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Abstract
A particular challenge for disease progression
modeling is the heterogeneity of a disease and
its manifestations in the patients. Existing ap-
proaches often assume the presence of a single
disease progression characteristics which is un-
likely for neurodegenerative disorders such as
Parkinson’ disease. In this paper, we propose
a hierarchical time-series model that can discover
multiple disease progression dynamics. The pro-
posed model is an extension of an input-output
hidden Markov model that takes into account the
clinical assessments of patients’ health status and
prescribed medications. We illustrate the bene-
fits of our model using a synthetically generated
dataset and a real-world longitudinal dataset for
Parkinson’s disease.

1. Introduction
Disease progression refers to the temporal evolution of a
disease over time. Modeling the temporal characteristics
of a disease may be useful for various purposes including
scientific discovery (e.g., understanding how a disease man-
ifests itself by discovering the stages the patients typically
go through) and clinical decision-making (e.g., evaluating
the health status of a patient by identifying the stage the
patient is in).

Probabilistic time-series models are a natural choice for dis-
ease progression modeling as they take into account tempo-
ral relations in data. However, the task remains challenging
for these models mainly because of (i) limited availability of
data, (ii) data quality problems (e.g., missing data), (iii) the
need for interpretability and (iv) heterogeneous nature of
diseases such as Alzheimer’s disease (AD) and Parkinson’s
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disease (PD). A practical solution to these problems has
been using hidden Markov models (HMMs), which (i) can
be trained using small datasets, (ii) can handle missing data
in a principled approach and (iii) are interpretable models,
e.g., it is possible to relate inferred latent states to particu-
lar symptoms. Most existing HMMs (Jackson et al., 2003;
Sukkar et al., 2012; Guihenneuc-Jouyaux et al., 2000; Wang
et al., 2014; Sun et al., 2019; Severson et al., 2020; 2021),
however, assume that each patient follows the same latent
state transition dynamics, ignoring the heterogeneity in the
disease progression dynamics.

The need for heterogeneous disease progression modeling
has been highlighted by the works on disease subtyping,
which is defined as the task of identifying subpopulations
of similar patients that can guide treatment decisions for a
given individual (Saria & Goldenberg, 2015). Disease sub-
typing can be useful especially for complex diseases which
are often poorly understood such as autism (State & Šestan,
2012), cardiovascular disease (De Keulenaer & Brutsaert,
2009) and Parkinson’s disease (Lewis et al., 2005). The
discovery of subtypes can further benefit both the scientific
discovery (e.g., studying the associations between the shared
characteristics of similar patients and potential causes) and
clinical decision-making (e.g., reducing the uncertainty in
an individual’s expected outcome) (Saria & Goldenberg,
2015).

Traditionally, disease subtyping has been carried out by clin-
icians who may notice the presence of subgroups (Barr et al.,
1999; Ewing, 1921). More recently, the growing availabil-
ity of medical datasets and computational resources have
facilitated the rapid adaptation of data-driven approaches
that offer objective methods to discover underlying disease
subtypes (Schulam et al., 2015; Lewis et al., 2005). For
instance, Lewis et al. (2005) discover the presence of four
subtypes of PD; however, they apply k-means clustering
which may provide a limited capability to capture complex
patterns in the data. Schulam et al. (2015) develop a more
sophisticated approach based on a mixture model that is
robust against the variability unrelated to disease subtpying;
however, their proposed model does not take into account
the temporal relations in the clinical visits.

ar
X

iv
:2

20
7.

11
84

6v
1 

 [
cs

.L
G

] 
 2

4 
Ju

l 2
02

2



Mixture of Input-Output Hidden Markov Models for Heterogeneous Disease Progression Modeling

In this work, we relax the assumption of HMMs that the
disease dynamics, as specified by the transition matrix, is
shared among all patients. Instead, we propose the use
of hierarchical HMMs for disease progression modeling,
particularly mixture of HMMs (mHMMs) and their vari-
ants that can explicitly model group-level similarities of
patients. We are motivated by the applications of mHMMs
in other domains where they have been shown to outperform
HMMs such as modeling activity levels in accelerometer
data (de Chaumaray et al., 2020), modeling clickstreams of
web surfers (Ypma & Heskes, 2008) and modeling human
mobility using geo-tagged social media data (Zhang et al.,
2016). We summarize our contributions and the organiza-
tion of the paper below:

Contributions: To our knowledge, this is the first attempt
to apply mHMMs to disease progression modeling. Par-
ticularly, we show that mixture of input-output HMMs
(mIOHMMs) suits disease progression modeling better than
IOHMMs, as they can discover multiple disease progression
dynamics in addition taking into account the medications
information. Moreover, we develop mixtures of a num-
ber of HMM variants, namely mIOHMMs, mixture of per-
sonalized HMMs (mPHMMs) and mixture of personalized
IOHMMs (mPIOHMMs) which have not been explored
before by the machine learning community.

Organization: We first introduce our notation for HMMs
and present three HMM variants with their mixture exten-
sions (Section 2). We then discuss the related work (Section
3), which is followed by the experiments and the results
(Section 4). Finally, we summarize our work and discuss
the possible future research directions (Section 5).

2. Methodology
This section describes the background information on
HMMs, introduces our proposed models and the training
procedure we apply.

2.1. Background

Below we introduce our notation for HMMs and describe
its three variants proposed by Severson et al. (2020).

HMM

We consider an HMM with a Gaussian observation model
and define it as a tuple M = (π,A, µ,Σ) where π is the
initial-state probabilities, A is the state-transition probabili-
ties, µ and Σ are the mean and covariance parameters of the
observation model with Gaussian densities. The generative
model of an HMM becomes as follows:

x
(i)
1 ∼ Cat(π), x

(i)
t |x

(i)
t−1 = l ∼ Cat(Al),

y
(i)
t |x

(i)
t = l ∼ N (y

(i)
t ;µl,Σl), (1)

where x(i)t and y(i)t are respectively the hidden state and
observation at time t for the ith time-series sequence, and
Cat(·) and N (·) respectively denote the Categorical and
Gaussian distributions. Here, x(i)t is conditionally generated
given that the hidden state at time t− 1 for the ith sequence,
denoted by x(i)t−1, is the lth hidden state. Similarly, y(i)t is
generated conditionally on x(i)t = l.

PHMM

We can train an HMM using multiple medical time-series
sequences collected from different patients. This approach
would rely on the assumption that each patient follows the
same state means and covariance, which may not be realistic
when the individuals differ from the state means with differ-
ent amounts. To address this issue, Severson et al. (2020)
propose a personalized HMM (PHMM) by modifying the
observation model of HMM as follows:

y
(i)
t |x

(i)
t = l ∼ N (y

(i)
t ;µl + r(i),Σl), (2)

where r(i) denotes the individual deviation from the states.

IOHMM

The observed variables of an HMM are typically the clinical
assessments made during hospital visits. However, the medi-
cations information can also be informative about the health
status of a patient. To incorporate such information into
the disease progression modeling, Severson et al. (2020)
introduce the following observation model:

y
(i)
t |x

(i)
t = l ∼ N (y

(i)
t ;µl + vld

(i)
t ,Σl), (3)

where d(i)t is the observed medication data at time t for the
ith patient and vl denotes the state medication effects.

The proposed model resembles input-output HMMs (Ben-
gio & Frasconi, 1994) except that the hidden states are not
conditioned on the input variables which are used to incorpo-
rate medications data, as the medication is thought to have
no disease-modifying impact. This assumption is valid for
diseases such as PD where there is no cure but treatments
that can only help reduce the symptoms.

PIOHMM

Finally, combining PHMM and IOHMM provides us a per-
sonalized model that takes into account the medications:

y
(i)
t |x

(i)
t = l ∼ N (y

(i)
t ;µl + r(i) + (vl +m(i))d

(i)
t ,Σl),(4)

where m(i) denotes the personalized medication effects.
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2.2. The Proposed Models

Below we follow a general recipe to construct hierarchical
mixture models. We first extend the HMM and then its three
variants to their mixture correspondences.

We construct the mixture version of a HMM model (e.g.,
mPHMMs) by concatenating the parameters of each HMM
variant (e.g., PHMM) for simplicity; however, it would also
be possible to apply alternative schemes, e.g., see Smyth
(1996) for a hierarchical clustering-based approach.

MHMMS

We define a mHMMs as a set M = {M1,M2, . . . ,MK}
where Mk = (πk, Ak, µk,Σk) is the kth HMM mixture.
The generative model becomes as follows:

z(i) ∼ Cat(α),

x
(i)
1 |z(i) = k ∼ Cat(πk),

x
(i)
t |x

(i)
t−1 = l, z(i) = k ∼ Cat(Ak,l),

y
(i)
t |x

(i)
t = l, z(i) = k ∼ N (y

(i)
t ;µk,l,Σk,l), (5)

where z(i) denotes the HMM that the ith time-series se-
quence belongs to, x(i)t and y(i)t are respectively the cor-
responding hidden state and observation at time t. Note
that when the cardinality of z is 1, the model reduces to the
standard HMM. Fig. 1 presents a graphical representation
of mHMMs.

mHMMs assume that each time-series sequence belongs
to an HMM mixture. This construction allows us to clus-
ter similar sequences so that each cluster is represented
using different parameter values. As we have mentioned
earlier, training a single HMM for all sequences may not
be expressive enough. On the other hand, training a sep-
arate HMM for each sequence can be challenging due to
the sparsity of the data and the computational problems.
mHMMs overcome these problems by combining a number
of HMMs which is higher than 1 and lower than the number
of sequences.

MPHMMS

Similarly to mHMMs, we obtain the mixture versions of the
HMM variants. For example, we modify the observation
model of PHMM to obtain its mixture version as follows:

y
(i)
t |x

(i)
t = l, z(i) = k ∼ N (y

(i)
t ;µk,l + r(i),Σk,l). (6)

MIOHMMS

We obtain mIOHMMs using the observation model given
below:

y
(i)
t |x

(i)
t = l, z(i) = k ∼ N (y

(i)
t ;µk,l + vk,ld

(i)
t ,Σk,l). (7)
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Figure 1. A graphical representation of mHMMs.

MPIOHMM

Finally, mPIOHMM has the following observation model:

y
(i)
t ∼ N (y

(i)
t ;µk,l + r(i) + (vk,l +m(i))d

(i)
t ,Σk,l), (8)

where l = x
(i)
t and k = z(i).

2.3. The Training of the Models

We follow the same training procedure proposed by Sev-
erson et al. (2020) where variational inference is used to
approximate the posterior distributions over the latent vari-
ables of x, m and r as follows:

q(x,m, r|y, λ) =

N∏
i=1

q(m(i)|λ)q(r(i)|λ)q(x(i)|y(i),m(i), r(i)),

=

N∏
i=1

q(m(i)|λ)q(r(i)|λ)

Ti∏
t=2

q(x
(i)
t |x

(i)
t−1, y

(i)
t ,m(i), r(i)),

(9)

where λ denote the variational free parameters. The cor-
responding evidence lower bound (ELBO) is maximized
using coordinate ascent alternating between the updates for
variational parameters λ and model parameters θ. Please
see Severson et al. (2020) for the details of the training
algorithm. Note that we simplify the inference by not ex-
plicitly inferring the latent variables z. Instead, we obtain
the cluster membership of each sequence based on its state
trajectory estimated via the Viterbi algorithm, thanks to the
block-diagonal structure of the transition matrices. How-
ever, it would be possible to explicitly infer the variables
z by introducing the corresponding variational distribution
q(zi|λzi).
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3. Related Work
Most common approach for disease progression modeling
has been using HMMs. For example, Guihenneuc-Jouyaux
et al. (2000) employ a HMM with discrete observations for
modeling the progression of Acquired Immune Deficiency
Syndrome (AIDS). Sukkar et al. (2012) apply the same
model for Alzheimer’s Disease. Wang et al. (2014) intro-
duce additional hidden variables to incorporate the comor-
bidities of a disease into the transition dynamics. Note that
comorbidities are defined as syndromes co-occurring with
the target disease, e.g., hypertension is a common comor-
bidity of diabetes. Other applications of HMMs for disease
progression include the work on Huntington’s disease (Sun
et al., 2019) and abdominal aortic aneurysm (Jackson et al.,
2003). Lastly, the standard HMMs have been modified for
personalized disease progression. Altman (2007) introduce
random effects to better capture individual deviations from
states. Severson et al. (2020; 2021) propose a model that
is both personalized and takes into account medications
information for disease progression modeling.

An alternative approach to personalize disease progression
is through Gaussian processes (GPs). Peterson et al. (2017)
propose a GP model personalized based on each patient’s
previous visits. Lorenzi et al. (2019) combines a GP with
a set of random effect variables where the former is used
to model progression dynamics shared among patients and
the latter is used to represent their individual differences.
Schulam & Saria (2015) propose a more general framework
based on a hierarchical GP model with population, subpop-
ulation and individual components that has been applied
on the measurements of a single biomarker. Futoma et al.
(2016) later generalize this model to the case of multiple
biomarkers.

Another common approach for disease progression model-
ing have been the use of deep learning, especially when the
interpretability is not a major concern and a large amount of
clinical data is available (Che et al., 2018; Eulenberg et al.,
2017; Pham et al., 2017; Alaa & van der Schaar, 2019; Lee
& Van Der Schaar, 2020; Chen et al., 2022). Among these
methods, the most relevant works to ours are the approaches
proposed by Lee & Van Der Schaar (2020) and Chen et al.
(2022) which can identify “similar” patients via time-series
clustering.

Perhaps the closest related works are the studies on disease
subtyping, particularly those focusing on Parkinson’s Dis-
ease (PD). Lewis et al. (2005) discover the presence of four
subtypes of PD by applying k-means clustering. Schulam
et al. (2015) develop a mixture model that is robust against
the variability unrelated to disease subtpying. Both these
approaches, however, do not take into account the temporal
relations in the clinical visits.

Finally, mHMMs have been shown to outperform HMMs in
other domains such as modeling activity levels in accelerom-
eter data (de Chaumaray et al., 2020), modeling clickstreams
of web surfers (Ypma & Heskes, 2008) and modeling hu-
man mobility using geo-tagged social media data (Zhang
et al., 2016). We also note a couple of works on the training
of mHMMs such as the hierarchical clustering-based ap-
proach proposed by Smyth (1996) and the spectral-learning
based training algorithm proposed by Subakan et al. (2014).

4. Experiments
We present two sets of experiments. The goal of the first
experiment is to demonstrate the ability of mPHMM to
simultaneously learn personalized state effects and multi-
ple disease progression dynamics using synthetically gen-
erated data, for which we know the true disease progres-
sion dynamics. Then, we show that mIOHMM provides
a better ‘fit’ of a real-world dataset than IOHMM by
discovering multiple disease progression dynamics. The
code to reproduce the experiments is publicly available at
https://github.com/tahaceritli/mIOHMM.

4.1. Synthetic Data

Combining the settings used by Severson et al. (2020) and
Smyth (1996), we build a 2-component mPHMM with 2
latent states for each PHMM. The state transition matrices
of the PHMM mixtures are given below:

A1 =

[
0.8 0.2
0.2 0.8

]
, A2 =

[
0.2 0.8
0.8 0.2

]
,

where Ak denotes the state transition matrix of the kth

PHMM. The observation model is built using Gaussian

densities with the means µ1 = µ2 =

[
0
2

]
and variances

σ2
1 = σ2

2 =

[
0.1
0.1

]
. Note that the state means and vari-

ances are the same for each PHMM whereas the transition
dynamics are different, i.e., the transitions between the la-
tent states are more likely to occur in the first PHMM than
they are in the second PHMM. The initial state probabili-
ties are assumed to be uniformly distributed. We use the
noisy observation model of x̂i,t|zi,t = l ∼ N (µl + ri,ΣT )
where ΣT is specified via a squared exponential kernel
κ(t, t′) = σ2 exp −(t−t

′)2

2∗l2 with l and σ are respectively
set to 1 and 0.1. Lastly, the personalized state offset ri is
uniformly sampled for each sample with b = 1.

Fixing the dimensionality of the data to 1, we generate 200
sequences of length 30 using this model. The training of

https://github.com/tahaceritli/mIOHMM
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Figure 2. A comparison of the models for simulated data based on the original study by Severson et al. (2020). The three rows correspond
to different pairs of models being compared. The standard HMM incorrectly assigns states and compensates for the personalization with
large variances, as shown in the first row. We observe the same phenomenon in the middle row with mHMMs, although the variance
is lower than the variance of HMM as the mixture components provide a richer representation of the state-means. As per the bottom
comparison, PHMM and mPHMMs overlap showing that the model can still handle individual variations in the data.

mPHMM yields the parameter estimates given below:

Â1 =

[
0.80 0.20
0.19 0.81

]
, µ̂1 =

[
0.11
2.10

]
, σ̂2

1 =

[
0.10
0.11

]
,

Â2 =

[
0.21 0.79
0.80 0.20

]
, µ̂2 =

[
0.04
2.05

]
, σ̂2

2 =

[
0.10
0.10

]
,

On the other hand, we obtain the following parame-

ter estimates using PHMM: A =

[
0.53 0.47
0.46 0.54

]
, µ =[

0.05 2.05
]

and σ =
[
0.10 0.11

]
which indicates

that PHMM cannot distinguish the heterogeneous state-
transitions. Note that we could have adapted PHMM to this
example by using 4 latent states; however, the distinction
between the states would not be clear as the block-diagonal
structure is not introduced in PHMM (see the additional
experimental results in Appendix A).

Finally, we demonstrate that our model keeps the person-
alization capabilities of the original PHMM discussed in
Severson et al. (2020). Fig. 2 presents a number of se-

quences and the corresponding estimates obtained using
HMM, PHMM, mHMM and mPHMM. The figure indicates
that mPHMM performs similarly as PHMM in fitting the
data. However, mPHMM has the advantage of discover-
ing the heterogeneous transition matrices over PHMM as
discussed above.

4.2. Real Data

DATA

Following the experimental setup in Severson et al. (2020),
we use the Parkinson Progression Marker Initiative (PPMI)
dataset (Marek et al., 2011) for real data experiments. PPMI
is a longitudinal dataset collected from 423 PD patients,
including clinical, imaging and biospecimen information.
We focus on the clinical assessments measured via the
Movement Disorder Society Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) (Goetz et al., 2008). The
MDS-UPDRS consists of a combination of patient reported-
measures and physician-assessed measures: (i) non-motor
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experiences of daily living, (ii) motor experiences of daily
living, (iii) motor examination and (iv) motor complications.
Each item on the scale is rated from 0 (normal) to 4 (severe).
We do not use the motor complications obtaining 59 features
for the observations.

As the medication data, we use the levodopa equivalent daily
dose (LEDD) (Tomlinson et al., 2010), which is provided in
the PPMI dataset.

METRICS

To compare the models, we use three information criteria:
Akaike Information Criterion (AIC, Akaike 1998), Bayesian
Information Criterion (BIC, Schwarz 1978) and Integrated
Completed Likelihood (ICL, Biernacki et al. 2000) which
are defined below:

AIC = −2`+ 2k

BIC = −2`+ k logN

ICL = −2ˆ̀+ 2k,

where ` is the log-likelihood of the training data, k is the
number of free parameters, N is the number of training data
instances, and ˆ̀ is the log-likelihood of the training data
under the most likely trajectory. Here, k is calculated as
L2+3∗L∗D−1 whereD is the dimension of observations
and L is the total number of hidden states aggregated over
the HMM mixtures, as we use diagonal covariance matrices.
Additionally, the log-likelihoods are calculated based on
Equations 3 and 7.

MODEL

We compare IOHMM and a number of mIOHMMs with
varying number of components (i.e.,K ∈ {2, 3, 4, 5}). Note
that these models are not personalized, meaning that they are
equivalent to PIOHMM with personalized effect variables
fixed to zero, i.e., ri = 0 and mi = 0. In this work, we
evaluate the impact of using mIOHMM over IOHMM. One
could similarly apply model selection for PIOHMM without
fixing personalized effect variables to zero; however, in
our experience, this is computationally expensive and more
efficient algorithms need to be developed which is out of
the scope of this work. Additionally, we fix the number of
hidden states to 8 following the setting in Severson et al.
(2020), and use diagonal covariance matrices.

RESULTS

Table 1 presents the values of the information criteria ob-
tained using the models, which indicate that mIOHMMs are
favoured over IOHMM. As per the table, AIC and BIC se-
lect five components whereas ICL selects two components.
This result is not surprising as AIC and BIC tend to be
overoptimistic about the model size (Biernacki et al., 2000).

Table 1. Performance of the mHMM methods using AIC, BIC and
ICL.

K AIC BIC ICL

1 -5.5370e+07 -5.5365e+07 -5.4256e+07
2 -5.5532e+07 -5.5520e+07 -5.5330e+07
3 -5.5540e+07 -5.5521e+07 -5.5246e+07
4 -5.5567e+07 -5.5542e+07 -5.2234e+07
5 -5.5536e+07 -5.5503e+07 -5.5250e+07

Following the ICL criterion, we compare and interpret the
parameter estimates obtained using mIOHMMs with 2 com-
ponents and IOHMM. In addition to the ICL criterion that
reflects the overall performance of the models, we report
a measure of performance per patient in Appendix Fig. 5
which indicates that mIOHMM leads to a higher likelihood
per patient than IOHMM (on average). Next, we inspect
the initial-state probabilities, transition-state probabilities,
state-means and medication-means.

Note that the two clusters obtained using mIOHMMs re-
spectively contain 105 and 227 patients. Table 2 presents a
summary of the age and sex distribution for each cluster of
patients, which indicates that the clusters are not picking up
on simple subject demographics.

Table 2. A summary of the patients’ characteristics.

Overall 1st cluster 2nd cluster

Age 61.6 (9.8) 60.6 (10.1) 62.1 (9.6)

Sex Female 217 (65%) 76 (72%) 141 (62%)
Male 115 (35%) 29 (28%) 86 (38%)

We have a total number of 59 features. Therefore, the com-
plete state and medication means are reported in Appendix
A. Here, we present their summaries which are calculated
based on primary clinical symptoms used for the diagnoses
of PD as done in Severson et al. (2020). Fig. 3 presents
the average of state and medication for each hidden state
based on the tremor, bradykinesia, rigidity and postural
instability/gait (PI/G) related features. The relevant fea-
tures are selected based on the MDS-UPDRS as follows:
tremor, 2.10, 3.15-3.18; postural instability gait, 2.12-2.13,
3.10-3.12; bradykinesia, 3.4-3.8, 3.14; and rigidity, 3.3 (see
Stebbins et al. (2013) for the details).

We first discuss the initial-state probabilities. Recall that the
state-transitions are allowed only in the forward direction.
Therefore, we expect the most likely initial-states to repre-
sent a patient’s health condition at enrollment, which is often
mild. This is indeed the case for both IOHMM and each
mixture of mIOHMMs where the most likely initial-states
have mild symptoms. For instance, the state 2 of IOHMM
has the highest initial-state probability and the lowest total
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IOHMM state mean IOHMM medication mean

mIOHMM state mean mIOHMM medication mean

(a) IOHMM

Figure 3. A summary of the state and medication means obtained using IOHMM and 2-component mIOHMM.

MDS-UPDRS score. For the first and second mixtures of
mIOHMMs, these are respectively the states 1 and 5.

Note that the score for each symptom is not recommended
to be collapsed into a single total score (Goetz et al., 2008).
Therefore, we also consider the score per symptom and dis-
cuss the characteristics of the states based on the intensities
of individual scores.

One common state characteristics is the co-occurring sever-
ity in the PI/G, bradykinesia and rigidity symptoms. For
example, the state 6 of IOHMM, the state 2 of the first mix-
ture of mIOHMMs and the state 6 of the second mixture
of mIOHMMs have severe PI/G, bradykinesia and rigidity
issues but no tremor issues. However, these states differ in
terms of the level of severity, e.g., the state with least severe
symptoms is the state 2 of IOHMM.

Another state characteristics we observe is the co-occurring
severity in bradykinesia and rigidity symptoms. This char-
acteristics is seen in the states 3 and 8 of IOHMM, and the
states 2 and 8 of the second mixture of mIOHMMs.

We characterize the states based on the subtype methodology
proposed by Stebbins et al. (2013), where each state is
labeled with one of the following subtypes: (i) tremor, (ii)
PI/G and (iii) intermediate. For IOHMM, the states 1,2,4,5,7
are tremor dominant, states 6 is PI/G dominant, and states 3
and 8 are indeterminate. For the first mixture of mIOHMMs,
the states 1,3,5,7,8 are tremor dominant, states 2 and 4

are PI/G dominant and state 7 is indeterminate. For the
second mixture of mIOHMMs, the states 2,6,7 are PI/G
dominant and the remaining states are tremor dominant.
These observations conform with the findings of Severson
et al. (2020) in that the number of tremor dominant states is
higher than the number of PI/G dominant states.

In addition to the state-means, each state is associated with
a medication variable. When a patient is on medication,
the symptoms are modeled using the state means and state
medication variables. This can help to distinguish the states
with similar means and different medications effects. For
example, the state 5 and 7 of the first mixture of mIOHMMs
are similar in terms of the state-means; however, the state 5
has a higher medication effect for the PI/G symptom than
the state 5. Note that one should take into account whether
a patient is on medication at a hospital visit and, if so, the
dose of the medication for a better understanding of the
model findings.

We note that the state-transition probabilities favour self-
transitions which may not be surprising as the disease pro-
gression occurs slowly between hospital visits. Again, the
transitions need to be interpreted considering the medica-
tions effects.

Finally, we discuss the state-trajectories obtained via the
Viterbi algorithm. Fig. 4 plots a patient’s data who is clus-
tered in the second mIOHMM mixture and the correspond-
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Figure 4. A histogram of a deteriorating PD patient (female, 57 years old) (Top) and the corresponding state-trajectory (Bottom). The data
is clustered into the second mixture of mIOHMMs. The subject appears to deteriorate over time, as denoted by visiting the states 1, 4 and
8—indicating increasing means in the bradykinesia- and rigidity-based features. Notice that the data column is entirely missing when
the patient misses a hospital visit, whereas some features are non-missing but still zero-valued because a 0 rating has been given for the
corresponding symptom.

ing state-trajectory. It was observed the changes in the
regime have been successfully captured by the states. Note:
for the corresponding feature list and index, we refer the
reader to Appendix Fig. 7. We also visualize the disease
progression trajectories for a number of patients in each
cluster with their overall severity scores in Appendix Fig. 8

5. Summary
In this paper, we have applied mixtures of hidden Markov
models for disease progression modeling. The proposed
models can identify similar groups of patients through time-
series clustering and separately represent the progression of
each group, unlike hidden Markov models which assume
that a single dynamics is shared among all patients. Our
experiments on a real-world dataset have demonstrated the
benefits of mixture models over a single hidden Markov
model for disease progression modeling. Future work in-
cludes the development of efficient training algorithms for
mPIOHMMs.
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State, M. W. and Šestan, N. The emerging biology of
autism spectrum disorders. Science, 337(6100):1301–
1303, 2012.

Stebbins, G. T., Goetz, C. G., Burn, D. J., Jankovic, J., Khoo,
T. K., and Tilley, B. C. How to identify tremor dominant
and postural instability/gait difficulty groups with the
movement disorder society unified Parkinson’s disease
rating scale: comparison with the unified Parkinson’s
disease rating scale. Movement Disorders, 28(5):668–
670, 2013.

Subakan, C., Traa, J., and Smaragdis, P. Spectral learning of
mixture of hidden Markov models. Advances in Neural
Information Processing Systems, 27, 2014.

Sukkar, R., Katz, E., Zhang, Y., Raunig, D., and Wyman,
B. T. Disease progression modeling using hidden Markov
models. In 2012 Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, pp.
2845–2848. IEEE, 2012.

Sun, Z., Ghosh, S., Li, Y., Cheng, Y., Mohan, A., Sam-
paio, C., and Hu, J. A probabilistic disease progression
modeling approach and its application to integrated Hunt-
ington’s disease observational data. JAMIA open, 2(1):
123–130, 2019.

Tomlinson, C. L., Stowe, R., Patel, S., Rick, C., Gray, R.,
and Clarke, C. E. Systematic review of levodopa dose
equivalency reporting in Parkinson’s disease. Movement
Disorders, 25(15):2649–2653, 2010.

Wang, X., Sontag, D., and Wang, F. Unsupervised learning
of disease progression models. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 85–94, 2014.

Ypma, A. and Heskes, T. Categorization of web pages and
user clustering with mixtures of hidden Markov models.
2008.

Zhang, C., Zhang, K., Yuan, Q., Zhang, L., Hanratty, T., and
Han, J. Gmove: Group-level mobility modeling using
geo-tagged social media. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1305–1314, 2016.



Mixture of Input-Output Hidden Markov Models for Heterogeneous Disease Progression Modeling

Appendices

A. Additional Experimental Results
A.1. Synthetic Data

The training of PHMM with 4 latent states yields the parameter estimates given below:

Â =


0.55 0.39 0.09 0.06
0.36 0.48 0.08 0.08
0.11 0.11 0.36 0.43
0.08 0.11 0.42 0.39

 , µ̂ =


−0.15
1.85
0.32
2.34

 , σ̂2 =


0.06
0.05
0.05
0.05

 ,
where Â denotes the estimate for the state transition matrix, and µ̂ and σ̂2 are the estimates for the state means and variances.

A.2. Real Data
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Figure 5. Difference in the log-likelihood of the models for each patient in the test data, plotted with respect to the percentage of patients.

Fig. 6 plots the inferred initial-state probabilities and the transition matrices for IOHMM and 2-component mIOHMMs. Fig.
7 plots the complete state-means obtained using IOHMM and mIOHMMs with 2 mixtures.

(a) IOHMM (b) mIOHMM

Figure 6. Initial-state probabilities and transition matrices obtained using IOHMM and mIOHMMs with 2 mixtures.

Fig. 8 visualizes the state-trajectories obtained using mIOHMMs for a number of patients and the corresponding overall
disease severities, which are calculated based on the estimated states. In particular, we aggregate the state-means over all
features. Here, the first and second mixtures are respectively plotted on the left and right hand-side. The figure reflects the
intensity difference in the state-means where the second mixture contains more severe symptoms than the first mixture.
Moreover, we observe that in the second mixture the final states are more diverse and the jumps are more likely to occur
than the first mixture.
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(a) IOHMM

(b) mIOHMM

Figure 7. State means obtained using IOHMM and mIOHMMs with 2 mixtures.



Mixture of Input-Output Hidden Markov Models for Heterogeneous Disease Progression Modeling

b) Mutable disease dynamics

a) Stable disease dynamics

Figure 8. State trajectories obtained via the Viterbi algorithm where each line denotes the trajectory for a different patient. Here, X-axis
denotes the time index tth for quarterly hospital visits and Y-axis denotes the sum of state-means at the corresponding state. We group
trajectories based on the number of states visited. The number of states visited is 1 at Top and 4 at Bottom.


