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Abstract—Deep learning models have demonstrated superhu-
man performance in a multitude of image classification tasks,
including the classification of chest X-ray images. Despite this,
medical professionals are reluctant to embrace these models in
clinical settings due to a lack of interpretability, citing being
able to visualise the image areas contributing most to a model’s
predictions as one of the best ways to establish trust. To aid the
discussion of their suitability for real-world use, in this work, we
attempt to address this issue by conducting a localisation study of
two state-of-the-art deep learning models for chest X-ray image
classification, ResNet-38-large-meta and CheXNet, on a set of 984
radiologist annotated X-ray images from the publicly available
ChestX-ray14 dataset. We do this by applying and comparing sev-
eral state-of-the-art visualisation methods, combined with a novel
dynamic thresholding approach for generating bounding boxes,
which we show to outperform the static thresholding method used
by similar localisation studies in the literature. Results also seem
to indicate that localisation quality is more sensitive to the choice
of thresholding scheme than the visualisation method used, and
that a high discriminative ability as measured by classification
performance is not necessarily sufficient for models to produce
useful and accurate localisations.

Index Terms—Deep Learning, Deep Learning Interpretability,
Chest X-ray, Computer-Aided Diagnosis

I. INTRODUCTION

Thoracic diseases are one of the leading causes of death
globally [1], making chest X-ray (CXR) imaging the most
common medical imaging exam in the world [2]. The ability
to accurately identify abnormalities from CXRs is critical in
being able to detect, treat and manage diseases, but even when
adopting systematic approaches to diagnosis, radiologists can
miss up to 15% of cases [3], either because of the very small
size of pathological features [4], or because of fatigue that has
been shown to occur after as little as an hour of continuous
reading [3]. Following the release of the seminal ChestX-ray14
dataset [5], deep learning approaches have been proposed
with diagnostic capabilities similar to those of practising
radiologists [6], sparking interest in the use of deep learning
models in computer-aided diagnosis (CAD) systems. Such
CAD systems could help to guide radiologists’ attention when
taking readings or provide a second opinion, increasing the
accuracy of diagnoses and helping to detect abnormalities
sooner, leading to better preventive care and patient outcomes.

Interviewed radiologists have described the potential utility
of localisations for detecting early-stage pathologies [7], where

localisation refers to a model’s ability to correctly identify
the image area indicating a given class. However, despite its
recognised importance, there is often no quantitative procedure
carried out to measure a model’s localisation performance,
even among the state of the art [6], [8]. With the original
release of ChestX-ray14, [5] reported preliminary localisation
results using class activation mappings (CAM) and a static
thresholding method to extract bounding boxes from a 50-
layer ResNet. These results were later improved by [9] who
proposed a patch-based network that trained explicitly using
a subset of ChestX-ray14’s bounding box annotated images.
Although [9]’s results demonstrated a significant improvement
over [5]’s, it has been noted by [4] and others that due to the
prohibitively time-consuming process of obtaining radiologist-
annotated examples, there is great incentive for models that
localise well from training only on images with global labels.

Considering this fact and that the best currently-known
models for classification on the ChestX-ray14 dataset are
ResNet-38-large-meta (R38LM) [8] and CheXNet [6], in this
work we focused on models trained on global labels and re-
implemented and conducted a quantitative localisation study
of the R38LM [8] and CheXNet [6] models for both the
‘official’ dataset split, and on 5 randomly sampled dataset
splits. We also examined the impact of several visualisation
methods on localisation quality, and the impact of applying
different smoothing methods to these visualisations. Finally,
we propose a novel dynamic thresholding method for gen-
erating bounding boxes from visualisations, comparing the
localisations produced by this method to those produced by
the static thresholding approach that is typically used.

II. METHODOLOGY

We re-implement and train R38LM [8] and CheXNet [6]
as per their original publications on the official ChestX-
ray14 dataset split and 5 randomly sampled splits, reporting
classification results for both models using area under the
receiver operating characteristic curve (AUROC). Then, we
use four different visualisation methods, with and without
smoothing, employing both our proposed dynamic threshold-
ing scheme and the standard static thresholding scheme to
generate bounding boxes. We then use these bounding boxes



to evaluate localisation performance. A visual example of the
bounding box generation procedure can be seen in Fig. 1.

A. The R38LM and CheXNet deep learning models

R38LM [8] consists of a 38-layer ResNet that takes a
448×448 image as input and creates a 2048-d feature vector
that is concatenated with a 3-d feature vector representing the
metadata associated with the image (view position, patient’s
age and sex). A fully connected layer with a sigmoid activation
function is used for final classification into 15 classes (14
pathologies + No finding). CheXNet [6] instead uses a 121-
layer DenseNet with a 14-d fully connected layer and a sig-
moid activation function to represent only pathology classes.
For both models, all data preprocessing steps (including data
augmentation) and training parameters follow those outlined
in the original publications, in order to replicate the original
studies as faithfully as possible. Binary Cross Entropy (BCE)
was used as the loss function for training CheXNet with a mini
batch size of 16 and an initial learning rate of 0.001, whereas
class-averaged BCE was used for R38LM with a mini batch
size of 8 and a learning rate of 0.01. The Adam optimiser
(β1 = 0.9, β2 = 0.999) was used for both, with training
stopping after 100 epochs with no improvement to the average
AUROC on the validation set. In addition, after 20 epochs with
no improvement, R38LM’s learning rate was multiplied by 0.5,
whereas CheXNet’s learning rate was multiplied by 0.1.

B. Dataset

The NIH’s ChestX-ray14 dataset [5] is used in this study due
to its ubiquity in the literature and since it is the only publicly
available dataset with bounding box annotated pathologies, fa-
cilitating a quantitative localisation study. The dataset contains
112,120 chest X-rays of 30,805 patients aged 0 to 95, with
14 labels representing the 14 pathologies shown in TABLE I.
Images with no associated labels are implicitly considered as
No Finding, and multiple labels may be associated with a
single image. Additionally, there is a subset of 984 images
which have been hand-annotated with bounding boxes by
board-certified radiologists for the 8 pathologies shown in
TABLE II. In addition, the dataset contains metadata detailing
each patient’s age, sex and whether the X-ray was taken
from front-to-back (anteroposterior) or back-to-front (pos-
teroanterior). For our experiments, we used both the official
training/test split, as well as 5 randomly sampled train (70%),
validation (10%), test (20%) splits, ensuring that images of
the same patient are contained in exactly one of the sets.

C. Visualisation methods

We study the localisation performance of R38LM and
CheXNet using the following visualisation methods: class-
activation mapping (CAM) [10], Gradient-weighted CAM
(Grad-CAM) [11], Grad-CAM++ [12], and Eigen-CAM [13].
Let the final convolutional layer in our network produce a
set of activations of size H × W × K, where H × W are
the dimensions of each grid of activations and K is the
total number of such activation grids produced. We denote

Fig. 1: Example of bounding box generation

the k-th grid of activation values produced by this layer as
Ak ∈ RH×W . For a class c, we denote the weight of the
synapse flowing from the k-th neuron in our fully connected
layer to the pre-sigmoid classification score yc for class c
as wc

k. Then, the CAM for class c is M c
CAM =

∑
k w

c
kA

k.
Grad-CAM extends this idea, weighting activations by the
gradient of the weights flowing into the classification score
yc [11]. Grad-CAM++ instead weights activations by weighted
combinations of the positive partial derivatives of yc [12].
Alternatively, Eigen-CAM applies singular value decomposi-
tion to the final convolutional layer’s activations, factorising
them as A = USV T . The Eigen-CAM is then given as
MEigen-CAM = AV1, where V1 is the first eigenvector of V.

D. Visualisation smoothing

We also investigated the impact of smoothing visualisations
on localisation performance, employing two techniques from
[14]: (i) augmentation smoothing, and (ii) Eigen smoothing.
Augmentation smoothing seeks to better center visualisations
around the pertinent image areas. This is done by creating
three copies of the input image, horizontally flipping each
one, and multiplying their pixel intensities by 0.9, 1.0, and
1.1, respectively. The images are then passed through the
network and visualisations are extracted. After applying the
inverse process (flipping and division), they are averaged
to produce the final visualisation. Eigen smoothing instead
seeks to denoise visualisations, allowing tighter bounding box
predictions. This is done by applying singular value decom-
position to the visualisation and retaining only the principal
components. This procedure is identical to that of Eigen-
CAM, except that we operate on a single visualisation instead
of K activations. In preliminary experiments, we observed a
greater gain in localisation performance when applying both
smoothing techniques compared to applying either technique
independently. As a result, we use both augmentation and
Eigen smoothing in our smoothed visualisation experiments.

E. Predicting bounding boxes

We evaluate the accuracy of bounding boxes produced using
the typical ‘static’ thresholding scheme and our proposed
‘dynamic’ thresholding scheme. Under both schemes, once
a visualisation has been extracted, the visualisation’s pixel
intensities are normalised to the range [0, 255]. The static
approach consists of selecting a static range (a common choice
is [60, 180], also used by [5]), and setting the pixel intensities
that fall within this range to 1, and all others to 0. In our
proposed dynamic scheme, a percentile value n is chosen, and



TABLE I: AUROC scores for our experiments, Wang et al.’s
[5], and Li et al.’s [9] (higher is better).

Pathology R38LM
(official)

R38LM
(random)

CheXNet
(official)

CheXNet
(random)

Wang [5]
(official)

Li [9]
(official)

Atelectasis 0.750 0.767 0.726 0.761 0.707 0.727
Cardiomegaly 0.845 0.857 0.872 0.886 0.810 0.836
Effusion 0.811 0.845 0.794 0.845 0.759 0.789
Infiltration 0.692 0.705 0.680 0.696 0.661 0.672
Mass 0.795 0.810 0.788 0.791 0.693 0.776
Nodule 0.726 0.740 0.720 0.709 0.669 0.696
Pneumonia 0.706 0.723 0.683 0.707 0.658 0.649
Pneumothorax 0.820 0.840 0.802 0.830 0.799 0.808
Consolidation 0.724 0.764 0.717 0.762 0.703 0.720
Edema 0.822 0.845 0.829 0.853 0.805 0.806
Emphysema 0.844 0.871 0.848 0.846 0.833 0.888
Fibrosis 0.741 0.756 0.782 0.773 0.786 0.771
Pleural thickening 0.709 0.747 0.739 0.753 0.684 0.737
Hernia 0.876 0.839 0.871 0.843 0.872 0.693
Average 0.776 0.794 0.775 0.790 0.746 0.755
Note: the dataset split used is given in parentheses. Results for random are averaged over our
5 random splits.

we set pixel intensities to 1 if they fall into the top (100−n)-th
percent of normalised pixel intensities, and 0 otherwise. For
both schemes, after thresholding, a bounding box is drawn
around the largest contiguous group of 1-valued pixels.

We introduce dynamic thresholding as a result of pre-
liminary experimentation with static thresholds, where we
observed strong localisation performance for R38LM using
a threshold range of [60, 180], but poor localisations for
CheXNet under the same scheme. We found using a higher
threshold range of [180, 255] to improve localisations for
CheXNet, but substantially worsen localisations for R38LM.
By instead using dynamic thresholding, we allow a fixed
percentile of pixel intensities to be retained, which results in
more consistent localisation quality when applied to different
models, as shown in our experimental evaluation.

Finally, we measure the quality of predicted bounding boxes
using Intersection over Union (IoU) and Intersection over the
detected Bounding Box (IoBB).

III. RESULTS & DISCUSSION

A. Classification results
We report classification performance for R38LM and

CheXNet in TABLE I. We obtained results within 5% of those
reported by [8] for R38LM, however our CheXNet results
were almost 8% worse than those reported by [6], even after
repeating our experiments several times on the official split
with varying sizes and samples of validation data. As observed
by [8], [9] and demonstrated by our AUROC scores on our
random splits (which contain proportionally more pathological
examples for training than the official split), both R38LM and
CheXNet classify better when using a dataset split with more
pathological examples in the training set. We expect that our
lower than expected CheXNet results are therefore due to a
difference in the number of training examples in [5]’s official
split and the unspecified random split used in [6]’s original
CheXNet experiments.

B. Dynamic vs. static thresholding
In Fig. 2 we report average localisation scores for the

set of bounding box annotated images in ChestX-ray14. For
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Fig. 2: R38LM’s and CheXNet’s localisation performance
for different visualisation methods under static and dynamic
thresholding. (S) refers to visualisation smoothing.

both R38LM and CheXNet, dynamic thresholding with n ∈
{85, 87.5, 90} resulted in higher IoU scores than any static
threshold range for all visualisation methods tested. We also
observe that when using a sufficiently high value of n, IoBB
scores are competitive with or superior to those obtained by
static thresholding on both models. Our results demonstrate
an inherent limitation of static thresholding, which is that



TABLE II: IoU scores for R38LM and CheXNet on the official split (higher is better).

Pathology T(IoU) = 0.1 T(IoU) = 0.2 T(IoU) = 0.3 T(IoU) = 0.4 T(IoU) = 0.5 T(IoU) = 0.6 T(IoU) = 0.7
R38LM CheXNet R38LM CheXNet R38LM CheXNet R38LM CheXNet R38LM CheXNet R38LM CheXNet R38LM CheXNet

Atelectasis 0.394 0.294 0.194 0.117 0.100 0.050 0.044 0.006 0.028 0.006 0.011 0.006 0.011 0.000
Cardiomegaly 1.000 0.911 0.993 0.911 0.993 0.870 0.938 0.842 0.842 0.712 0.596 0.555 0.281 0.267
Effusion 0.536 0.320 0.242 0.144 0.098 0.052 0.039 0.020 0.007 0.000 0.000 0.000 0.000 0.000
Infiltration 0.862 0.610 0.610 0.455 0.350 0.252 0.179 0.122 0.098 0.065 0.041 0.033 0.008 0.008
Mass 0.329 0.282 0.153 0.153 0.094 0.071 0.047 0.035 0.047 0.012 0.012 0.000 0.012 0.000
Nodule 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Pneumonia 0.883 0.683 0.625 0.417 0.317 0.258 0.125 0.142 0.067 0.092 0.025 0.042 0.017 0.017
Pneumothorax 0.163 0.133 0.082 0.051 0.031 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Average 0.521 0.404 0.362 0.281 0.248 0.198 0.172 0.146 0.136 0.111 0.086 0.079 0.041 0.036
*Best score per pathology and threshold shown in bold

TABLE III: IoU scores for R38LM and CheXNet on our 5 randomly sampled splits (higher is better).

Pathology T(IoU) = 0.1 T(IoU) = 0.2 T(IoU) = 0.3 T(IoU) = 0.4 T(IoU) = 0.5 T(IoU) = 0.6 T(IoU) = 0.7
R38LM CheXNet R38LM CheXNet R38LM CheXNet R38LM CheXNet R38LM CheXNet R38LM CheXNet R38LM CheXNet

Atelectasis 0.430 0.370 0.224 0.180 0.112 0.082 0.046 0.027 0.026 0.006 0.016 0.003 0.004 0.000
Cardiomegaly 0.999 0.984 0.974 0.967 0.925 0.916 0.858 0.808 0.693 0.679 0.396 0.489 0.132 0.259
Effusion 0.571 0.465 0.323 0.235 0.136 0.106 0.044 0.034 0.012 0.007 0.007 0.004 0.001 0.000
Infiltration 0.820 0.722 0.615 0.501 0.350 0.324 0.182 0.182 0.096 0.076 0.036 0.024 0.015 0.002
Mass 0.353 0.336 0.179 0.202 0.113 0.111 0.061 0.056 0.026 0.031 0.007 0.002 0.000 0.000
Nodule 0.013 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Pneumonia 0.862 0.772 0.612 0.500 0.307 0.283 0.158 0.127 0.088 0.062 0.045 0.022 0.015 0.003
Pneumothorax 0.192 0.180 0.108 0.084 0.041 0.049 0.022 0.018 0.004 0.000 0.000 0.000 0.000 0.000
Average 0.530 0.480 0.379 0.334 0.248 0.234 0.171 0.157 0.118 0.108 0.063 0.068 0.021 0.033
*Best score per pathology and threshold shown in bold

while a specific threshold range may lead to better localisation
performance on one model, it can perform poorly on another.
For example, the static threshold range [180, 255] yields
reasonably similar IoU scores for CheXNet as the threshold
range [60, 180], but when using the threshold range [180, 255]
on R38LM, the IoU is almost half of that achieved when using
[60, 180] instead. As a result, studies that compare multiple
models using the same static thresholding approach (e.g. [5])
may be underestimating the true localisation capabilities of
these models. Our results also seem to indicate that localisation
quality is more sensitive to the thresholding scheme than
visualisation method used. While further work is needed to
confirm the utility of dynamic thresholding schemes, it appears
that dynamic thresholding allows fairer evaluation of localisa-
tion performance between models than static thresholding, and
has the benefit of more faithfully representing their ability to
localise by producing higher localisation scores.

C. Comparison of visualisation methods

Our results for R38LM in Fig. 2 show smoothed Eigen-
CAM to perform the best in terms of IoU and IoBB when
using dynamic thresholding with n ∈ {80, 82.5, 85, 87.5, 90}
and for both static thresholding ranges. Conversely, for
CheXNet, while smoothed Eigen-CAM was one of the best
performing visualisation methods, it was narrowly beaten
by smoothed CAM and smoothed Grad-CAM in terms of
IoU and IoBB when using dynamic thresholding with n ∈
{85, 87.5, 90, 92.5, 95, 97.5}. Our results also demonstrate that
for all visualisation methods tested, with the exception of
Grad-CAM++, the application of smoothing reliably improves
IoU and IoBB scores. We use smoothed Eigen-CAM and
dynamic thresholding with n = 87.5 to generate bounding
boxes for our final evaluation of localisation performance,
since this configuration produced the highest IoU and IoBB
scores when averaging across both models.

TABLE IV: IoBB scores for R38LM and CheXNet on the
official split (higher is better).

Pathology T(IoBB) = 0.1 T(IoBB) = 0.25 T(IoBB) = 0.5 T(IoBB) = 0.75 T(IoBB) = 0.9
R38LM CheXNet R38LM CheXNet R38LM CheXNet R38LM CheXNet R38LM CheXNet

Atelectasis 0.417 0.311 0.144 0.089 0.033 0.011 0.006 0.000 0.006 0.000
Cardiomegaly 1.000 0.918 1.000 0.911 0.986 0.877 0.589 0.486 0.212 0.199
Effusion 0.575 0.346 0.255 0.157 0.039 0.013 0.000 0.000 0.000 0.000
Infiltration 0.862 0.626 0.520 0.382 0.187 0.154 0.130 0.122 0.073 0.073
Mass 0.329 0.294 0.153 0.129 0.071 0.035 0.047 0.024 0.024 0.000
Nodule 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Pneumonia 0.883 0.708 0.500 0.333 0.167 0.167 0.117 0.092 0.083 0.067
Pneumothorax 0.163 0.153 0.082 0.051 0.010 0.031 0.000 0.000 0.000 0.000
Average 0.529 0.420 0.332 0.257 0.187 0.161 0.111 0.090 0.050 0.042
*Best score per pathology and threshold shown in bold

TABLE V: IoBB scores for R38LM and CheXNet on our 5
randomly sampled splits (higher is better).

Pathology T(IoBB) = 0.1 T(IoBB) = 0.25 T(IoBB) = 0.5 T(IoBB) = 0.75 T(IoBB) = 0.9
R38LM CheXNet R38LM CheXNet R38LM CheXNet R38LM CheXNet R38LM CheXNet

Atelectasis 0.437 0.387 0.170 0.144 0.047 0.023 0.007 0.003 0.000 0.000
Cardiomegaly 1.000 0.990 0.993 0.977 0.912 0.875 0.441 0.489 0.063 0.197
Effusion 0.600 0.516 0.307 0.229 0.065 0.039 0.014 0.007 0.000 0.001
Infiltration 0.833 0.751 0.524 0.446 0.216 0.193 0.124 0.119 0.060 0.078
Mass 0.365 0.341 0.172 0.188 0.071 0.075 0.026 0.024 0.016 0.009
Nodule 0.013 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Pneumonia 0.870 0.805 0.532 0.447 0.185 0.152 0.115 0.103 0.070 0.073
Pneumothorax 0.218 0.227 0.104 0.092 0.027 0.027 0.002 0.000 0.000 0.000
Average 0.542 0.503 0.350 0.315 0.190 0.173 0.091 0.093 0.026 0.045
*Best score per pathology and threshold shown in bold

D. Localisation results

We report our full localisation results on the official split in
TABLE II and IV, and on our 5 randomly sampled splits in
TABLE III and V. We report results for multiple thresholds
to allow comparison with [5] and [9], where T (IoU) = 0.1
represents the proportion of predicted bounding boxes with
IoU > 0.1. We observe that R38LM obtained higher average
IoU and IoBB scores than CheXNet across all metrics and
dataset splits, with CheXNet performing better only when
T (IoBB) ∈ {0.75, 0.9}. There is also a slight improvement
across all metrics for models trained on our randomly sampled
splits compared to those trained on the official split, which we
expect is due to the greater number of pathological examples in
the training sets of our random splits compared to the official
split. A surprising observation is that localisation scores for
Infiltration and Pneumonia are very high, despite both models



TABLE VI: T (IoU) = 0.1 scores for each pathology. Ours
and Wang et al.’s results are on the official split, whereas Li
et al. train on 80% of the dataset with patient cross-over.

Pathology R38LM CheXNet Wang et al. Li et al. [9] Li et al. [9]
[5] (anno.) (w/o anno.)

Atelectasis 0.394 0.294 0.689 0.732 0.488
Cardiomegaly 1.000 0.911 0.938 0.975 0.989
Effusion 0.536 0.320 0.660 0.865 0.693
Infiltration 0.862 0.610 0.707 0.904 0.842
Mass 0.329 0.282 0.400 0.657 0.342
Nodule 0.000 0.000 0.139 0.537 0.081
Pneumonia 0.883 0.683 0.633 0.451 0.715
Pneumothorax 0.163 0.133 0.378 0.594 0.437
Average 0.521 0.404 0.568 0.714 0.573
* ‘anno.’: training on data supplemented with 80% of the provided bounding
box annotations. ‘w/o’: without.

TABLE VII: T (IoBB) = 0.1 scores for each pathology. Ours
and Wang et al.’s results are on the official split, whereas Li
et al. train on the entire dataset.

Pathology R38LM CheXNet Wang et al. Li et al. [9] Li et al. [9]
[5] (anno.) (w/o anno.)

Atelectasis 0.417 0.311 0.723 0.757 0.630
Cardiomegaly 1.000 0.918 0.993 0.987 0.888
Effusion 0.575 0.346 0.712 0.896 0.783
Infiltration 0.862 0.626 0.789 0.950 0.907
Mass 0.329 0.294 0.435 0.700 0.696
Nodule 0.000 0.000 0.165 0.545 0.292
Pneumonia 0.883 0.708 0.750 0.558 0.306
Pneumothorax 0.163 0.153 0.459 0.632 0.436
Average 0.529 0.420 0.628 0.753 0.617
* ‘anno.’: training on data supplemented with 80% of the provided bounding
box annotations. ‘w/o’: without.

showing poor classification ability for them. This suggests
that while both models may be poor classifiers for these
pathologies, they are still able to spatially locate them, and
may therefore still be useful in a clinical setting. Conversely,
we observe very poor localisations for Nodule, which typically
has the smallest bounding boxes of any pathology in ChestX-
ray14. Since nodule is one of the pathologies most often
missed by radiologists [4], there is great incentive to produce
DL models capable of localising positive examples well, but
it appears that training on global labels alone (as we have) is
not enough to produce sufficiently accurate localisations.

We also compare our localisation results to those of [5] and
[9] in TABLE VI and VII. We found R38LM to give state-of-
the-art results for localising Cardiomegaly and Pneumonia, but
that on average, localisations for both R38LM and CheXNet
were worse than those of [5] and [9]. This is particularly
surprising, since the AUROC results we report for R38LM and
CheXNet are noticably higher than those of the approaches
used by [5] and [9] (TABLE I), indicating that a higher AU-
ROC does not necessarily correspond to better localisations.
Since [5] followed a similar experimental procedure to our
study, training only on global labels with a 50-layer ResNet
(ResNet v2 50), and using a static thresholding approach
for bounding box generation, we can only hypothesise that
their superior localisation performance is a result of training
using a class-weighted loss function. Similarly, [9]’s patch-
based network and utilisation of hand-annotated data during
training appear to have allowed much stronger localisations
than training on global labels alone.

IV. CONCLUSION

In this work, we presented a quantitative localisation study
for two state-of-the-art classifiers on the ChestX-ray14 dataset:
ResNet-38-large-meta and CheXNet. Results indicate that a
high discriminative ability (measured by AUROC) is not nec-
essarily sufficient for models to produce useful and accurate
localisations. We propose a novel method for bounding box
generation, dynamic thresholding, and provide evidence that
it allows for more faithful representations of different models’
abilities to localise compared to static thresholding, and leads
to better localisations. In addition, we compared multiple
visualisation methods, showing how all but Grad-CAM++
can be reliably improved by the application of augmentation
and Eigen smoothing, and evaluated the accuracy of the
localisations produced by each method under different thresh-
olding schemes. Finally, we reported R38LM and CheXNet’s
localisation performance in terms of IoU and IoBB, comparing
our results to those of other studies in the literature. For future
work, results indicate that while R38LM and CheXNet provide
state-of-the-art classification performance, their localisation
capability could be potentially improved by supplementing
training data with localised examples.
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