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Abstract
Detecting COVID-19 from audio signals, such as breathing
and coughing, can be used as a fast and efficient pre-testing
method to reduce the virus transmission. Due to the promising
results of deep learning networks in modelling time sequences,
and since applications to rapidly identify COVID in-the-wild
should require low computational effort, we present a temporal-
oriented broadcasting residual learning method that achieves
efficient computation and high accuracy with a small model
size. Based on the EfficientNet architecture, our novel net-
work, named Temporal-oriented ResNet (TorNet), constitutes
of a broadcasting learning block, i. e., the Alternating Broadcast
(AB) Block, which contains several Broadcast Residual Blocks
(BC ResBlocks) and a convolution layer. With the AB Block,
the network obtains useful audio-temporal features and higher
level embeddings effectively with much less computation than
Recurrent Neural Networks (RNNs), typically used to model
temporal information. TorNet achieves 72.2% Unweighted Aver-
age Recall (UAR) on the INTERPSEECH 2021 Computational
Paralinguistics Challenge COVID-19 cough Sub-Challenge, by
this showing competitive results with a higher computational
efficiency than other state-of-the-art alternatives.
Index Terms: SARS-CoV2 detection, deep neural network,
efficient neural network, efficient CNN, residual learning

1. Introduction
COVID-19 cases are still rising in several countries, indicating
that the pandemic is still a main health challenge for our world[1].
Although there are rapid testing methods, their efficiency is often
limited by the capacity of the testing equipment. In addition, as
their production depends on the materials’ availability, limited
resources might yield crowds that in turn, paradoxically, increase
the infection rates. Indeed, ubiquitous low-cost methods for
detecting COVID-19 are still being explored. In the realm of
Artificial Intelligence, Deep Neural Networks (DNNs) have been
growing in popularity in recent years, setting the state-of-art in
a variety of tasks, including COVID-19 detection from audio
signals, e. g., patients’ breathing and coughing [2, 3].

The temporal component is an essential characteristic of au-
dio signals. Thus, learning discriminated representations contain-
ing temporal information is crucial to achieve a better classifica-
tion network when working with audio [2, 4]. To make full use of
temporal information, Recurrent Neural Networks (RNNs) and
variants with Long-Short Term Memory (LSTM) [5, 6, 7] have
been successfully developed. However, RNNs are computation-
ally more intensive and require more storage compared to a typi-
cal Convolutional Neural Network (CNN). Previous works have
also shown that transformers can exploit the temporal properties
of audio to obtain higher detection results than RNNs [8, 9, 10].

Still, over-parametrised transformer-based deep networks might
be prone to overfitting, and similar to CNNs, computationally
inefficient.

The successful application of RNNs and transformers to
audio data illustrates the importance of temporal features for
audio tasks. Nevertheless, the complexity of these network struc-
tures, unlike CNNs, increases the computational complexity and
reduces the training stability. In the present work, we propose
a temporal broadcast residual convolution block, i. e., the Alter-
nating Broadcast Block (AB Block), in which we average the
2D features in the frequency dimension to guide the network’s
focus on the temporal features. Inspired by the EfficientNet [11]
architecture (made up of repeated blocks and based on the resid-
ual learning), we introduce a new deep learning network named
Temporal-oriented ResNet (TorNet) that contains several AB
Blocks to make full use of the temporal information in the au-
dio segments. Furthermore, we also adopt Instance Normalisa-
tion [12] to assist the network to find the relevant feature areas
of the Mel-spectrogram, by this improving the classification re-
sults. We evaluate the efficiency of TorNet on the detection of
COVID-19 from coughing signals, using the audio dataset from
the INTERSPEECH 2021 Computational Paralinguistics Chal-
lenge’s COVID-19 cough sub-challenge [13]. For reproducibility
purposes, the source code of our work is freely available1.

The remainder of our paper is organised as follows: We
summarise the related research in Section 2. Then, we present
our network architecture and describe the experimental settings
in Sections 3 and 4, respectively. In Section 5, we discuss the
results. Finally, in Section 6, we conclude with a brief summary
and outline future directions.

2. Related Works
Data representations such as Mel-Spectrograms can be seen
from two different perspectives: either as an image, or as an
audio sequence. This duality leads to the use of a variety of
DNN architectures typical of both Computer Vision (CV) and
the audio domain [14, 15].

On the one side, previous work has shown that with
Mel Frequency Cepstral Coefficients (MFCC) and log Mel-
Spectrograms, 1D audio data can be transformed into 2D matri-
ces [16]. This makes it possible to directly apply CNNs, typically
from CV, and which have become the mainstream in Computer
Audition. In the task of COVID-19 detection, Chang et al. [10]
studied the performance of classical CNNs pretrained on the
FluSense database, collected to track influenza-related indica-
tors, such as cough and sneezes [17]. Similarly, Casanova et
al. [18] employed transfer learning from pretrained audio neural

1https://github.com/EIHW/compare21 tornet covid
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networks with different data augmentation techniques.
On the other side, as audio data is inherently a type of tem-

poral sequence [19], RNNs [7] and LSTM[20] have been fully
adopted to handle the temporal information in several tasks. For
instance, Hassan et al. [21] and Pahar et al. [22] evaluated the role
of different audio features as input for LSTM-based classification
of COVID-19. Similarly, Yan et al. [6] introduced the Spatial
Attentive ConvLSTM-RNN (SACRNN), able to identify the
most valuable features through an embedded temporal attention.
Various efforts have also explored more efficient CNNs using
residual network approaches and ensembles on audio data [23,
24, 25]. In particular, Byeonggeun et al. [26] used a residual
broadcast block to retrieve temporal features by averaging the
frequency features. Finally, Zhang et al. [27] proposed a hierar-
chical structure called pyramidal temporal pooling (PTP), which
can retrieve temporal information by stacking a global PTP layer
on multiple local ones.

3. Proposed Method
In this section, we propose Temporal-Oriented ResNet (TorNet),
a modified version of the Broadcasting-residual network [26]
tailored to audio data, which we present for COVID-19 recog-
nition. In addition, we also propose an Alternating Broadcast
Block (AB Block), which contains several Broadcast Residual
Blocks (BC ResBlock) [26] and combines the temporal infor-
mation to the whole feature map and a convolution layer for a
better overview of the features. Finally, we use Frequency-wise
Instance Normalisation for better domain generalisation [28].

3.1. Broadcast Residual Block

The original ResNet [29] block is described by y = x+ f(x),
with f(x) being the residual function, and x and y denoting the
input and output features, respectively. Normally, f utilises 2D-
spatiotemporal features (i. e., 2D convolutions). To emphasise
temporal features, we exploit 1D-temporal features in addition to
2D ones. To highlight the frequency convolution over all blocks,
an auxiliary 2D residual connection is added from 2D features.
To summarise, the BC-ResBlock can be presented as:

y = x+ f2(x) +BC(f1(avgpool(f2(x)))). (1)

In Equation 1, the 2D feature part f2 consists of a 3x1 fre-
quency depth-wise convolution followed by SubSpectral nor-
malisation [30], which splits the input frequency into multiple
groups and normalises them separately. To obtain frequency-
based temporal features, we apply SubSpectral normalisation
instead of Batch Norm. Finally, 2D features are averaged over
the frequency dimension.

f1 is a combination between a 1x3 temporal convolution
with Batch Norm and Swish activation [31] followed by a 1x1
point-wise convolution using a channel dropout rate of p = 0.5.
Thus, the broadcasting operation expands the feature map in
R1×wto Rh×w.

A normal BC ResBlock (cf. left in Figure 1) remaps the
temporal information to the original feature map, so it has the
same input and output dimensions. Meanwhile, a transition
block (indicating that the number of input channel and output
channels is different) is used, with the following modifications:

1. When channels do not have the same size, we add a
transition block with Batch Norm and ReLU activation;

2. There is no identity shortcut.
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Figure 1: Left: Normal BC ResBlock. A ResNet structure which
firstly compresses the frequency dimension of the feature map by
average pooling, and then broadcasts the temporal feature to the
original feature map. Right: Transition BC Block. It contains
two additional 1× 1 convolution layers to change the channel
number without the identity shortcut.

3.2. Alternating Broadcast Block

With the BC ResBlock, it is possible to turn the features into a
higher dimensionality while broadcasting the temporal informa-
tion to the whole feature map. As shown in Figure 2, we pro-
pose a flexible structure of the Alternating Broadcast Block (AB
Block), which mainly contains a set of BC ResBlocks and a
convolution layer. The AB Block can be easily widened or deep-
ened, even when facing a large amount of data, by simply adding
a larger number of Normal BC ResBlocks. Note that the first BC
ResBlock must be a Transition BC ResBlock when the number
of input and output channels is different.

As shown in Figure 1 (left), average pooling is used before
temporal depth-wise (DW) convolution, which yields informa-
tion loss in the frequency dimension (an inevitable side effect of
using the BC ResBlock). In order to reduce the impact of infor-
mation loss, the last layer of the AB Block is set to a convolution
layer, followed by a Batch Norm layer and a ReLU activation
layer. The main task of the convolution layer is to capture the
global information of the temporal-based feature map, while
retaining the local information learnt in the previous layer and
projecting them to the higher dimensions of the original inputs.
Thus, by using the proposed block, we can achieve enhanced
frequency-aware temporal 2D features.

To achieve a better domain generalisation, we apply Instance
Normalisation [12] (IN), an approach that normalises across each
channel in each training example. Since IN does not rely on
batch information, its implementation is kept the same for both
the training and testing phases. We apply IN on the frequency
dimension as formulated below:

Freq IN(x) =
x− µnf√
σnf + ε

, (2)

where

µnf =
1

CT

C∑
c=1

T∑
t=1

xncft,

σ2
nf =

1

CT

C∑
c=1

T∑
t=1

(xncft − µ2
nf ),

(3)
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Figure 2: The Alternating Broadcast Block (AB Block).

where µnf , σnf ∈ RN×F are mean and standard devia-
tion of the input feature x ∈ RN×C×F×T , in which N,C, F, T
denote the batch size, number of input channel, frequency dimen-
sion, and time dimension. ε is a value added to the denominator
for numerical stability.

3.3. Temporal-oriented ResNet (TorNet)

After exploring several choices and combinations, we design the
Temporal-oriented ResNet (TorNet) for the COVID-19 detection
task as shown in Figure 3. Details on the TorNet structure are
given in Table 1. As shown in Figure 3, TorNet contains four
main stages. The first stage has a 3× 3 convolution layer with
a 2× 2 max-pooling layer on the front to downsample both the
time and frequency dimensions. The second stage is a typical
residual block with two AB Blocks, where every AB Block will
double the channel while halving the frequency dimension to get
a higher-level embedding. In the residual shortcut, we added a
batch norm layer and used maxpooling to control the size of the
receptive field. This is followed by an Instance Normalisation
layer between stage 2 and stage 3. Stage 3 shares the same
structure as stage 2 with minor differences, i. e., the number of
channels is doubled, and the dimension of the feature map does
not change. After the second IN layer, the feature map is turned
into a 3D tensor [batch size, time, out channel × N mel].
Finally, two fully connected layers are added as classification
layers.

4. Experiments
4.1. Dataset

In the INTERPSEECH 2021 Computational Paralinguistics Chal-
lenge [13], the COVID-19 cough sub-challenge (CCS) was based
on a subset of the crowd-sourced Cambridge COVID-19 Sound
database [32], whose goal is promoting the developing of sys-
tems able to diagnose COVID-19 from audio data. The CCS
database consists of 929 cough recordings (1.63 hours) from
397 participants presenting either a positive or negative COVID-
19 test. Participants were asked to provide one to three forced
coughs in each recording2. All recordings in the CCS database
were resampled and converted to 16 kHz and mono/16 bits.

The official training, validation, and test sets used in the
COMPARE challenge are used in all our experiments.

4.2. Experiment settings

For data pre-processing, we standardise the length of the au-
dio data to 10 seconds. The shorter samples are repeated until
they match the target length. As input features, we use 40-
dimensional log Mel-Spectrograms with a 64 ms window length
and a 16 ms frame shift. We also extract deltas and delta-delta of
log Mel-Spectrograms and concatenate them as input features.
At last, the size of features for TorNet is [batch size, 3, 40, 512].

2https://www.COVID-19-sounds.org/; retrieved 12 March 2022
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Figure 3: TorNet for COVID-19 detection.

Table 1: First 3 stages in TorNet. Each row is a sequence of one
module with an input shape of channel× frequency × time.

# Input Operator Stride Output

Stage 1 1 × 40 × 512 conv2d 3x3 1 32
32 × 40 × 512 maxpool 2x2 2 32

Stage 2
32 × 20 × 256 AB Block (2, 1) 64
64 × 10 × 256 AB Block (2, 1) 128
128 × 5 × 256 IN - 128

Stage3
128 × 5 × 256 AB Block 1 256
256 × 5 × 256 AB Block 1 512
512 × 5 × 256 IN - 512

For all models, we use the Adam optimiser with an epsilon value
of 10−8, a mini-batch size of 16, and a learning rate of 10−5.
As indicated by Chang et al. [30], the sub-bands of SSN in AB
Blocks were all set to 5 and the dropout rate was always p = 0.1
except for the last layer, where it was set to p = 0.5. We also
tried data augmentation (mixup, Spec augmentation) methods,
but there was no noticeable performance gain in our task, thus
omitting them for brevity. All the models were developed on
Pytorch 1.8.1 and trained on a single Nvidia RTX 3090 GPU.

4.3. Proposed Experiments

To verify the efficiency of the proposed TorNet, as well as the
effectiveness of the temporal features, we developed four ad-
ditional ResNet-based methods for comparison. These four
methods are as follows:

• ResNet-10: has an identical structure as TorNet but uses
a convolution layer and maxpooling to control the size of
the feature map. It is used as a baseline model.

• ResNet-10 + LSTM: introduces a layer of a standard
LSTM network at the output of the ResNet-10.

• ResNet-10 + LSTM + Attention: adds a 4-head multihead



Table 2: Unweighted Average Recall (UAR), networks’ parameters of the overall results and 95% bootstrap confidence intervals (CI) using
1000 samples (with replacement). The best result of our experiments is marked in bold, and the second best one is underlined.

Method # Param(M) UAR (%) CI on Test(%)

End2You[13] - 64.7 56.2 - 73.5
Fusion[13] (official baseline) - 73.9 66.0 - 82.6
CNN14 [18] 79.67 75.9 -
The Vision Transformer (ViT)[33] - 72.0 -

ResNet-10 (baseline) 5.12 66.9 57.7 - 71.8
ResNet-10+LSTM 6.17 66.7 64.2 - 81.6
ResNet-10+LSTM+attention 6.23 70.5 63.9 - 80.1
ResNet-10+Transformer 58.90 68.0 63.3 - 79.6

TorNet (AB Block without last conv) 1.32 65.5 60.1 - 77.6
TorNet (only Transition Block) 4.09 69.4 58.5 - 72.6
TorNet without InstanceNorm 4.46 70.2 59.4 - 72.8
TorNet with InstanceNorm 4.46 72.2 71.5 - 88.6

attention module to extract more centralised temporal-
frequency feature maps.

• ResNet-10 + Transformer: adds 2 transformer encoder
layers for locating and re-extracting the most relevant
features of the audio segments.

5. Results and Discussion
Our experimental results obtained on the binary task of COVID-
19 detection are presented in Table 2. The upper part of Table 2
displays the results from previous works on the CSS dataset. The
middle part shows the results obtained from the four additional
ResNet-based methods presented for comparison. Finally, the
results for the series of experiments with same network hyper-
parameters and different modules are given in the lower part.
Unweighted Average Recall (UAR) is reported as the evaluation
metric. For each method, the results on the test set are obtained
by using the model achieving the highest UAR on the validation
set.

Our proposed TorNet, based on the combination of AB
Block and residual learning’s results, reached up to 72.2% UAR.
The results show that all experiment results on the Tornet outper-
form the official baseline (End2You 64.7%) but still lag behind
other approaches. Unlike the herein presented one, Casanova
et al. [18] achieved 75.9% UAR based on a large-scale transfer
learning model. Their CNN14 model is pre-trained on Audioset,
which means a longer training time and higher computational
effort. Indeed, the parameters of CNN14 (79.67 millions) are al-
most 18 times more than the number of parameters compared to
TorNet (4.46 millions) – thus showing that TorNet has a higher
computational efficiency. Similarly, the baseline fusion frame-
work for the CCS Sub-Challenge fuses multiple best models to
obtain the final results (73.9% UAR), which also results in a far
higher computational complexity than our TorNet. Overall, this
shows that TorNet can achieve competitive performance without
pre-training or fusion while also using far lower computational
resources.

In comparison to the official ‘standard’ baseline (End2You),
our baseline results show that the ResNet structure still has good
robustness for audio data (ResNet-10 66.9%). Meanwhile, we
added LSTM and transformer structures for extracting temporal
information after ResNet-10. The results show that the extraction
of temporal information can improve the final UAR results, as
shown by the combination of ResNet + LSTM (cf. 70.5%, in the
bold, in the middle part of Table 2); by this, outperforming all
other ResNet-based methods.

These experiments demonstrate the importance of utilising

temporal context. However, these architectures dramatically
increase the computational complexity while still not reaching
the performance of TorNet. This demonstrates how accounting
for the temporal nature of audio inside the intermediate layers of
a DNN –like TorNet does– is superior to doing it only towards
the deeper part of the network.

Since our goal is to investigate to which extent it is possible
to model temporal information while improving computational
efficiency with DNNs, we also set up four comparison experi-
ments based on TorNet. In these, we keep all training parameters
consistent in order to assess the impact of different modules,
i. e., the use of a convolution layer in the AB Block, the Nor-
mal BC ResBlock, and Instance Normalisation on the overall
performance of TorNet.

The lower part of table 2 contains an ablation study of the
components introduced in this work. TorNet without the last
convolution layer in the AB block achieves only 65.5% UAR,
while when convolution layers are introduced, there is a perfor-
mance improvement of nearly 5.0% (cf. 70.2%, underlined in
the lower part of Table 2). This is because in each AB Block, the
BC ResBlock has the ability to broadcast the temporal features
to the original feature map, but loses a portion of the frequency
features. By introducing an extra convolution layer, we elimi-
nate the influence that this loss of granular details entails, thus
obtaining a better overview for the feature map, which results in
a sizable performance increase. At the same time, the IN layer is
introduced in the frequency dimension for better domain general-
isation, leading to a performance improvement of approximately
2% in the same training environment: from 70.2% (without IN)
to 72.2% (with IN).

6. Conclusion
In this work, we proposed an AB Block that can efficiently ex-
ploit the temporal information in audio sequences. It contains
multiple BC ResBlock as well as a convolution layer to cap-
ture the temporal-enhanced feature. Based on the AB Block
with residual learning, we proposed a flexible, lightweight, and
time-oriented network – TorNet. TorNet has a typical ResNet
structure, but we replace the convolution module with the AB
Block. Competitive results highlight the high computational
efficiency and robustness of TorNet, a promising architecture
that offers new insights for the detection of COVID-19.

Future work could be targeted towards the application of
TorNet in other domains, such as speech emotion recognition or
acoustic scene classification.
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