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Reconstructing Specimens Using
DIC Microscope Images

Farhana Kagalwala and Takeo KanaBellow, IEEE

Viewer

Abstract—Differential interference contrast (DIC) microscopy
is a powerful visualization tool used to study live biological cells.
Its use, however, has been limited to qualitative observations. The
inherent nonlinear relationship between the object properties and
the image intensity makes quantitative analysis difficult. Toward
guantitatively measuring optical properties of objects from DIC
images, we develop a method to reconstruct the specimen’s optical
properties over a three-dimensional (3-D) volume. The method is
a nonlinear optimization which uses hierarchical representations
of the specimen and data. As a necessary tool, we have developed
and validated a computational model for the DIC image formation
process. We test our algorithm by reconstructing the optical prop-
erties of known specimens.
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hierarchical reconstruction, iterative parameter estimation, Fig- 1. DIC optical components: Regular brightfield microscope components
nonlinear optimization. such as a light source, collector, condenser, objective, and eyepiece are

supplemented with a pair of polarizer-prism set. Three light paths are shown
to illustrate conjugate planes of reference. Optical elements, spacing, and the

incident light angles are not to scale.
|I. INTRODUCTION

HE NOMARSK!I differential interference contrast (DIC)
microscope is the preferred method for visualizing liveptically sectioned images can be acquired within a minute. In
biological specimens. The DIC microscope is an interferometée case of mobile cells, the short acquisition time minimizes
and therefore, the refractive structure of the specimen is madigtortions between optically sectioned slices.
visible. In biological research, live, transparent cells can be im-Looking through the eyepiece of the DIC microscope,
aged with this microscope modality. Three-dimensional (3-B)" observer sees a shadow cast image which deceptively
structure can be visualized by Optica”y_sectioﬁir@]rough indicates 3-D structure. Actually, the image is the differential
the specimen. To date, however, biologists only qualitative§f the optical path length introduced by the object into the
assess DIC images of cell specimens. Quantitative microscdigPpagating light wave. The differential is along a particular
methods, such as computational optical sectioning microscdﬁiﬁCtiOﬂ, in the transverse plane, called the shear direction.
(COSM), have been restricted to linear microscopy modalitid§. addition, each image contains both in-focus and out of
[5] The inherent nonlinearities in the DIC image formatioocus information. Therefore, the challenge in DIC microscopy
process have hindered past attempts at quantitative analy§§ains to interpretimage features belonging to in-focus object
In this paper, we describe a method to reconstruct speciméfgperties correctly.
imaged with DIC microscopy.
DIC microscopy offers several advantages over other II. DIC MICROSCOPYBACKGROUND
contrast-generating optical systems. In DIC the pupil is unob-

d and theref d axial \uti q The DIC microscope, is essentially a brightfield microscope
structed, and therefore transvérsmd axial resolution exceeds, i, o polarizer-analyzer pair and two prisms. [Fig. 1] As in

. ) Sndard brightfield optics, light from a lamp is collimated by a
with 3-D features are better resolved. Unlike some fluorescen&ﬂIector and a condenser lens combination. In DIC. however. a

methods,dno dytlas af;e |nj(jec'::§d ?Ind th&refore,fhvel SPECIMeRFarizer and a Wollaston prismis inserted between the collector
are not adversely aftected. Finally, unlike confocal scanning y -ondenser lens. Moreover, the prism is positioned with re-

methods which have slow rates of acquisition, an entire stack ect to the back focal plane of the condenser. The described

setup produces two mutually coherent, polarized beams. Each
Manuscript received May 22, 2001; revised January 5, 2003. This paper vedectric field is polarized perpendicularly with respect to the
recommended by Guest Editor N. Bourbakis. ther. In addition, the wavefronts impinging on the object are

The authors are with the Robotics Institute, Carnegie Mellon University, Pittg-, . .
burgh, PA 15213 USA (e-mail: farhana@alumni.cmu.edu, tk@cs.cmu.edu). differentially translated with respect to each other. In front of

Digital Object Identifier 10.1109/TSMCB.2003.816924 the objective lens, an analyzer and Nomarski prism are inserted
1For each image in an optically sectioned set, the optical elements are c"dllp-d allgn_ed with _the front focal plan_e of the Objec_tlve' The Wol-
figured to focus at a particular object distance. laston prism behind the condenser introduces a linear phase gra-

2Transverse planes are perpendicular to the optical axis of the microscopélient across the two fields emerging from the condenser. The
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Nomarski prism in front of the objective lens compensates ftight significantly. Therefore, aberrations due to the object
this linear phase gradient. Therefore, the combined action antribute significantly to the image.
the two prisms results in a constant phase bias between the twBeconvolution methods, such as computational optical sec-
perpendicularly polarized fields. This combination producest@ning microscopy (COSM), are widely used to recover ob-
steady pattern of interference between the two beams which ¢act information from images acquired by certain optical modal-
then be detected by a CCD camera or the human eye. ities. COSM methods model the image intensity as a convo-
Mathematically, the DIC imaging process can be summarizédion of the object’s intensity transmittance with a computed
by the following set of equations. First, consider a coherent figfint-spread function. In modalities such as fluorescence and
represented by brightfield, a linear function of the intensity from the object
provides an accurate, first order approximation of the image.
Uin(Z) = Aexp[—igiu(Z)]. (1) However, in DIC microscopy, the image cannot be represented

where# = (x, y, =) are spatial variables in the coordinate spacbey merely considering the intensity from the object. Both phase

of the object with thez-axis coincident with the optical axis. and amplitude information have to be modeled,

¢(Z) is the phase function. The action of the two prisms can bemItIaI work in DIC 'mage analysis algorlthr_ns .used Ilngar
represented as an aggregate by(#) andU2, (), where models. [4] In 1996, Fellnegle used a contpur fmdmg algorithm
CLA to locate edges in each image from an optically sectioned stack.

UL(Z) =Aexp [—ipu(Z + T.) + Ad]] (2) [6]Inherwork, specimen structure is obtained by axial stacking
U2,(%) = A exp [—idu(E — 5)]. 3) pf contours. The mos.t recentwork in the anal¥3|s of DIC images
il i s is by Preza. [12] This work recovers the optical pathlength at
In the above equationg\é is the constant phase bias atig is  €ach image point due to the object, and therefore does recover
the shear vector. After a phase transformatian, (), due to SOme quantitative information. The only other attempt to quan-

the object, the wavefronts tify information from DIC optics has been made by Cogswell,
et al. using optical techniques referred to as geometric phase
Ui (#) =Aexp [—i[pon; (# + T5) + Ad]] (4) methods. [3] Though we are unaware of cases where this method
Ugbj(f) =Aexp [—igon; (T — T:)]. (5) has been applied to recover three dimensional object informa-

tion. The work by Feinegle produced a 3-D model of the spec-
contain the object information. The field in the image spadmen, but the object properties were not quantitated and the re-
is (shown in equation at the bottom of the page) whermvered specimen model was not validated with ground truth
Timg = (Timgs Yimg, Zimg) @re spatial variables in the coordi-experiments. Preza’s work recovers optical path-length but does
nate space of the image with thg, ,-axis coincident with the not actually reconstruct three dimensional object information.
optical axis. K. (Timg, Yimg, &, y) iS the complex amplitude So far, no attempt has been made to quantitatively reconstruct
point spread function of the imaging system (objective and attye 3-D properties of the object from DIC images.
other auxiliary lens) of the microscop&.. (. ..) describes the  In contrast, the reconstruction algorithm that we have devel-
propagation from the object planezat z; to the image plane oped recovers the whole object information. We address the

Zimg- The image intensity (Z;q) IS nonlinearities in the image formation process by a precise com-
. ) putational model of DIC microscopy which is used for recon-
I(Zimg) = Uimg(Timg, Yimg, Zimg)|™ - (6) structing specimens. Using a generalized ray tracing method we

The nonlinearity in the DIC image has two basic sourcegfwe developed gmodel of light propagation thro_ughthe micro
. . . . . tope and specimen. [8] and [9] The computational model is

First, since the image is an interference pattern, the detecie ) . .

. N : : o used to generate simulated images of the current estimated ob-

intensity is the squared magnitude of the light field’s complex

amplitude. Therefore, a convolution of the light intensitg/ect as part of the hierarchical reconstruction algorithm.
with a lens transfer function does not accurately represent
the DIC image, which is a linear superposition of complex
amplitude, rather than intensity components, of the light field. Given a set of DIC images, the goal of the reconstruction
In addition, out of focus contributions from the object haves to estimate the refractive index distribution throughout the
to be considered. Therefore a 3-D amplitude point spreadlume encompassing the object. Due to the nonlinearity of
(or transmission) function is needed to accurately model thee DIC image-formation process, a direct inversion of the
image intensity. Second, the object itself aberrates the lightaging equations is not feasible. Therefore, we use an iterative
wave as it propagates through. The biological specimens undenlinear optimization algorithm. The optimization starts with
consideration, though weakly refractive, are thick and scattn initial estimate of the distribution. Using our computational

I1l. RECONSTRUCTIONPROBLEM DESCRIPTION

obj _obj
Y Tq

Uimg(il_;img) = /oby ) Kz(ximgvyimg;xvy)[U(}bj(il;vy-/ z = Zl) - Uij(wvyv z = zl)]dil;dy
,yO J mg’]
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model, we generate simulated images corresponding to thiS'The model consists of a polarized ray tracer and an approxi-
estimate. The sum of squared differences between the real datdion of the field contributions to the image. We assume that
and the simulated images is the error function. The estimdke object has negligible absorption and its refractive index vari-
is modified at each iteration such that this error function @&tion significantly impacts the resulting image. In our model,
minimized. Such a reconstruction process requires a replight rays contain the cumulative effect of the object and optics
sentation of the refractive index distribution at every poirlty accumulating phase information. According to laws consis-
across the specimen volume. One possible representation terd with geometrical optics and energy conservation principles,
weighted combination of basis functions where the weights are propagate light paths through the object. As each ray propa-
the parameters. The degrees of freedom in the representatgates through the specimen volume, the ray is deflected and the
that is, the number of parameters used, play a critical role in ttey/’s phase is modified. We also approximate fields which em-
accuracy with which an object can be represented and the easate from all points in the object and which are diffracted by
with which the optimization converges to the correct answer.the object inhomogeneities. Lastly, we approximate the effect
A nonlinear optimization method traverses the parametef diffraction by the lens pupil on each of these fields. Thus,
space searching for the point where the error function is miwe incorporate wavelength-dependent information in addition
imized. To avoid converging to incorrect minima, traditionaio the geometrical optics approximations allowing us to model
nonlinear optimization problems require that the initial set ddIC images more accurately than in past models.
parameters be close to the actual solution. In order to be able
to converge to the correct solution, despite the initial estimate V. RECONSTRUCTIONALGORITHM
being far, one needs a systematic method of traversing the&’
t

parameter space such that the estimates approach the nei he .hierarchical reconstruction cpnsists _of three processes.
borhood of the global minima without being trapped in loc e first step, we represent the object at different resolutions.

minima. One possible method to achieve this is to first redu eecond,we decompose the image data n order to identify image

the parameters such that only coarse object properties cal ures corresppnding to. o_bjegts at the_ diﬁere'_“ resolutions.
represented. If the volumetric distribution is approximated b ird IS the nonllnea_r optimization a'gof'thm which recovers
a small number of parameters, the consequent error functio %esumate of the object at each resolution.
also of reduced dimension. In the process, local fluctuations | . , )
(minima) are smoothed over and the error function retais Hierarchical Object Representation
global shape properties. One can then solve the optimizatiorSince the DIC image captures the directional gradient of the
with respect to the reduced parameter set. When projected bpblase introduced by the object into the light path, we represent
to the original problem, the solution of the coarse optimizatidhe object as a volumetric distribution of refractive index values.
is closer to the original global minima. Thus the coarse sol&t present, we assume that the object is transparent, and there-
tion serves as an appropriate initial estimate for the originfaire the refractive index is a scalar quantitiVe represent the
optimization problem. Depending on the complexity of theefractive index by a wavelet-like bases, approximating it at dif-
problem, this parameter reduction can be done in multiplerent levels of resolution, where at each level only a subset of
stages. spatial frequencies are present. For the purpose of illustration,
In our method, we represent the object and image data gt us formulate in one dimension. At a particular resolution
erarchically and optimize at successive levels of the hierarchy(z) is represented by combining versions of the scaling func-
by using a multilevel wavelet-like representation for the objedion, ®(z), and wavelet function¥ (z)
At each level, the original image data is projected onto a basis _
spanning a space of possible image features at the given objggtz) = S % ar®(z — k) + X727 5770, W (272 — k).
resolution level. This projected data is compared with simulated @)
images in our nonlinear optimization. Thus, at each level of tiBoth &(x) and ¥(x) are cubic spline functions, developed by
hierarchical reconstruction we obtain an object estimate that {&i and Wang [2]. The scaling function represents the lowest
the data at that level. This object is used as an initial estimate fgatial frequencies. The wavelet function represents the details
the optimization at the next level of the hierarchy. at different resolutions. Translated version®¢), in addition
to, scaled and translated versionslgfr) span the domain of
an object. To represent a function at a particular level one needs
to find the combination of weights up to that level which best
Our computational algorithm models the DIC image formaapproximates the original function. In Fig. 2, at the first level
tion process with sufficient accuracy such that it can be used(tb= —1), an example function is coarsely approximated by a
reconstruct three dimensional optical properties of specimensmbination of the translated scaling functions. At each sub-
We achieve this by developing a generalized ray tracer with visequent level, the corresponding wavelet functions are added
tual models of the optical system and the specimen. We alsothe representation and the function is better approximated.
model the focused and out of focus information present in DIT® represent a two-dimensional (2-D) distribution(z, z), we
images by approximating light fields from each point in the olhxave to use a combination of functions that are outer products of
ject. We assume the fields have small enough aberration that

they can t_’e mOdeled as Spher'ca_l' For each f'eld’ its radius Ofrp;g may be generalized to include absorption. The refractive index would
curvature is determined by the object’s refractive structure. then be a vector, or complex number.

IV. COMPUTATIONAL MODEL
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Fig. 2. Object hierarchy. In the right column an original 1-D object is shown
superimposed with the approximate object at the level of the hierarchy. The 200

left column shows the basis functions at each level. Each row shows the basis
functions that are added to the representation at that level.

Fig. 4. Hierarchy of objects and images. The two object dimensions are the
axial (Z) and transverseX). For each image, the object plane is at the center
of the Z axis. Rows 1-3 show the objects and corresponding images from the
coarsest to finest resolutiod (= —1,J = 0,J = 1).
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Flg 3. Sample 2-D scaling and wavelet functions. Each corresponds to a term The wavelet-like basis prowdes a continuous representatlon
in (8). for the refractive index. For computations, we discretize this dis-
tribution. In our model, the refractive index is stored at discrete

the one-dimensional scaling and wavelet functions, (see eglfgations of a three-dimensional voxel grid. We typically use
tion (8) at the bottom of the page). Each tensor product resultfids with resolution 0.2—& m perpendicular to the optical axis
a 2-D function that can represent different properties of the od 0.03—Jum axially. A typical grid size is 106 100x 50 in
ject. [Fig. 3] The extension to three dimensions is similar. THE€x, y andz dimension, respectively.
levels of the wavelet functions provide a systematic hierarc
for representing and recovering the object. At each level, of the
reconstruction algorithm, the goal is to recover the parameters at/nlike microscope modalities for which analytical models of
that level. The scaling function coefficients,(;) are recovered the 3-D optical transfer function are available [13], object struc-
in the very first level { = —1). At that level, the distribution is ture and the DIC image is related nonlinearly. Due to this non-
linearity, an algorithm using an analytical DIC imaging model
is not practical. If the relationship between the object and image
Z Z ak 1 ®(x — k)@ (z — ). ©) intensity were linear, then a linear decomposition of the object
h=-2l==2 would result in a linear decomposition of the image. Since this
The values ofy;,; are initialized to 0. We then proceed to upis not possible, we have developed a “matching by synthesis” al-
date the parametess, ; iteratively so that the error between thegorithm that identifies image features which result from the rep-
simulated images and the image data at this level is minimizedsented object frequencies. The original data consists of image
The iterations at this level terminate when small changes in tfeatures due to all object frequencies but this data cannot be lin-
parameter vector do not effect a significant improvement to tlearly decomposed into features at all levels. Therefore, at each
error. The algorithm then proceeds to the next levet(0). The resolution level we have to determine the image features which
estimated object from the previous level is transferred as the iare appropriate and match these to the original data. An example
tial object at this level and we proceed to recobgf i, co,r,;,  Of an object at different resolutions and the corresponding im-
do 1,1 Analogous to the previous level, these parameters are iages simulated by our computational model is depicted in Fig. 4.
tialized to 0 and iteratively updated so that the error betweenThe matching by synthesis algorithm extracts features in the
simulated images and the image data at level 0 is minimizaatiginal intensity data which correspond to objects at a partic-
Each subsequent level of the reconstruction proceeds similatliar resolution. At a given resolution levé] we suppose that

Hierarchical Image Representation

—2 L-2
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=Y ) ax®(e - k)®(z-1)
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the DIC image of the object can be represented in terms of aBasis Selection:Next, we implement a basis selection

basis such that method from the simulated imageslg,{,vl7j(ximg,zimg)}
Q7 fori = 1...8ay. One simple basis selection method is a
15 (Timg» Zimg) = ZTng(ximgvzimg) (10) Karhungn-Louve decompogltlon apphed“tc_) 2-D S|gnaI§. [10],
=0 [14] This method results in a set of “eigenimages,” each

J ;- ) ) .. functioning as a basis vector. We found that the eigenimages
where {B;}for ¢ = 0... Q" is a set of basis functions specifiCy 5564 method does not sufficiently abstract image features from
to the resolution]. In order to relate the original image dataye et of images. That is, although each, s (img, Zimg)

. 4 . y s imgs “img

I(%img, 2imq), to the images at each resolution level, we negd, pe represented by a combination of the eigenimages,
to find the features in the original data that correspond to thech, eigenimage doesn’t necessarily represent isolated image
features in the basis functions. Before we can proceed to majghy res.
features in the original data, we need to find the basis imagesty find basis vectors which explicitly represent image
We obtain the basis images by perturbing parameters at a parigyy res, we implemented a basis selection method using the
ular rgsolutlon and synth.esmng an image per pert_urbed Oble‘?ﬁatching pursuit” algorithm. [11], [1], and [7] This algorithm
Functions selected to be in the basis represent the image featytes; 5 redundant dictionary of functions, where each function
most'common t.0 the syntheglzed images. Thelolrlglnal IMa@€, scaled and translated version of an exponentially modu-
data is then projected onto this basis, thereby, giving the imagg.q window function. In our implementation, the window
features that are presentin the original data corresponding (9@ 3yssian. Using a redundant dictionary of such functions
object at the given resolution. Specifically, our algorithm prosgters an advantage over decomposition into a pre-established
ceeds in three steps. First, at a particular resolution, we intiQssis such as a wavelet basis. In a wavelet basis. scale and
d.uce a Iarge set of perturbations to the initial object and generﬁ'@quency have a fixed relationship so that only features which
simulated images of each of the perturbed objects. Second, fige 5 particular frequency content can be represented at a
select a basis that best characterizes the images correspongifiglcyar scale. In contrast, exponentially modulated functions
to the perturbed objects. Third, we project the original imagey, represent several kinds of features at any given scale.
data onto the es'um_ateq basis. _ The matching pursuit is an iterative greedy algorithm to
~ Object Perturbations:At a given resolution levell, the jgenify functions out of the dictionary that best match an
initial object is perturbed by a large number of random CORya4e in the set. Note, the iterations of the matching pur-
figurations. Each perturbation involves adding or subtrqctn&lit algorithm are embedded within each resolution level
a random amount from all parameters of té level bas;ls of the reconstruction algorithm. Given an intensity vector
functions. Therefore, given random parameter vectts”, I@img)s [(Timg) = I (Timg, 2 = constant)
crend anddrend, a perturbed object at levélis P A sim,d ey g : ”

' i € [1,8ay] in our algorithm), the matching pursuit algorithm

nr (@, 2) = ny 1 (x, 2) defines a re&dualR,,,{I}(ximg)_ at e_ach iterationw, v_vhe_re

9 K299 ig{{)}(mti?g) t_: {Efimg)') ,?\n lteratl(()jnd cton?stst_of fm_dn:g,
n by 4 brand e best functiony;’ (wim,) from candidate functions in the
Z Z (b + b7™) dictionary, such that

pert

k=—2 I=-1
U272 — k)®(272 — 1) (RuA T} (Zimg), 9 (Timg)) > (Ru{ T} Timyg)s Gi(Timyg))
27K -227L-2 (13)
+ Z Z (Crki +c;"'l"‘1) where ( ) denotes inner product;’(zimg) iS then removed
=1 1=—2 ’ from the candidate functions in the dictionary. The residual is
27z — k)W (272 — 1) updated as
k=—2 [=-2 o ! _<RUJ{I}($ng)/qy(xtmg)>q;ﬁ(xtmg) (14)
U270z — B)U((272 —1). (11) The algorithm is terminated when the residual’s norm falls

. ) _ below a preset threshold. More details can be found in the

We use the computational model to generate a simulated imag&erences.
IsimJ_(m’imgv Zimg)» for each perturbed object. The set of sSimu- ag 3 result of matching pursuit, eadly,, ; is decomposed
lated images contain a wide range of possible image featuygs, respect to a unique matched s@;ﬁ{}img)} for w =
corresponding to objects at this resolution. Though, we haye ., - <qected from the dictionary. Therefore we will have
only shown perturbations of the wavelet coefficients, the coeffy, . matched sets. Finally, we extract a set of dissimilar func-
cients of the scaling functions are also perturbed atlével-1 s that are most prevalent across all the matched SEitis
to obtain basis images at that level. For a particular resolutiafyt of functions forms the basing} for g =0...0Q7, for the
the total degrees of freedom at that resolution is subspace of images corresponding to objects at resolution level

a;=2"K)2'L-1)+ (2K - 1)2'L)+ (27 K)(2'L). [Fig. 5] The numb_erQJ, is set experimentally to ensure that

(12) { B’} spans the entire image.

We have experimentally determined that; perturbations (and 4o functionsgs (..., ) andgs (.., ), are dissimilar g, g2)/ (91 9:)
simulated imagessim, s (Timg, zimg)) SuUffice. and(g1, g=)/ (g2, g=) is less than an empirically determined threshold.
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< i < supplemented with an identity matrix scaled by a parameter. The
o % parameter is decreased at each iteration if the current estimate
. reduces the error, otherwise it is increased. Implicitly, this op-
“;&:\"}\A timization method assumes that the neighborhood of the global
AV NV v solution is predominantly convex, barring some minor local un-
e 1 dulations, and that the current estimate is within this neighbor-

hood.
Fig. 5. 1-D basis functions at the levels 0 and 1. (From specimen 1 . .
re%onstmcﬁon)_ ( P Randomized MethodsAt subsequent resolution levels, the

degrees of freedom in the object increase rapidly. No longer can

Image Projection: Once the appropriate basis hierarchy foPn€ assume that the initial estimate is close to the solution at
the images is selected, the original image data is projected offtts evel and that the neighborhood along the error surface to be
the basis at each level. A matrii/;, is constructed in which traversed is sufficiently convex. Therefore, Gauss-Newton type

all the columns are the individual functions comprising of thB1ethods such as Levenberg-Marquardt tend to converge to local
basis at a particular resolution. That is minima. Although, the optimization is significantly aided by the

resolution hierarchy, we still need to implement a randomized
Bi(z,z=0) .e.  BZ(z,2=0) e ; L :
0] ’ ’ Q}J ’ search method within the nonlinear optimization. We have im-
By(z,z2=1), e BQJ(z7 z=1) plemented a genetic algorithm that has been very successful in
: finding the correct solutions.
The genetic algorithm combines parameters from members of
5) a population to produce a new member. The population that we

In the above matrix, each basis image corresponding to a dee to initiate the genetic algorithm is the same set of perturbed

ferent axial position is stacked vertically so that the entire baggrametertvectt(_)rs (;fescnbed abO\(ljeé Eacr; pa;?ﬂeter vpcr:or,
image can be represented as a column vector. Since the méﬁig concatena |_or: d"v’““ c’““?l’ an h:“;{’.' r;ha ton, feac q
will not be square in most cases, the original data is multiplié as an associated error vajue which Is the sum ol square

with the pseudo-inverse to obtain the necessary weights for e éf'f]erer!cef t(;gtween trtufhsmulate(tj“malge Idue to this Otl)tje(t:t and
of the basis functions. This is the over constrained solution projected image at the current Ievel, pius any penaity terms

(d/dP){M,7 — I}2 = 0 wheref"is the vector of weights] is ue to constraints. The population is divided into good and bad
. - . . k
the original data, formatted into a column vector similar to th%and|dates, represented b§4)0d andpy,q- The good and bad

o he | \utich 1 candidates have error values in the top and bottom 50th per-
basis images above. The least squares solutigh=s M. centile respectively. There are two ways of combining member

whereMj is the Moore—Penrose pseudo-inverseMdf. The parameters. The first method selects two good membggg,d(
projected imagel, andp?,.4) and a bad candidatey(,). The new member is
Iy = Py{I} = My7 (16) peomb — a(-5Pgo0d T -5Pg00d) — UPhaa Wherea > 0,5 > 0 and
a — b = 1. This method is similar to traditional combination

corresponding to thé*” resolution is the weighted linear com-methods in genetic algorithms. In this selection method, good
bination of the basis functions, using the functions obtained wigandidates with lower error values have better chances of being
the matching pursuit algorithm and the weights based on tSelected than ones with higher error values. If the new member
least squares solution. is better than either of its “parents, "i.e} ., andp?,, 4, ac-
cording to the above defined error, then the worst parent is re-
placed by the new member. The second method simply selects

For each level in the resolution hierarchy, we optimize with member of the population at random and randomly perturbs
respect to the wavelet coefficients at the current resolution. Asame parameter values, i.gmutate = p* 4 p 4 wherep® is a
particular level, the initial object is the estimated object from thendomly selected parameter vector from the entire population
previous level. At the first resolution level, the initial object is @ndp,..q is a vector of random values. This method is consis-
completely blank volume, i.e., all voxels are initialized with théent with traditional mutation. If the error value corresponding
same refractive index as the background. The image data usegutate is better than that of the worst parameter vector, then
in the optimization is the original data projected onto the badisis mutant replaces the worst member. At each iteration of the
selected for this resolution levell { defined previously.) So at algorithm we sort the members according to their error values,
each resolution level, the target data is actually the projectadd perform one combination and one mutation step.
images described above. At the final resolution level, we useConstraints: The only strong constraint on the object is that
the original data. The sum of squared differences between the minimum refractive index be 1.0. Therefore, every estimated
projected data and the simulated data is the error term for tiistribution is offset by a suitable amount to ensure that the min-
optimization. imum value in the distribution is 1.0. In our reconstruction ex-

Levenberg-Marquardt:At the first resolution level/] = —1, periments, the physical specimen has only two distinct refrac-
the degrees of freedom of the object is quite low. Thereforéye index values. So for those experiments we add a term in the
a Levenberg-Marquardt type nonlinear optimization producesror that penalizes for inhomogeneity in the distribution. This
sufficiently good results. [15] This is basically a Gauss-Newtaadditional penalty term is only introduced at the finest resolution
type gradient-based optimization, where the Hessian matrixiésel and has considerably sped up convergence. The penalty is

My =

BOI(‘E7 z = Zmax)7 s Bé](z = Zmax)

C. Optimization at Each Resolution



734 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 5, OCTOBER 2003

Fig. 6. Physical data of bead specimen. Fig. 7. Real data of wafer specimen.
. i . . i o Level 0 image Data o Level 1 Image Data Y Original Image Data
achieved by segmenting the volume into regions of high and low N W RN
refractive index values and then measuring the variance within gl el
those regions. The variance terms are scaled by parameters, V\/ J\/\ }..1\/__'
andf and added to the error. Therefore, the modified error is S S e SO S
M n‘/\/ o—\/\/\ o— \r—‘
E=Y" (Islm] - Lin[m])? TR T~ o e
m:l -00 0 B
w . 0 100 200 300 o. o 100 200 300 ‘0 100 200 300
+ (n[k] = nnign)? : :
Nhigh 72 e i /\l
=Yhigh 055 100 200 300 % 100 200 20 o 100 200 300
B 2
+ N, Z (n[k] - HIOW) (17) Fig. 8. Intensity plots at different resolutions. Column 1-2: The original data
low E=91ow projected onto the levels 0—1 respectively. Column 3: The original data.

where the first term is the sum of squared differences betwee
the intensity values of the projected image and the simulate ,}
image calculated over the total number of pixalk,In the rest
of the error,N is the total number of voxelsi,ign andn,,,, are
the means of the high and low valuels] respectivelyyy,, and
~iow are the sets of discrete voxels which are above and belo' e}
the threshold, respectively. 100k

80

VI. RESULTS

The first set of reconstruction results we obtain are in two di-
mensions. That is, instead of estimating the full 3-D volumetric _
distribution, we chose to reconstruct one slice in the volume
To provide a good proof of concept for this reconstruction algo- *
rithm that would be less computationally expensive than a ful e
3-D reconstruction, we chose an axial slice (rather than a tran:e
verse slice). Our decision is based on the fact that reconstructing
along the axial dimension presents the greatest challenge. Sgo. Results for Specimen 1. A-C are the estimated answers at levels 0-2.
tial frequencies which have significant components in the axi@i Real object. E: Final estimate. F: Error between real and estimated object.
direction are attenuated the most in the image formation process.

The two transverse dimensions are imaged according to idempected object structure and the recovered object. The grid res-
tical principles, thus reconstructing in one of them can serve alsition in this experiment is m in both directions. As can be

a validation for both. We chose two test specimens, each havsegn from the error image, the object structure is recovered quite
some unique attributes. The first specimen, consisting of a besxturately. The original object has symmetric structure and the
in optical cement, is symmetric and the object structure is emecovered shape is symmetric as well.

bedded in the volume. The second specimen, consisting of aThe specimen used for the second experiment consisted of
ion-milled wafer, does not have perfect symmetry and the struam ion-milled glass wafer. Due to error prone multiple millings,
ture extends to the top edge of the volume. the actual milled wafer pattern is defective in that it does not

In the first 2-D experiment, we embedded several:i0di- have symmetric walls even though the specifications have
ameter beads in optical cement. The homogeneous beads hasymametric structure. The specimen was prepared by filling the
refractive index that is .03 less than the cement. We acquiredrailled cavity with oil that had a refractive index 0.08 less than
optically sectioned data set of this specimen with an axial redbe glass. The optically sectioned image set of this specimen
lution of .2 um. A cropped region showing one bead in some dfas a 0.2:m axial resolution. A subset of the images are shown
the images is shown in Fig. 6. The data used in the reconstrut+ig. 7. For the reconstruction experiment, we extracted a
tion experiment consisted of a diagonal cut through the cropplate of intensity data from each one of ten images in the set.
region of 10 images in the set. A cropped specimen is showhe line (horizontal) was extracted above the midpoint of the
in Fig. 7. Some of the intensity plots are shown in Fig. 8. Thehown images at a point such that two of the depressions in
image data projected onto the basis at different object resothe pattern are captured. The original image data is shown
tions is shown in Fig. 8 as well. Fig. 9 shows the estimated oin- Fig. 10 along with the results of the image data projected
jects at the different resolutions and a comparison between tr@o the basis at different object resolutions. Fig. 11 shows
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Level 0 Image Data Level 1 Image Data Level 2 Image Data Original Image Data Lovel 0 Object, (wialres 5 micrors)
0. 0.1 o. 02

Fig. 10. Intensity plots of wafer data at different resolutions. Columns 1-3:
The projected data at levels 0-2, respectively. Column 4: The original data.
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Fig. 12. Bead experiment results: Estimated object at level 0. The object is
shown by transverse slices through the volume at a resolution.ei.5

D
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Fig. 11. Results for Specimen 2. A-C are the estimated answers at levels 0-2. o 22 2 4 55N 6 0 W N 0

D: Real object. E: Final estimate. F: Error between real and estimated object.
Fig. 13. Axial slice through object at Level 0. The vertical axiZignd the

. . . . _ horizontal axis isX'.
the estimated object at different resolutions and a comparison

of the final reconstructed object and the expected object. The Love 1Ot i S icons)
grid resolution in this experiment is .3 in thedirection and

0.03 in thez-direction. Since the exact nature of the defects
introduced by the milling process is not known, the expected
object shown is merely a hypothesis. As can be seen, barring
some small extraneous patches, the structure of the recovered
object is very close to that of the expected object. The lack of
symmetry that is apparent from the DIC images appears in the
recovered object as well.

For our final experiments, we tried reconstructing a 3-D
object. Here we represented the object as a superposition of
three-dimensional wavelet basis functions and recovered the
respective coefficients. The three-dimensional experiment used
the optically-sectioned data set of bead images. A sampling of
these images is shown in Fig. 6. We used 25 images from the
data set for this reconStrUCtIQn eXpe“mem' The mltla_l Objeig. 14. Bead experiment results: Estimated object at level 1. As in the
was a blank volume. The estimated objects at resolution leyedvious figure, the object is shown using transverse slices through the volume
0 is shown in Figs. 12 and 13. A slice in Fig. 12 represengsa resolution of 2.5 mm.
the volumetric refractive index distribution across a transverse
planes cutting the volume. In Fig. 13 we show an axial sligganes through the object. The actual experiment is performed
cutting through the center of the volume so the estimated objeotumetrically. That is, each basis function is 3-D. In Figs. 13
extents can be seen. Figs. 14-15 show the estimated obgad 15 we show an axial slice cutting through the center of
at level 1. For visualization purposes, we show the results the volume so that the estimated object extents can be seen.
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Axial Slice-L1 Object Axial Slice-Error
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Fig. 15. The object at level 1 is shown as an axial slice through the centerFof). 17. The error between real object and the estimated object at level 1.
the volume. The vertical axis i8 and the horizontal axis iX. The image here shows the error through an axial slice cutting the center of the
volume. The vertical axis i€ and the horizontal axis iX'.

object and estimated object also approximately coincide. These
results are meant as a proof of concept to show that three-dimen-
sional reconstruction is possible with this method. This exper-
iment shows that given enough iterations, the estimated object
will approach the real object shape and recover the object’s op-
tical property.

VII. DiscussioON ANDCONCLUSION

The analysis of DIC images presents a substantial challenge
due to the nonlinearity of the image formation process and the
out-of-focus artifacts. We tackle the problem by developing two
tools. First, the computational model has been discussed in de-
tail in previous publications. The second is the hierarchical re-
construction algorithm discussed here. As shown by the results,
Fig.16. Theerror t_)etween real objectand estimated object gtlevel l.Th_e eH9% nonlinear optimization is powerful enough to recover axial
through the volume is shown by transverse slices at a resolution of 2.5 microns. . . .

and transverse structure and quantitate the optical properties

of the object. Even though, we initialize the optimization far
At level 0, 27 coefficients are estimated which represent afom the actual solution, we are able to converge very close to
the translated scaling functions. At level 1, the initial objeGt |n order to successfully converge to solutions when faced
is the level 0 Object. The total number of coefficients at IeVQ\hth h|gh|y nonlinear error surfaces, we deve|0ped a hierar-
1is 316 out of which we estimate only 26. These coefficienghical method. This method represents the object with respect to
correspond to the basis functions spanning the boundary anghavelet basis in order to systematically reduce the dimension
internal extents of the initial object at this level. By simplyf the search space and arrive at a chain of object estimates at
ignoring the basis functions which fall outside of the estimate&gher and finer resolutions. The intensity data also has to be de-
initial object (at this level) we can eliminate the majority of th omposed in a manner consistent with the object decomposition.
basis functions. This assumes that new ObjeCt will fall W|th|8|nce the |mag|ng process is nonlinear, we deve'oped a method
the boundary of the old object which is valid since the bas, which image features present at the different object resolu-
functions at the coarser level have larger support. tions are explicitly captured in a particular basis at each level.

Comparison of the real object and the estimated objectyfe real data can then be projected onto the basis at each res-
shown in Fig. 16. It can be seen that the estimated objectggition level to obtain a hierarchical representation of the data.
slowly converging to the real object shape. At this resolutiayr results show that such an algorithm is capable of recovering
level, the basis functions have too wide support to produce gfucture along all directions. By recovering the structure of two

object with sharp boundaries. The comparison does show taty different specimens, we illustrate the capabilities of the re-
the optimization estimates a distribution that approaches the rgghstruction algorithm.

object. The error is shown axially in Fig. 17. Here it can be
seen that the estimated object’'s extents do approach the real
object dimensions in the axial direction as well. One can also . ) o . .

hat the refractive index value of the estimated obiect doey] F. I_3ergeaud and S. Mallat, “Matching pursuit: Adaptive representations
note tha ) ] of images and soundsComput. Appl. Mathvol. 15, no. 9, pp. 97-109,
approach that of the real object. The centers of both the real 1996.
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