:0.0 52.510.1 55.0101 | 57.1x07 586410 615411 | 58.1s11 575419 6ldiyy | 51605 53.6409 S4lios | 522104 526109 526103
SI 52.610.0 537113 545110 | 583120 58141 61.611a | 57.6:07 579417 61.6107 | 51.7:00 519107  53.610.8 | 52.1:04 524108 527102
AGEM 523103 525101 560417 | 573+17 5764009 629i15 | 595118 573+34 633106 | 519104 538115 561109 | 522:104  525+08 529404
Rehearsal GEM 548+:15 505t10 569+13 | 582414 589416 61.0:0s | 579:18 589100 593110 | 53.0:03 543106 S554:07 | 54.0+10 555413 58141
Replay 544113 532412 5584190 | 588114 597404 621123 | 57.5+12 569411 599118 | 52.5:03 53.0+t06  53.810.0 | 52.8+10 529106 527101

TABLE III: Final average balanced accuracy for 48hr mortality

prediction across demographic domain shift (AGE, ETHNICITY,

WARD) and TIME (top), and HOSPITAL shift (bottom). Average performance over 5 runs are presented with bootstrapped 95%
confidence intervals. Bold values refer to the best average performance for each model and experiment. For the hospital experiment

we report the current performance after training on n hospitals

for n € {7,14,21,28,35} in addition to final performance (i.e.

after all hospitals). Bracketed numbers refer to the number of different hospitals sequentially trained on thus far.

IV. RESULTS

We present the results of the Domain Incremental experi-
ments in Table III. For brevity we show only the results
on outcome of 48hr mortality, see Appendix A for results
on other outcomes (ARF, shock). Results show the final
average test balanced accuracy across all tasks for each
method. Reported values are means over 5 runs from
random initialisation, with bootstrapped 95% confidence
intervals.

For the HOSPITAL domain shift experiments we present
the average performance on all tasks thus-seen as the
number of tasks increases (i.e. as the models encounter
an increasing number of hospitals). Figure 5 displays this
performance over time graphically (for the training data).

A. Model Architectures

Models are generally comparable over a small but
constant number (40) of training epochs per domain shift,
with the exception of Transformers which demonstrated
much more volatile performance over repeated runs.

Highest training efficiency (measured by number of
training epochs required to saturate the current task’s
loss) was achieved by MLP, followed by LSTM. However
a higher training efficiency was correlated with faster
(and greater) forgetting upon introduction of new tasks
(see for example, MLP EWC vs CNN EWC in Figure
4). We are currently working on introducing an early
stopping mechanism to terminate training on each task
only once saturation of a given metric has been achieved
(as opposed to a fixed number of epochs) to enable a
fairer comparison of methods.

B. Continual Learning strategies

Regularization methods showed superior or comparable
performance with replay based methods across limited
number of domain shifts (AGE, WARD, and ETHNICITY
(BROAD), Table III top), but decreasing performance as
the number of tasks grew large. LWF achieved superior
performance on the largest amount of experiments,
achieving the lowest degrees of forgetting (note the
‘flatline’ shape of the LwF task curves in Figure 4). For
the HOSPITAL domain shift experiments, regularization
methods failed to mitigate catastrophic forgetting for n
tasks > 5, performing on par with Naive fine tuning (no
statistically significant difference in final performances).
Such performance is expected of regularization methods
on domain incremental problems, having been observed in
toy problems generally [40, 4], and in recurrent networks
specifically [11]. This is likely due to regularization
methods only ‘delaying the inevitable’ when faced with
a large number of tasks, as models are ‘walled off” into
shrinking locally optimised regions for parameters.

Rehearsal methods outperformed all other strategies for
a large number of domain shifts. This is consistent
with class- and domain-incremental results in other
benchmarks [20]. Rehearsal methods all improved with
larger storage capacity (Appendix C-C).

As shown in Figure 5, regularization methods were
generally volatile across a large number of domain
shifts, likely corresponding to sets of hospitals more
or less similar to the first few encountered. Contrary to
this, the rehearsal methods A-GEM and GEM showed
relatively stable performance as more hospitals were
encountered. This stability in performance over domain
shifts demonstrates sustained generalisation as the task
population becomes more heterogeneous.
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Final average performance over all tasks

Balanced Accuracy

Naive Cumulative  EWC OnlineEWC S LwF Replay GEM AGEM

Balanced Accuracy

Naive Cumulative EWC OnlineEWC  SI LwF

Replay GEM AGEM

Balanced Accuracy

_9__'_—0——0——

Naive Cumulative EWC  OnlineEWC Sl LwF Replay GEM AGEM

Fig. 5: Domain Incremental results for an outcome of mortality (48h) across domain shift of different HOSPITAL. Results show
the average training balanced accuracy over all tasks thus encountered, for each model and strategy. Shaded regions (left) and
black bars (right) refer to bootstrapped 95% confidence intervals over 5 runs. Regularization strategies (orange-reds) mitigate
catastrophic forgetting to an extent for the first few tasks (hospitals) encountered, but quickly drop to the same performance
as the NAIVE baseline (dark blue). A-GEM (lime green) suffers similar behaviour due to averaging of past memory gradients
being insufficient to capture the variability in domains. Rehearsal style methods achieve superior performance across the entire
range of tasks, with explicit REPLAY achieving the highest performance in all but one instance. No method achieves comparative
performance with CUMULATIVE upper bound (light blue) for n tasks > 5.

V. DISCUSSION

Our experiments show that simple deep neural networks
trained on rich multi-variate sequential data are also prone
to catastrophic forgetting in a domain incremental setting.

We observe that regularization methods are prone to more
forgetting than rehearsal based methods across a large
sequence of tasks, but for few tasks achieve superior or
comparable performance to replay based methods (given
a fixed small replay buffer).

In the case of patient health records, data may comprise
sensitive patient data and hence sharing between institu-
tions or storage over time may require data sharing agree-
ments and ethical approval. This may be prohibitively
time-consuming or infeasible, making rehearsal based
methods inapplicable. Data-free rehearsal methods such
as generative models overcome this issue, but there is
a high computational burden to the learning of accurate
generative models for such time-series data.

Future work to be performed:

o Implement early stopping mechanism to allow all
model/strategies to saturate in current performance
before training on new task(s).

o Complete supplementary experiments.

 Investigate domain shift across different countries /
healthcare systems / datasets i.e. :

- MIMIC

- elCU

HIRID [41]
AmsterdamUMCDB [42]

o investigate MIMIC-IV. The seasonal information of
MIMIC-III appears to be too obfuscated, since mod-
els do not seriously undergo catastrophic forgetting
in this domain. Use annual information preserved
in MIMIC-IV for more realistic experiment.

o Explore continual learning as a means of bias
mitigation (compare CL methods on demographic
splits with traditional bias mitigation strategies).
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APPENDIX A
FULL RESULTS

A. Additional outcomes

Here we present the results for predicting additional outcomes omitted in the main results for brevity, namely the
domain incremental experiments on outcomes of ARF (4h) and Shock (4h):

ARF (4h)
AGE ETHNICITY
CNN LSTM MLP Transformer | CNN LSTM MLP Transformer
Baseline Cumulative 6794107 648112 652416 672407 661103 660112 695103 678113
Naive 672403 667106 62.1:+0s 658110 69.0108 685112 683105 068118
EWC 66.7+0.5 667113 627407 6424009 68.7403 69.1:07 683107 66.611.2
Regularization LwF 6734101 602108 654114 654110 69.040.1 694106 67.6415 674415
OnlineEWC 67.14056 652411 62.840.9 65.141.7 68.440.8 68.7+0.5 68.510.4 65.4410
SI 674102 665109 63.1109 652110 691102 691197 68.11+11 66.7420
AGEM 664106 662106 593106 656109 68.8406 689101 682107 644451
Rehearsal GEM 613103 599:07 577x11 619104 683102 658405 683103 66.811.0
Replay 6134120 628105 585409 641405 67.1112 668110 669105 653115

TABLE IV: Results for outcome of 4h Acute Respiratory Failure. Similar to the main results on mortality, regularization methods
achieve best performance over a limited number of domain shifts. Transformers achieve much more stable performance over the
shorter sequence experiments.

Shock (4h)
AGE ETHNICITY
CNN LSTM MLP Transformer | CNN LSTM MLP Transformer

Baseline Cumulative 623104 643114 650108 6731056
Naive 65.040.6 659409 653103 64141138
EWC 648405 67.5+07 664105 633125
L LwF 65.140.5 66.84093 653410 656405
Regularization OnlineEWC | 6484106 67.1407 658408 63.1415
SI 653104 675106 651109 635114
AGEM 623107 647413 6514107 632104
Rehearsal GEM 61.7+05 618411 625406 63.0+1.1
Replay 61.0i0‘5 60.7i0‘7 62.2i0,9 63.2i0,9

TABLE V: Results for outcome of 4h Shock.

In contrast to other outcomes, prediction of shock (4h) shows little variation between the naive baseline, continual
learning methods, and cumulative upper bound. This may be due to shock presenting similarly across domain shifts

B. Additional sequential models

Work in progress #¢

Here we evaluate a number of other sequential model architectures omitted from the main results for brevity.
namely, we evaluate an RNN and GRU (in addition to the LSTM of the main results).
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APPENDIX B
MODEL AND DATA SPECIFICATIONS

A. Hyperparameters

Hyperparameter tuning was performed via grid search over the following discrete space (parameter names refer to
their kwarg names in the Avalanche implementations [43]):

Hyperparameter Values

mem_size {256}

patterns_per_exp {256} Hyperparameter ~ Values MLP CNN LSTM Transformer
sample_size {256, 512} - .

ewe_lambda {0.001, 0.01, 0.1, 1, 10, 100} 2“1;‘;2;5““ {24’4]128’ B Y y
si_lambda {0.001, 0.01, 0.1, 1, 10, 100} ngnlinearity [rélu tanh*] v v X v
lambda_e {0.001, 0.01, 0.1, 1, 10, 100} heads (2 16 24] X X X v

alpha {0.001, 0.01, 0.1, 1, 10, 100} o >

temperature {05, 10, 15, 20, 2.5, 3.0y ~_Vidirectional  [True, False] % X v X
decay_factor {0.2, 0.4, 0.6, 0.8, 0.9, 1}

memory_strength {0.2, 0.4, 0.6, 0.8, 0.9, 1}
TABLE VI: Grid for method hyperparameter search for all experiments. Left table refers to strategy specific hyperparameters.
Right table refers to model specific hyperparameters. Check marks and crosses detail whether hyperparameters are included in
the respective model. *gelu nonlinearity used instead of tanh for the Transformer model.

Tuned parameters for each model (base model and CL strategy) and experiment are listed below:

AGE ETHNICITY (BROAD)
lambda  decay_factor temperature sample_size patterns_per_exp lambda  decay_factor temperature sample_size patterns_per_exp

MLP EWC 0.1 MLP EWC 0.1

OnlineEWC  0.01 0.9 OnlineEWC  0.001 02

LwF 0.1 1.5 LwF 1.0 0.5

SI 0.01 SI 100.0

Replay 640.0 Replay 1280

AGEM 128.0 128.0 AGEM 128.0 128.0

GEM 02 128.0 GEM 0.8 128.0
CNN EWC 0.01 CNN EWC 0.001

OnlineEWC  100.0 0.5 OnlineEWC  100.0 0.9

LwF 0.001 2.0 LwF 100.0 1.5

SI 0.1 Nt 0.001

Replay 1280 Replay 1280

AGEM 128.0 128.0 AGEM 128.0 128.0

GEM 0.4 128.0 GEM 08 128.0
LSTM EWC 0.01 LSTM EWC 0.001

OnlineEWC  0.01 0.5 OnlineEWC 1.0 0.2

LwF 1.0 3.0 LwF 1.0 1.0

SI 0.01 Nt 10.0

Replay 128.0 Replay 1280

AGEM 128.0 128.0 AGEM 128.0 128.0

GEM 0.6 128.0 GEM 08 128.0
Transformer EWC 10.0 Transformer EWC 100.0

OnlineEWC  0.01 0.6 OnlineEWC  10.0 0.8

LwF 0.001 0.5 LwF 10.0 3.0

SI 10.0 SI 100.0

Replay 1280 Replay 1280

AGEM 128.0 128.0 AGEM 128.0 128.0

GEM 0.7 128.0 GEM 0.2 128.0

TIME (SEASON) ICU WARD
lambda decay_factor temperature sample_size patterns_per_exp lambda decay_factor temperature sample_size patterns_per_exp

MLP EWC 0.1 MLP EWC 0.1

OnlineEWC  0.001 0.9 OnlineEWC  0.001 0.9

LwF 0.001 25 LwF 10.0 1.5

SI 0.01 SI 0.001

Replay 128.0 Replay 1280.0

AGEM 128.0 128.0 AGEM 512.0 256.0

GEM 0.6 128.0 GEM 0.6 256.0
CNN EWC 10.0 CNN EWC 100.0

OnlineEWC  0.001 0.4 OnlineEWC 1.0 0.8

LwF 0.001 2.0 LwF 100.0 2.0

SI 0.1 SI 100.0

Replay 128.0 Replay 1280.0

AGEM 128.0 128.0 AGEM 512.0 256.0

GEM 0.4 128.0 GEM 0.8 256.0
LSTM EWC 100.0 LSTM EWC 0.01

OnlineEWC  100.0 0.9 OnlineEWC 1.0 0.4

LwF 0.001 1.0 LwF 10.0 3.0

SI 0.01 SI 0.01

Replay 128.0 Replay 1280.0

AGEM 128.0 128.0 AGEM 512.0 256.0

GEM 0.4 128.0 GEM 0.8 256.0
Transformer EWC 0.001 Transformer EWC 0.1

OnlineEWC  0.001 0.2 OnlineEWC  0.01 0.8

LwF 0.1 1.0 LwF 0.1 0.5

SI 0.001 SI 0.001

Replay 128.0 Replay 1280.0

AGEM 128.0 128.0 AGEM 256.0 256.0

GEM 0.4 128.0 GEM 1.0 256.0

TABLE VII: Tuned hyperparameters for main experiments (outcome of MORTALITY (48H)).
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B. Training partitions

Total number and number of positive samples in each train/validation/test split for each experiment:

AGE
task 0 1 2 3 4 5
Total Outcome Total Outcome Total Outcome Total Outcome  Total Outcome  Total Outcome
partition
train 10794 760 BEEEl 10528 998 HEEEI 10365 1191 FEEEE 11245 1407 Bl 9385 1476 HEE 1798 309 Nl
val 2308 185 2248 236 Il 2217 221 2402 300 B 2012 331 372 61
test 2273 173 2214 229 2179 259 2348 320 R 1964 329 395 65
ETHNICITY

task 0 1 2 3 4

Total Outcome Total Outcome Total Outcome Total Outcome Total Outcome
partition
train 6394 705 912 101 Pl 41380 4722 Wl 2014 270 W 2433 301
val 1386 149 i 172 26 8880 1019 Wl 405 55 500 45
test 1303 139 186 25 8931 1060 M 434 61 521 57

WARD

task 0 1 2 3 4

Total Outcome Total Outcome Total Outcome Total Outcome Total Outcome
partition
train 771 92 762 23 W 2654 400 R 1108 143 740 97
val 166 21 169 5 553 g7 I 230 20 160 11
test 151 16 189 8 540 79 225 19 159 10

TIME (SEASON)

task 0 1 2 3

Total Outcome Total Outcome Total Outcome Total Outcome
partition
train 1428 186 N 1551 189 R 1510 178 R 1546 202
val 322 31 309 43 342 35 305 35
test 319 35 203 37l 333 27l 314 33

TABLE VIII: Train, test, validation and outcome breakdowns for 48h mortality. Red and green bars represent proportion of
positive and negative outcomes respectively per partition per task. Hospital splits have been omitted due to space constraints.
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C. Domain splits

MICU SICU CSRU TSICU CCU Neuro ICU Med-Surg ICU CSICU CTICU Cardiac ICU CCU-CTICU
Dataset  Outcome

mimic3 mortality (48h) v v v v v
ARF (4h) v v v v v
Shock (4h) v v v v v
ARF (12h) v v v v v
Shock (12h) v v v v v

eicu mortality (48h) v v v v v v v v
ARF (4h) v v v v v v v v
Shock (4h) v v v v v v v v
ARF (12h) v v v v v v v v
Shock (12h) v v v v v v v v

TABLE IX: Domain shifts exhibited for the subset of patients in each outcome dataset.

Hispanic Asian Other/Unknown Caucasian African American Native American
Dataset  Outcome

eicu mortality 48h v/ v v v v
ARF 4h v v v v v v
Shock 4h v v v v v v
ARF 12h v v v v v
Shock 12h v v v v v
TABLE X: Domain shifts exhibited for the subset of patients in each outcome dataset.
zZ
= Z
g z <
q Z z Z g z 2R
) o s < & > I > o)
E £ . 3 e z 2 E Z g g 2
9 % Z 2 a z E <5t a ) o > s ) 2
zZ o & - g : Z 1 -
I E B3 o z & 2 z 9o =z £ g = 2 2z o o %
7} < o < z 5 & z 2 E gz g oD gz £ d
5 o 4 8 zZ o E S 8 Z =z £ 3 B > Z § = & g g ¢#
¢z & E 5 8 3 g o £ 5 3 & g g E = ¢ 2 2 3 %
=) @ = = =
: ° c ¢ > g5 %5 2 fg® : 3 % = § o E g @
o Low LD Z . Z - ~ . Z
2z E Z &8z 2 %2 &z 2z &8 %8 % % & e 83z 2B
& = = a = < & a = < = =< a = = = = = = = = a =< a =
Zz % I £ £ 3 ¢ ¢ 3 z & ® £ £ 2 2 3 3 8 £ 3 &8 7 g E
5 <« Z » < &~ & m 5 & <« ¥ = = @ =& 2 @A = < I =
Dataset  Outcome
mimic3 mortality48h v v v v v v v v <V <V v v v v v v v v v vV
ARF 4h N N
O N S
ARF 12h N N N v o
I R A A A A A A N A R R R R R R R A A A A A

TABLE XI: Domain shifts exhibited for the subset of patients in each outcome dataset.
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Work in progress #¢

APPENDIX C
ADDITIONAL EXPERIMENTS

A. Generic regularization

Here we investigate the effect of architecture-agnostic regularization methods on forgetting. We investigate:

e dropout p € 0.2,0.4,0.6,0.8
o L2 regularization
e SGD momentum € 0.9,0.8,0.7,0.6,0.4,0.2
« training batch size n € 16, 32,64,128
Results:
[...]

B. Sequence length

Here we evaluate the effect of sequence length on forgetting. We subsample the data stream at a more
granular level of 1-hourly, 2-hourly, 4-hourly, 8-hourly, 12-hourly, and 24-hourly. We opted for sub sampling
since truncating the datastreams may unfairly bias performance towards larger streams as most pertinent
information (in terms of clinically observed changes to vital signs) to patient deterioration occurs closer to
the deterioration event [44].

C. Replay buffer size

Here we evaluate the rehearsal methods with an increasing storage buffer (from 10% of the training examples
incrementing to full memory i.e. Cumulative strategy).

D. Curricula

Here we evaluate the comparative performance of models given different curriculum orderings of their
tasks. We consider random, correlated, reverse-correlated orderings for the (i) age, (ii) region, and (iii) time
experiments.

E. Reduced feature set

Here we evaluate the models on a reduced feature set consisting only of routinely recorded vital signs (as
well as static demographic information).
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