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Abstract— Transformers are recent deep learning (DL) models 

used to capture the dependence between parts of sequential data. 

While their potential was already demonstrated in the natural 

language processing (NLP) domain, emerging research shows 

transformers can also be an adequate modeling approach to relate 

longitudinal multi-featured continuous behavioral data to future 

health outcomes. As transformers-based predictions are based on 

a domain lexicon, the use of categories, commonly used in 

specialized areas to cluster values, is the likely way to compose 

lexica. However, the number of categories may influence the 

transformer prediction accuracy, mainly when the categorization 

process creates imbalanced datasets, or the search space is very 

restricted to generate optimal feasible solutions. This paper 

analyzes the relationship between models’ accuracy and the 

sparsity of behavioral data categories that compose the lexicon. 

This analysis relies on a case example that uses mQoL-

Transformer to model the influence of physical activity behavior 

on sleep health. Results show that the number of categories shall 

be treated as a further transformer’s hyperparameter, which can 

balance the literature-based categorization and optimization 

aspects. Thus, DL processes could also obtain similar accuracies 

compared to traditional approaches, such as long short-term 

memory, when used to process short behavioral data sequences.  

Keywords—deep learning, transformers, human behavior, 

recommendations, behavior informatics, digital biomarkers 

I. INTRODUCTION 

Human behavior is a longitudinal multi-featured measure 
that directly impacts the health of individuals [1]. Due to this 
longitudinal aspect, computational systems in health care cannot 
ignore the sequence of users’ behaviors when the aim is to 
predict or anticipate potential health issues resulting from such 
behaviors. In other words, these computational systems require 
models that capture the dependencies between temporal parts of 
sequential data. Deep learning transformer architectures [2] are 
currently the cutting-edge modeling approach for capturing the 
long-term dependencies among longitudinal inputs. Several 
studies [3,4] show their advantages (e.g., avoiding the vanishing 
gradient problem and support for parallel training) on previous 
models, such as recurrent neural networks and their variants. 
However, these studies focus on natural language processing 
(NLP) problems, such as language translation and next sentence 
prediction. Unlike previous studies, this paper evaluates our 
transformer-based architecture using longitudinal multi-featured 
behavioral data. The intuition of this architecture comes from 

the Behavior Sequence Transformer (BST) [5], which is a 
transformer-based architecture employed for recommendations 
in the market domain (e.g., for buying of clothes, electronic 
devices). BST considers individuals' shopping history and 
profiles to recommend their next purchase. Similarly, this 
architecture may be adapted to consider the behavioral routines 
(e.g., physical activities) and recommend modifications to these 
routines to improve a pre-defined health outcome in the short or 
long term (e.g., sleep duration). 

As transformers-based approaches come from the NLP area, 
their learning process relies on lexica or vocabularies of terms 
that define domains. For example, Med-BERT [6] and BEHRT 
[7] are two transformer-based approaches in the health domain 
that use the International Classification of Diseases (ICD) codes 
as a lexicon. A lexicon is also adequate for the longitudinal 
health analysis of data obtained using questionnaires, such as in 
the English Longitudinal Study of Ageing (ELSA) [8], since 
they are mostly based on categories. Differently, many digital 
health applications passively collect numeric, continuous data 
corresponding to human physiology, like heart rate or daily 
behaviors like physical activity or sleep. To leverage the power 
of the transformers, it is required to understand the accuracy-
complexity and other potential tradeoffs related to the choice of 
the categorizations of these features. 

This paper contributes with a discussion on how the number 
of categories used during the training process impacts the model 
accuracy, indicating that such a number could be later treated as 
a learning hyperparameter. Therefore, the remainder of this 
paper is organized as follows: Section II summarizes the 
proposed architecture and its main components. Section III 
presents the case example, its dataset, the data augmentation 
strategy, the evaluation, and results. Section IV concludes this 
study with the main remarks and research directions. 

II. MQOL-TRANSFOERMER ARCHITECTURE 

A. Conceptualization: Behavior Sequence Transformer 

The training stage of our learning approach uses the 
longitudinal behavioral data of several individuals to generate a 
BST model. The inputs are sequences of data assessed from n 
individuals ix (Fig. 1). These sequences have size t (e.g., t =7 
days) and they are composed of tuples. Each tuple has, as first 
element, a multi-featured assessment ai composed of several 
features [ai

1,ai
2,ai

3,..] (e.g., number of daily steps, average heart 

rate). The second element βi is a physiological/physical (e.g., 
obesity), psychological (e.g., stress), or social (e.g., level of 
interaction via social media) feature that presents some 
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correlation with ai. The prediction variable is the last element β 

(or βt) of the sequence and it represents the target behavioral 

variable to be potentially changed. The prediction of βt considers 

the assessment at, and all the sequence (a1, β1) to (at-1, βt-1). 

After the training stage, the BST model works like an 
evaluator of simulated behaviors. Therefore, it receives as input 

the sequence (a1, β1) to (at-1, βt-1) of an individual ix, together 

with a simulated behavior St, to return a resultant prediction βt
p. 

This process can be conducted with different behaviors St. Thus, 
someone can generate different instances of St and verify which 

one presents the best effect to improve βt. As the assessments 
are multi-featured and all these features also change and unfold 
over time, we needed to adapt the BST architecture, as detailed 
in the next section. 

 

Fig. 1. BST application schema for behavioural analysis and prediction 

B. Specification 

Four modules compose our architecture (Fig. 2), which are 
the set of static embedding layers (SEL), the set of behavior 
embedding layers (BEL) that also contains the positional 
embedding layer (PEL), the transformer component, and the set 
of fully connected layers. 

 

Fig. 2.  mQoL-transformer: architecture proposed (adapted from [5]) 

The static embedding layers (SEL) module contains an 
embedding layer for each categorical feature that does not (or 
rarely) evolve over time (e.g., birth date). Behavioral 
longitudinal data (ai..t) are the part of the individual’s state 
assessment that changes over time. Heart rate and level of 
physical activities are some examples. Another component of 
this module is the positional embedding layer (PEL), which adds 
a positional vector to each set of BELs assessed at the same time. 
This step is essential since transformers process all the inputs in 
parallel, differently from RNN or Long short-term memory 
(LSTM) approaches, where inputs are fed in sequence. The 
transformer layer mainly relies on the multihead attention 
component, which enables attending to specific positions of the 
input sequence that are in fact important to compute a 
representation of the input sequence. Details about this layer are 
given in [5]. The final module contains a set of fully connected 
layers to further learn the interactions among dense features. A 
decimal value is generated as the resultant prediction. 

III. CASE EXAMPLE 

A. Behavioral Dataset and Prediction Scenario 

This case example relies on data from 30 healthy adult 
volunteers that used Withings smartwatches for up to nine 
months. The following data were used along our experiments: 
Daily number of steps (integer); Distance travelled per day 
(meters); Time spent in soft physical activities - SPA (secs); 
Time spent in moderate physical activities - MPA (secs); Time 
spent in intense physical activities - IPA (secs); Daily heart rate 
(mean of beats per minute); and Sleep duration of a night (secs). 
We organized these daily samples in frames of seven days. Thus, 
the idea is to use the data of seven days to predict the sleep 
duration of the last night of this sequence (seventh day). 

B. Data Augmentation 

Our experiment only employed daily samples that had 
complete values. This means they do not present missing data. 
Thus, 612 days were removed from the original set of 7786 days. 
These numbers give a missing data rate of 7.86% (the data were 
missing at random). We used the sliding window strategy 
(window size of seven days and timestep of one day) to augment 
the number of samples, as exemplified in the following schema 
(1). In this schema, the left-hand side of the arrow represents the 
input data, while the right-hand side represents the target data. 

x1, x2, x3, x4, x5, x6, x7, → sleep duration(x7) 
x2, x3, x4, x5, x6, x7, x8, → sleep duration(x8) 

x3, x4, x5, x6, x7, x8, x9 → sleep duration(x9)                      
… 

xn-6, x n-5, x n-4, x n-3, x n-2, x n-1, xn, → sleep duration(xn) 

 

 

(1) 

After applying this strategy for each user, we obtained a total 
of 4019 longitudinal structures of seven day/samples each (mean 

of 134 structures per a study participant and σ = 116.9). 

C. Evaluation Process 

We used the Long Short-Term Memory (LSTM) neural 
network to create a prediction baseline. Transformer-based 
approaches do not suffer from the vanishing gradient problem 
(i.e., long-term dependencies) when they process long 
sequences. This feature is one of their main advantages. In other 
words, transformers can remember old connections, which is 
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critical for digital health’s longitudinal data that intend to 
analyze years of data. However, our experiments use short 
sequences (seven days), and consequently, their resultant 
accuracies tend to only be similar to well-known approaches 
such as LSTM.  

The next experiments use our BST-based approach (Section 
2) to generate models using different lexicon sizes for the six 
input features. The first experiment uses different number of 
categories for each of the six features that compose the 
assessment. The categorization was based on discussions of the 
literature. For example, Inactive, Average, Active, and Very 
Active are categories used to cluster step counts [9]. Therefore, 
the six features have the following number of categories: steps 
(4), distance (5), SPA (3), MPA (3), IPA (3), and HR (4). The 
remainder experiments use the population-based percentile to 
define the categorization limits of the features. For example, 
when eight categories are used (Table I), the limits are defined 
by the 12.5th, 25th, 37.5th, 50th, 62.5th, 75th, 87.5th, and 100th 

percentiles. Table I shows the respective values for such 
percentiles considering each of the six features. The same idea 
is used to other numbers of categories.  

TABLE I.  LIMITS FOR CATEGORIZATION OF INTPUT FEATURES USING 

EIGHT CATEGORIES (CAT) 

Cat 
Steps 

(p/ day) 

Distance 

(m) 

SPA 

(sec) 

MPA 

(sec) 

IPA 

(sec)a 

Mean HR 

(p/ min) 

C1 2832 164 6600 60 0 68 
C2 4163 3237 8401 420 600 71 
C3 5279 4189 9781 1260 2520 73 
C4 6313 5089 11280 1980 72802 77 
C5 7519 6082 12781 2580 - 80 
C6 9145 7527 15000 3480 - 85 
C7 12013 10089 18300 4979 - 90 
C8 31590 26322 58740 20760 - 122 

a.
 About 62% of users did not conduct intense physical activities (C1). Thus, this feature is imbalanced in 

terms of categories (C1 has 62% of samples) for this and other scenarios. 

 
The categorization of sleep duration (prediction variable) 

defines four numeric categories and their intervals in minutes: 1 
(0 to 395), 2 (396 to 446), 3(447 to 499), and (500 to 902). These 
categories are maintained along all experiments to facilitate the 
comparison regarding the prediction error of experiments that 
use different numbers of input categories. Moreover, as 
specified in our architecture (Fig. 2), the output of the last layer 
is a decimal number. Thus, the error is calculated by the 
difference between this output and the numeric values that 
represent the real sleep duration category. This strategy supports 
a more granular analysis of the results. After the percentiles-
based categorization, we randomly split the data into training 
and validation sets using a rate of 70/30%. The training process 
was performed using a batch size of eight during 50 epochs or 
until the learning saturates. The model compiler was configured 
using the Adagrad optimizer with a learning rate of 0.01%, mean 
squared error as loss function, and the root mean squared error 
(RMSE) as validation metric. We captured the loss curves for 
training and validation to observe the evolution of the accuracy 
(average and standard deviation) and possible overfitting. 

D. Results 

The LSTM approach returned an average RMSE value of 
0.3528 with a standard deviation of 0.0075. We used these 
values as the baseline, i.e., the best possible result for prediction. 

The next graph (Fig. 3) shows the results for the experiment 
using literature-based categories. The validation average RMSE 
of this experiment is 2.09 times higher than the baseline. 
Moreover, the loss curves present a smooth decreasing behavior, 
which means the learning process has a small gain over the 
epochs. The columns chart (Fig. 3) also shows the imbalanced 
levels of categories (columns) for each feature. Differently, the 
distribution of the other experiments (e.g., Figs. 4 and 5) are 
balanced and each of their categories has around the number of 
samples divided by the number of categories. 

 

Fig. 3. Training and validation loss curves (literature-based categories) 

The 8-categories experiment (Fig. 4) shows that the increase 
of categories and data balance, provided by the percentile-based 
distribution, improved the RMSE to 0.43, which is 1.21 higher 
than the baseline. Moreover, the learning curve is sharper than 
in the previous scenario and saturates about the epoch 31.  

 
Fig. 4. Training and validation loss curves (eight categories) 

The 16-categories experiment (Fig. 5)  shows that the RMSE 
value did not significantly improve, even using the double 
amounts of categories for each feature. This RMSE value is 
0.436 or 1.24 higher than the baseline. This value is almost the 
same as the previous experiment. However, the behavior of the 
learning curve, which is sharper than the 8-categories 
experiment, presents a saturation point about the epoch 23. 

 

Fig. 5. Training and validation loss curves (sixteen categories) 
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Table II summarizes these and other experiments using their 
RMSE, standard deviation and learning saturation epoch values. 
These experiments are not detailed due to space restrictions. 
According to this table, the use of ten categories seems to be the 
optimal value for this problem. 

TABLE II.  SUMMARY OF EXPERIMENTS  

# cat. Average RMSE Std. Deviation  
Saturation point 

(epoch) 

Mixed 0,736603582 0,030867636 49 

4 0,619142313 0,027700254 46 

6 0,426324946 0,022646566 34 

8 0,429564250 0,019817069 31 

10 0,404202831 0,033191876 30 

12 0,416290563 0,019160941 22 

16 0,435720688 0,032468449 23 

24 0,406366000 0,063400000 21 

E. Discussion 

Categorization is useful in this type of situation because it 
allows the organization of things, objects, and ideas, simplifying 
the understanding of the world. Thus, it assists processes such 
as prediction, inference, decision-making and all kinds of 
environmental interactions. Our experiments used the percentile 
strategies to create categories since it ensures that these 
categories have approximately the same number of samples. 
Thus, we avoid imbalanced data and, consequently, issues 
associated with bias in the results. However, real digital health 
applications tend to use feature-specific categories. For 
example, the heart rate feature can be categorized into five zones 
regarding the level of physical activities: recovery/easy, 
aerobic/base, tempo, lactate threshold, and anaerobic [10]. Thus, 
the definition of categories must reconcile the literature-specific 
categorization and strategies to optimize the prediction. For 
example, we can break or join categories to improve the search 
space. The data balance must also be considered in such actions. 

According to the results, the number of categories affects the 
accuracy of the predictions. Thus, its definition could be similar 
to any other machine learning hyperparameter, such as learning 
rate, batch size, and the number of epochs. The challenge is to 
define some function that guides the definition of this number. 
For example, relating this function to the number of samples or 
their distribution (statistic side), allied to pre-defined recognized 
intervals (domain-dependent side), such as in [10]. The 
experiments also indicated that our approach only obtained 
similar prediction accuracies compared with the LSTM baseline. 

 As previously discussed, the power of transformers is 
demonstrated when they process long sequences. For example, 
ongoing research of our lab intends to use daily data of about 
900 volunteers collected over three years to predict the 
psychological health of mobile users. In this case, we expect our 
approach to obtain better results due to the long sequences that 
it needs to analyze (3x365 = 1095 time points/person). Another 
strategy that may improve the results is to use different numbers 
of categories for each feature. Our experiments based on 
percentiles defined a unique number of categories, and this 
number was used to categorize the values of all the features. 
However, a feature such as heart rate may not require many 
categories such as the feature number of steps. The challenge is 
to find characteristics regarding the data (e.g., their distribution) 
that could support this definition. As the recommendation 

outcomes indicate categories that users should move to, the 
average value of these categories may be used as a more 
concrete target. For example, if a recommendation indicates C2 
for steps (Table I), this value is around 3502 steps per day. This 
action is similar to Defuzzification, which transfers fuzzy 
inference results into a crisp output. Methods such as Center of 
Gravity (COG), Mean of Maximum (MOM), and Center 
Average could be used to find this value and give a concrete 
notion on recommendations. Another interesting question is 
about the generalization of this approach. For example, the 
experiments show that using ten categories seems to return the 
most accurate results. However, we defined these categories 
using data from a specific device (Withings). Other devices such 
as Samsung, Apple or Fitbit Smartwatches probably have 
different hardware and software to collect data and present 
deviations compared to Withings. Thus, assessments in such 
devices may fall into different categories. Future use of data 
from other devices aims to verify this aspect. 

IV. CONCLUSION 

This paper emphasizes the importance of tuning the number 
of categories as an additional step to improve the accuracy of 
learning processes that use implementations of behavior 
sequence transformers. This step applies to the cases where the 
prediction/task at hand does not define the number of categories. 
One of the main limitations of this investigation is the size and 
lack of high dimensionality of the dataset used, which only 
contains data of 30 users for a few months. Even using a sliding 
window strategy to augment the data, the use of large datasets is 
important to confirm our findings. Future studies intend to 
conduct experiments using long sequences of passive data, 
which are currently being collected together with the 
questionnaire-based quality of life data. 
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