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Abstract—A Cleft lip is a congenital abnormality requiring
surgical repair by a specialist. The surgeon must have extensive
experience and theoretical knowledge to perform surgery, and
Artificial Intelligence (AI) method has been proposed to guide
surgeons in improving surgical outcomes. If AI can be used
to predict what a repaired cleft lip would look like, surgeons
could use it as an adjunct to adjust their surgical technique
and improve results. To explore the feasibility of this idea
while protecting patient privacy, we propose a deep learning-
based image inpainting method that is capable of covering a
cleft lip and generating a lip and nose without a celft. Our
experiments are conducted on two real-world cleft lip datasets
and are assessed by expert cleft lip surgeons to demonstrate
the feasibility of the proposed method.

Index Terms—Cleft Lip, Image Inpainting, Deep Learning,
Multi-task

I. INTRODUCTION

A cleft lip is a congenital condition which arises during
pregnancy in the early stages of development where the upper
lip does not fuse together. One in every 700 births in the UK
has a cleft lip and palate [1]. Patients with an orofacial cleft
require surgical treatment by a cleft lip and palate surgeon
at an average age of three months to correct cleft lip [2].

Achieving symmetry and improving nasolabial appearance
is a fundamental goal of cleft lip surgery [3]. There are
various surgical approaches to repairing a cleft lip. The most
commonly used worldwide at present are a Millard repair
or a Fisher repair [4]. Repairing cleft lips is a specialist
skill and training in the UK requires an extended period
of subspeciality training. Evaluating the outcome of cleft
lip and palate surgery is an essential part of being able to
improve surgical technique. The current gold standard for
assessing outcomes is the Asher-McDade rating scale by
using a 5-point standard scale to assess nasolabial profile,
nasal symmetry, nasal form, and vermilion border [5].

Recently, with the rapid advancement of AI, technologies
based on deep learning have emerged to locate cleft lip
surgical annotation and incisions to facilitate surgery [6].
This may help junior surgeons in the early stages of their
career and also surgeons who may not be as familiar with
repairing cleft lips. Other clinical applications include being
able to predict the outcome of a cleft lip repair which would
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enable surgeons to adjust their surgical procedure to provide
the best outcome possible.

Our work aims to generate a non-cleft lip from an image
of a baby with a cleft lip while protecting patient privacy.
StyleGAN [7] would be one candidate, given its impressive
performance in style transfer tasks. However, due to their
confidential nature, images of an individual with a cleft
lip are not readily available, making it challenging to feed
the data-hungry StyleGAN. Even with sufficient data for
training, once approaches such as StyleGAN fall victim to
a model inversion attack, malicious users will be able to
steal photos of real patients with a cleft lip [8], posing a
grave privacy risk to patients. In this case, image inpainting
is preferable, since we do not use images of individuals with
cleft lip for training, the patient photographs leave no traces
in the model.

In the facial inpainting task, the surgical evaluation criteria
correspond to the semantic plausibility of the face shape
and the image quality. Existing advances in facial inpainting
typically ensure the accuracy of generated facial attributes
by supplying supplementary facial geometry information.
EdgeConnect [9] first generates a structure map, then com-
bines the corrupted image to perform image inpainting in
the second stage. However, the correlation between structural
information and texture is frequently redundant and unreli-
able [10]. Human face can be modelled using landmarks and
their geometrical features [11]. Lafin [12] uses landmarks
as indicators to more precisely described facial attributes.
Nonetheless, both of EdgeConnect and Lafin have a multi-
stage limitation: the final image quality is highly dependent
on how well the indicator generation in the first stage works.

In this paper, we propose a single-stage end-to-end multi-
task image inpainting framework to generate non-cleft lip
from patients with cleft lip. We use adaptive feature fusion
and landmark indicator to boost parameter sharing and utilize
the second task more efficiently. The landmark prediction is
guided by both masked image and partial inpainted infor-
mation, resulting in a more precise geometry indicator for
repairing facial attributes. Moreover, since we do not use
images of individuals with cleft lips to train the model, the
patient is protected against privacy violations.

To evaluate our model and inform the feasibility of our
proposed method, we collected two datasets, CleftLip10 and
CleftLip24, from real patients for testing. Specifically, we
use segmentation masks to cover the cleft lip and medical
equipment. Then our model automatically synthesizes a lip
and nose without a cleft. We compare our results with
EdgeConnect [9], Lafin [12], and CTSDG [13], which also



Fig. 1. Overview of the proposed method.

challenged facial inpainting. We invited three professional
cleft lip surgeons to rank the results. We also include
quantitative results on CelebA [14] to show the advantages
of our design.

Our main contributions are summarized as follows:
• We propose an image inpainting approach to produce an

non-cleft lip image from patients with cleft lip. The code
is publicly available to enable better reproducibility⋆.

• We propose a multi-task network in which branches
cooperate with each other through parameter sharing
between tasks, which can achieve both landmark pre-
diction and image inpainting at the same time.

II. METHODOLOGY

We propose an end-to-end multi-task model, the frame-
work is shown in Fig. 1. We first train our model on CelebA,
then perform inference step on real patient images with cleft
lip to generate non-cleft lip with semantic plausible facial
attributes. Our model can simultaneously perform image
inpainting and facial landmark prediction. The paramters
in two tasks are shared through image-to-landmark and
landmark-to-image feature fusion operations. Formally, the
whole pipeline could be denoted as:

(Î , L̂) = G(I ⊙ (1−M)), (1)

where G is our multi-task model, I is the real image and
M denotes the segmentation mask that occludes the cleft lip
and medical equipment. Î and L̂ are completed image and
predicted landmarks respectively.

A. The Dataset

To verify that our model can work on real clinical patient
pictures, we collected CleftLip10 and CleftLip24 datasets.
The datasets composed of frontal face images of patients who
underwent a cleft lip repair at the Royal Victoria Infirmary
(RVI) in Newcastle upon Tyne during the outpatient clinic.
CleftLip10 contains images taken from 10 patients pre-
operatively and immediately post-operatively. The images
were taken using a Canon PowerShot G1 X Mark II Camera

⋆https://github.com/ChrisChen1023/NCLG-MT

with a resolution of 3072 × 2048. CleftLip24 is comprised
solely of pre-surgery images of twenty-four patients. The
images were taken using a Canon EOS 20D or 5D Mark
II DSLR Camera (with a 105mm lens) with a resolution of
2574× 3861. All images were used in our experiments.

B. Encoder and Image Generator

The encoder and the image generator jointly perform the
inpainting task. The masked cleft lip image is downsampled
three times and fed into the dilated convolutional residual
blocks used to improve the receptive field, followed by a
short-long attention layer to match feature more efficiently.
We use gated convolutions instead of vanilla convolutions
only in the image downsampling and downsampling stages.
This is because 1) using gated convolution is more efficient
for irregular masks [15], 2) its sensitivity to valid and missing
pixels seems to be significant only for encoder and decoder
[16] and 3) extensive use of gated convolution lead to a
significant increase in parameter count. The shared feature
is extracted at the end of the encoder:

fshare = E(I ⊙ (1−M), (2)

where E is the encoder and fshare is the deep feature from
the attention layer (See Fig.1 (Encoder)).

The image generator is designed to up-sample fshare and
reconstruct a non-cleft lip and nose. We employ three feature
fusion blocks to facilitate parameter sharing, which are
denoted by F1, F2, F3 respectively. F1 and F3 aim to
fuse the uncompleted image features from encoder by skip
connections to generate more exquisite results by combining
low-level and high-level feature.

f̃l =

{
Fi (Concat (fei, fdi)) , if (i = 1, 3)

Fi

(
Concat

(
f̃1, V

))
, if (i = 2)

, (3)

where f̃i is the result from fusion block Fi (i = 1, 2, 3). fei
and fdi is the feature map from corresponding encoder and
decoder layer. After F3 followed by a vanilla convolution
layer, completed image is genereated. F2 is designed to fuse
the Landmark map V from the landmark predictor, which
will be detailed in the next subsection.



C. Landmark Predictor

The landmark predictor involves extraction, fusion block
and a fully-connected layer, aims to predict facial landmarks
and inform the generator for assisting image inpainting.

The extraction step is designed to collect the landmark
information from the encoded image feature. Specifically,
fshare is fed to a 1 × 1 convolutional layer P1 to increase
dimensionality, then we conduct dimensionality reduction
followed by global average pooling to extract the feature into
two vectors with different lengths (P4 and P3). Particularly,
there is a PReLu layer at the end of P3 for non-linear
projection. Simultaneously, P2 also returns a vector after
dimensionality reduction and global pooling directly acting
on fshare, then we concatenate them:

flmk = Concat (fnode2 , fnode3 , fnode4 ) , (4)

where fnodei is the corresponding vector from Pi. In exist-
ing multi-stage networks [9], [12], generated indicators are
assumed as perfect and are used in final inpainting stage
directly. A faulty indicator may mislead image inpainting.
To involve both corrupted and regenerated information in
landmark predictor, and strengthen the parameter sharing
between two tasks, we adaptively borrow f1 from inpainting
task, followed by a global average pooling, we merge it with
the concatenated landmark feature vector:

f ′
lmk = γ ∗ f̃1 ⊕ flmk, (5)

where γ is a trainable weight with zero initialization and ⊕
is element-wise addition. Finally, we apply a fully-connected
layer to predict facial landmark points.

To strengthen the parameter interaction between the two
tasks and improve the completed image quality, we further
map the landmark points into a binary feature map V , which
is integrated with texture information in F2. Formally, let vpq
be the value in V at position (p, q):

vpq =

{
1, if (p = [αxi] , q = [αyi] )
0, otherwise , (6)

where α is a scale factor corresponding the size of the feature
map in F2, [.] means integer operation. We create a 68×128×
128 tensor with landmark annotations, and transfer it to F2

to provide facial geometry indicators.

D. Loss Function

We follow Yang et al. (2019) to design our loss function,
since our work applies a multi-task architecture, the landmark
loss is involved in a joint loss function:

Llmk =
∥∥∥L̂− Lgt

∥∥∥2
2
. (7)

We consider L1 loss, adversarial loss, style loss, perceptual
loss, total variation loss and landmark loss. Given a masked
image I , the ground truth image Igt and corresponding
landmark ground truth Lgt. The overall loss function is:

Ltotal(I, Igt, Lgt) = Lpixel + λperc Lperc + λstyLstyle

+ λtvLtv + λadvLadvG

+ λlmkLlmk,

, (8)

where λperc = λsty = λtv = 0.1, λadv = 0.01, λlmk =
0.00046.

III. EXPERIMENTS

A. Training Details

We train our model with CelebA [14], which is a popular
human face dataset containing over 160 thousands training
face images. For CelebA, we remove a few images which
can not be obtained landmark ground truth. During training,
the images are resized to 256 × 256 and we use irregular
masks as in [17]. We use Adam optimizer and follow [9] to
set β1 = 0 and β2 = 0.9. The learning rate = 2.92 × 10−4

and 2.92×10−5 for discriminator, with a learning rate decay
ratio of 0.78. Batch size = 4.

TABLE I
VALID POSSIBILITY ON CLEFT LIP DATASET.

Method EC [9] Lafin [12] CSTDG [13] Ours

CleftLip10 0.233 0.233 0.233 0.5
CleftLip24 0.319 0.222 0.264 0.333

TABLE II
AVERAGE RANKING ON THE CLEFT LIP DATASET.

Method EC [9] Lafin [12] CSTDG [13] Ours

CleftLip10 1.857 1.714 2.429 1.267
CleftLip24 1.696 1.813 1.947 1.208

(a) Input (b) EC (c) CTSDG (d) Lafin (e) Ours (f) Before Surgery

Fig. 2. Visual comparison of different facial inpainting methods on real Cleft
Lip dataset: (a) input masked image, (b) EdgeConnect [9], (c) CTSDG [13],
(d) Lafin [12], (e) Ours, and (f) Before Surgery

B. Experimental Validation

1) Cleft Lips Repair: We use the CleftLip10 and Cleft-
Lip24 as test sets to compare our model with the current
state-of-the-art facial inpainting methods [9], [12], [13]. The
visualization results are shown in Fig. 2. We crop and
resize them to 256 × 256, then design a mask to cover
the cleft lip, as well as the medical equipment used during
surgery, according to the type (unilateral and bilateral) and
the severity of cleft lip for each patient. To better evaluate the
feasibility of the proposed method, we invited NHS specialist
cleft lip surgeons to assess the results based on the quality,
consistency and validity. For each patient, results from four
models are presented together. To avoid bias, the results
are mixed and unlabelled. Images are deemed invalid if it
is excessively blurry or illogical, e.g. flying lip or three
nostril (see Fig. 2(d)). The valid probability represents the
the success rate of models in repairing cleft lips images (see
Table I), and the average ranking represents the performance
of each models in the valid repaired results (see Table II).

From our observation, each of the four models is capable
for repairing small cleft lip areas. However, our method per-
forms best for relatively complex situation, such as Fig. 2(f)
with severe cleft lips and large medical equipment. The
result from EC [9] is too blurry and CTSDG [13] leads
obvious artifacts in regenerated region. Lafin [12] seems to
be suffering from model collapse and was seriously misled
by the input indicator, generating a full nose at the right
nostril. From the surgeons assessment, our model generates
more natural and semantically plausible images with a higher



TABLE III
QUANTITATIVE COMPARISON ON CELEBA.

Mask Ratio Model PSNR SSIM FID

EC [9] 36.1340 0.9880 0.4706
0-20% Lafin [12] 35.9544 0.9870 0.5845

CTSDG [13] 37.9275 0.9908 0.3420
Ours 38.1083 0.9911 0.3421

EC [9] 28.3684 0.9486 3.1275
20-40% Lafin [12] 28.2797 0.9476 3.3880

CTSDG [13] 29.3860 0.9570 2.8436
Ours 29.6678 0.9595 2.8327

EC [9] 23.4513 0.8561 6.1253
40-60% Lafin [12] 23.5109 0.8614 6.5367

CTSDG [13] 24.3130 0.8762 8.7051
Ours 24.2076 0.8726 4.3419

valid possibility. Additionally, our model is able to generate
textures similar to post-surgical scars while we leave certain
intimation to the model (see Fig. 2(e)).

2) Facial Inpainting: We compare our model with current
state-of-the-art facial inpainting models on CelebA. The
evaluation metrics involve peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM) [18] and Frechet Inception
Distance (FID) [19], which is shown in Table III. Higher
PSNR, SSIM, and lower FID, indicate better generated image
quality. We observe that our model overall suppresses state-
of-the-art inpainting models in terms of small and medium
masked ratio. The latest CTSDG outperforms ours by a small
margin in large missing regions case in terms of PSNR and
SSIM, but it is much lower than ours in FID.

TABLE IV
ABLATION STUDY ON CELEBA.

Mask Irregular Mask Regular

Mask Ratio 0-20% 20-40% 40-60% Mask

Baseline 37.1742 29.1189 23.7541 25.9412
PSNR Base+Lmk 37.3932 29.2115 23.7948 26.074

Ours 38.1083 29.6678 24.2076 26.685

Baseline 0.9895 0.9545 0.8605 0.9113
SSIM Base+Lmk 0.9897 0.9554 0.8626 0.9144

Ours 0.9911 0.9595 0.8726 0.9231

Baseline 0.5330 3.3655 5.7635 3.6037
FID Base+Lmk 0.4614 2.9762 5.1124 3.410

Ours 0.3421 2.8327 4.3419 3.274

To validate the effectiveness of our multi-task architecture,
we remove the parameter sharing between two tasks and
take encoder followed by image generator as the baseline.
Then, we implement the landmark predictor (Base+Lmk) and
gated convolution (Ours) progressively. As shown in Table
IV, the integration of both the multi-task model and gated
convolutions improve the performance on both irregular and
regular masks.

IV. CONCLUSION

In this paper, we propose a novel approach to provide an
guidance image for cleft lip surgery by masking the cleft lip
part and generating lip and nose without cleft. To achieve this
task, we design a multi-task image inpainting model that can
better protect patient privacy. We collected two real-world
patient datasets to demonstrate the feasibility of proposed
approach. Three expert cleft lip surgeons assessed that our

design outperforms state-of-the-art methods in both valid
possibility and image quality, while the performance of our
model on CelebA also suppresses the state-of-the-art facial
inpainting counterparts.
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