
Optimized Seamless Integration of Biomolecular DataBarbara A. Eckman� Zo�e Lacroixy Louiqa RaschidzAbstractToday, scienti�c data is inevitably digitized, stored in a wide variety of heterogeneous formats, and is accessibleover the Internet. Scientists need to access an integrated view of multiple remote or local heterogeneous datasources. They then integrate the results of complex queries and apply further analysis and visualization to supportthe task of scienti�c discovery. Building such a digital library for scienti�c discovery requires accessing andmanipulating data extracted from 
at �les or databases, documents retrieved from the Web, as well as data that islocally materialized in warehouses or is generated by software. We consider several tasks to provide optimized andseamless integration of biomolecular data. Challenges to be addressed include capturing and representing sourcecapabilities; developing a methodology to acquire and represent semantic knowledge and metadata about sourcecontents, overlap in source contents, and access costs; and decision support to select sources and capabilities usingcost based and semantic knowledge, and generating low cost query evaluation plans.1 IntroductionScientists today spend signi�cant time and e�ort in querying multiple remote or local heterogeneous data sources,and integrating the results, either manually, or with the aid of data integration tools, so that they may be furthermanipulated using advanced data analysis and visualization tools. In each speci�c application domain, gettingaccess to, and combining data from, multiple data sources, while coping with their distribution and heterogeneity,is a tremendously di�cult task.An important aspect of bioinformatics consists in building a scienti�c digital library, representing an (inte-grated) view of data of interest. This data may be widely distributed in remote sources that are being constantlyupdated or it may be in local collections in data warehouses. Biological data is available in a wide variety of for-mats, it is annotated using a variety of methods, and it is stored in either 
at �les or relational or object-orienteddatabases. Access to these heterogeneous biological data sources is mandatory to the task of scienti�c discovery.A single query may involve 
at �les such as GenBank [BKML+00] or SwissProt [BA99], Web resources such asGeneCards [RCCPL98, Genb], UniGene [Uni], or the references data source PubMed [Pub]. Result structures forWeb data sources vary from loosely structured HTML format for GeneCards, to fully structured XML format forall National Center for Biotechnology Information (NCBI) Web data sources such as PubMed, to ASN.1 data ex-change format. As is commonwith other data sources in scienti�c domains, biological data sources may not alwayssupport a standard programming interface (an API with a set of methods), or a standard query language, e.g.,SQL, to access these sources. Typically, they support a wide range of useful tools such as keyword (text) basedsearch engines, similarity search and sequence comparison tools usch as BLAST [AGM+90] or LASSAP [GJJ97],as well as forms based interfaces and their underlying scripts.Research in architectures and tools for data integration has been extensively investigated in the database com-munity [Wie92]. Approaches that have been successfully developed include materialization of data in warehouses,middleware solutions to facilitate interoperability and data exchange, and heterogeneous distributed DBMS ormediation techniques that facilitate data integration.Wrappers [BGRV99, CHN+95, RS97, SA99, CDSS98, Lac00] provide tools to access remote data sources andto translate / transform the results into some common integrated representation. Data warehouses often usewrappers to import data from remote sources that is then materialized locally, and queries are evaluated againstthe warehoused data. Mediators and heterogeneous DBMS, on the other hand, submit queries to wrappers, andintegrate the results locally to provide answers to queries. There are advantages to both approaches, as has been



discussed in [EKL01]. A key disadvantage of the warehouse approach is the need for local administrators tomaintain the data, while a key advantage is the control that it provides over the contents of the warehoused data.Our approach is based on mediation as will be described in the next section.Several systems have been designed for domain speci�c integration of biomolecular data, providing non-materialized views of biological data sources. They include BioKleisli [DOTW97, BCD+98] and its extensionsK2 [DCB+01] and Pizzkell/Kleisli [Won00], the TINet multi-database system based on the Object Protocol Model(OPM) and its Object-Web Wrapper [EKL01, Lac00], DiscoveryLink [HKR+00], an extension for life sciences ofDataJoiner and DB2 [Cha98] merged with Garlic [CHN+95], P/FDM [KRG99, KAG00] and TAMBIS [BBB+98].We brie
y review the features of these systems and then present the challenges that remain to be addressed.BioKleisli follows a mediation approach and enables queries against integrated data sources [Won98, Won00].P/FDM provides support to access speci�c capabilities of sources such as SRS [EA93]. Both solutions are limitedin that they provide restricted access to the data sources. Queries on these sources are not optimized and typicallyfollow a pre-determined execution plan. We will show examples of how our approach provides 
exible access todata sources. TAMBIS, which uses BioKleisli, is primarily concerned with overcoming semantic heterogeneitythrough the use of ontologies. It provides an integrated view of data sources but o�ers no ad hoc interface toutilize the information retrieval tools that are available at each source. Thus, it too restricts the extent to whichsources can be exploited.DiscoveryLink [HKR+00] encapsulates the access to specialized search capabilities into user-de�ned functions.The underlying Garlic mediator makes extensive use of cost based information to optimize access to the datasources. However, semantic knowledge about sources and query capabilities are not as yet fully utilized in thequery planning phase, when sources are selected. This issue will be discussed further in a later section. The OPMmulti-database system is based on the Object Protocol Model (OPM) [CM95]. OPM and an OQL-like querylanguage are used to design object views [CKMS97] of the sources. It has a convenient architecture and APIsfor its extension to wrappers, which are CORBA servers. Tools such as BLAST may be wrapped through anOPM class called Application Speci�c Data Type (ASDT) [TKM99]. While OPM provides the ability to evaluatecomplex queries, it too does not address the issue of e�cient access to these sources.To summarize, these systems have made many inroads into the task of data integration from diverse datasources. However, there remain three signi�cant challenges that must be addressed if scientists are to be providedtransparent and e�cient access to diverse biological data sources to facilitate the task of scienti�c discovery. Weaddress these challenges in this paper.The �rst challenge is adequately capturing the diverse and often complex query capabilities of these sources, andspecifying them in a catalog representation that can be used during both query formulation and query evaluation.While previous research has addressed capabilities [BGL+99, LRO96, PV99, Vid00, VP97, YLGMU99], they havenot addressed the diverse capabilities of biological sources. The W3C Semantic Web Activity [BLCS99, BLHL01]aims to provide a metadata layer to permit people and applications to share data on the Web. Recent e�ortswithin the bioinformatics community address the use of OIL [FHvH+00] to capture alternative representations ofdata to extend biomolecular ontologies [Cri00]. Such e�orts focus on data representation of the contents of thesources. In contrast, we are interested in representing the actual (possibly complex) query capabilities of sources;the aspect of data representation is just one part of this challenge.The second challenge is that there are few tools or methodologies available to examine the contents of thesources and to extract and represent metadata about the sources. Useful metadata includes domain de�nitions;metrics such as end-to-end latencies, cardinalities and distribution of values for some domain; as well as seman-tic knowledge about the contents of sources and relationships among multiple sources. As we illustrate usingexamples, there is signi�cant overlap in content among the sources in this domain, as well as innumerable links2



between sources.Finally, there has been research on representing the query capability of sources, and using these capabilities toreformulate queries, or capability based rewriting (CBR). There also has been some work on optimization usingthese capabilities. These techniques have been implemented in mediator systems [LRO96, FLMS99, HKWY97,NGT98, ROL99, YLGMU99, VRG98, Vid00, NK01]. This research must be extended to exploit the complex anddiverse capabilities and metadata of biological data sources. Our objective is to use semantic knowledge aboutsources and query capabilities, and knowledge of query evaluation costs, to provide semantics and cost baseddecision support to select sources and query capabilities, and to generate low cost query evaluation plans (plans)in an e�cient manner. We note that DiscoveryLink [HSK+01] is the only system that provides cost based queryoptimization and we compare their approach with our work in a later section.This paper is organized as follows: Section 2 describes biological data sources, capabilities and metadata.Section 3 describes query evaluation within a mediator. We discuss speci�cation of source capabilities andmetadata, and illustrate the task of generating low cost plans using example queries. Section 4 then considersissues in query optimization. Section 5 concludes.2 Biological Data Sources, Capabilities and MetadataThere exist thousands of public data sources: there are over 110 genetics databases, and 226 relevant resourcesin molecular biology alone [Bax00], etc. Many data sources contain large amounts of data: For example, as of Jan1 2001, GenBank [BKML+00] contained 11,101,066,288 bases in 10,106,023 sequences, and its growth continuesto be exponential, doubling every 14 months [Gena]. While the number of distinct human genes appears to besmaller than expected, in the range of 30-40,000 [Con01, V+01], the distinct human proteins in the proteomeare expected to number in the millions, due to the apparent frequency of alternative splicing, RNA editing, andpost-translational modi�cation [CSC+00, Fra01, Gra01]. The discovery and annotation of interactions amongthese proteins represents a signi�cant challenge to current bioinformatics data management and integration tools.Access to multiple heterogeneous biological data sources is mandatory to the task of scienti�c discovery. Asingle query may involve 
at �les (that may be stored locally) such as GenBank [BKML+00] or SwissProt [BA99],Web resources such as GeneCards [RCCPL98, Genb], UniGene [Uni], or the references data source PubMed[Pub]. These sources are textual and provide limited query capability. Their data structure varies from looselystructured HTML format for GeneCards to fully structured XML format for all National Center for BiotechnologyInformation (NCBI) Web data sources such as PubMed, to the ASN.1 data exchange format. As is common withother data sources in scienti�c domains, biological data sources may not always support a standard API (set ofmethods), or a standard query language, e.g., SQL, to access these sources. Typically, they support a wide rangeof useful tools such as keyword (text) based search engines, similarity search and sequence comparison tools uschas BLAST [AGM+90] or LASSAP [GJJ97], and forms based interfaces and their underlying scripts.Most of the biological data sources publicly available on the Web provide browsing capabilities. For example,given a HUGO name [WJ97], a biologist can retrieve a summary of signi�cant information about a gene fromGeneCards, then click on the UniGene cluster and access relevant information from UniGene, and then click againto access GenBank. From there, one can access PubMed by clicking on the MEDLINE identi�er, and associatedreferences may be retrieved.While a link-driven federation of Web biological data sources providing browsing capabilities is very useful forscienti�c discovery, it does not provide sophisticated support to the scientist to relieve the tedium involved inquerying multiple data sources, following multiple links from each data source, and extracting and integratingthe relevant data for further investigation. We illustrate the di�erences between browsing and querying usingexamples. 3



First a source may not directly support the complete navigation capability that is implicitly captured by itscontents. For example, a MEDLINE-formatted PubMed citation provides a GenBank or SwissProt identi�er (inASCII), without always providing the hyperlinks to access the corresponding data sources. To navigate fromPubMed to GenBank (or SwissProt), a user must extract the corresponding parameters, then construct a call(in the browser), and �nally submit a query to the next source. In contrast, a mediator based data integrationsolution can provide seamless access to both the navigation capabilities directly implemented by the data provider,as well as the capabilities that require submitting calls to the remote sources. We note that the Entrez interfaceto PubMed does support an additional capability associated with the Nucleotide Link that provides access toGenBank entries. This is discussed in more detail in a later section.Second, scienti�c discovery typically requires evaluating complex queries on multiple sources [EKL01]. Discov-ering the often complex query capabilities of these multiple sources can be a daunting task. Equally di�cult isproviding e�cient access to the multiple sources. We discuss both challenges using the following example:Query 1: Return all citations of PubMed published since 1995 that mention "heart" and refer tosequences of GenBank that are annotated as "calcium channel".The task of scienti�c discovery encapsulated by this query would not be possible without knowledge of the ca-pabilities of sources. For example, PubMed and GenBank accept queries containing multiple selection predicates.This includes either PubMedIds or GenBankIds, which support database like selection, as well as keywords thatcorrespond to a more sophisticated search capability. Constraints such as date since 1995 can also be usedto �lter the results. This increases the query capability and can improve e�ciency of access. Both the keywordbrain and the constraint date since 1995 can be passed to PubMed to �lter the results. PubMed typicallyremoves duplicates when they occur in the output. However, sending a single request, even if the output containsduplicates that must be eliminated locally, may be less expensive than submitting multiple calls on the Web.While knowledge of the capabilities provides some insight into e�cient access, as discussed in this example,as the complexity of the queries increase, there are many potential combinations of accesses to evaluate a query.Each combination is a query evaluation plan or plan for the query. Each plan will have a di�erent cost. Choosingamong plans to obtain a low cost plan, or the task of optimization, can be very di�cult, and we illustrate usingthe above example.To answer Query 1, one can access PubMed and retrieve citations published since 1995 that mention "heart",and then extract all GenBank identi�ers that they contain. Next, one can retrieve the information available inGenBank for each sequence and �lter the ones that are annotated as "calcium channel".A di�erent plan would �rst access GenBank and retrieve all sequences that are annotated as "calcium channel",and then extract the MedLine identi�ers for these. Next one can retrieve all MedLine citations from PubMedand �lter the ones published since 1995 that mention "heart".The two possible plans to evaluate the same query are far from being identical. We �rst consider evaluationcosts for executing the plans. Each access to a data source retrieves many documents that need to be parsed.Each object that is returned may generate further accesses to (other) sources. Web accesses are costly and shouldbe as limited as possible. To limit the number of calls, there is a need to examine plans that are selective asearly as possible. For example, the call to PubMed in the �rst plan retrieves 81,840 citations, whereas the callto GenBank in the second plan retrieves 1,616 sequences. If each of the retrieved documents (from PubMed orGenBank) generated an additional access to the second source, then clearly the second plan has the potential tobe much less expensive when compared to the �rst plan.Information about source capabilities and domain speci�c metadata is needed to identify the di�ering evaluationcosts of alternate plans. Both PubMed and GenBank are very large databases. GenBank contains over 10 million4



sequences [Gena]. PubMed accesses citations that include the over 11 million article references registered inMedLine. Many GenBank entries are unpublished or are registered as US patents, and therefore are not associatedwith PubMed entries. On the other hand, most citations retrieved from PubMed do not contain GenBank entries.While determining the evaluation costs of plans is important, there is an even more critical issue that mustbe explored. This is determining if the alternate plans indeed produce identical answers to the query, and aresemantically equivalent as de�ned by the standards of some community, or if the alternate plans produce non-equivalent answers. We note that knowledge to make this determination is non trivial and requires extensivedomain expertise.To explain further, while our approach to specifying query capabilities and metadata is capable of identifyingalternate sources and capabilities, there is an additional signi�cant task to address: semantic data integration.First, similar or related informationmay be expressed using di�erent formats, representation models or equivalentvocabulary. Further, while two query capabilities may be similar, they are not always semantically equivalent;informally, they may not provide identical answers. To explain, there are explicit occurrences of GenBank entriesembedded within the MEDLINE formatted description of a citation entry in PubMed. In addition, the NucleotideLinks display option also provides links to GenBank entries. From the viewpoint of query processing capabilities,we cannot distinguish between these two capabilities, since they both accept a PubMed citation as input andreturn GenBank identi�ers as output. However, the semantics associated with these two evaluation plans iscompletely di�erent. For example, the citation identi�ed in PubMed as 8552191 refers explicitly to 4 GenBankidenti�ers in its MEDLINE representation, whereas the Nucleotide Link returns 8 GenBank identi�ers. (Note:The queries were executed in August 2001.)The two alternate plans that were described to evaluate Query 1 may also produce answers which are notidentical. Our approach will provide the ability to express the metadata to capture important semantic knowledgeabout data sources, and to use this knowledge to identify plans that are more e�cient as well as semanticallyequivalent.In the next section, we discuss the representation of query capability and metadata. We then use queriesto illustrate alternate plans with di�erent costs. Finally, we consider some issues in optimization that are ofimportance for biological data sources.3 Mediator Query EvaluationFigure 1 presents the components of a wrapper mediator architecture tailored to access heterogeneousinformation sources (WebSources) across wide area networks. Research in mediators [Wie92] is reported in[BGL+99, LRO96, FLMS99, HKWY97, NGT98, ROL99, TRV98, YLGMU99, VRG98, Vid00]. The mediator hasthe task of decomposing a mediator query into subqueries that are executed on individual sources. The medi-ator identi�es relevant sources that can answer each subquery. The mediator also provides query optimizationand evaluation functionalities for the mediator query. Query planning and optimization techniques tailored tooptimize mediator queries on biological sources will be discussed in the next section.The mediator references a Catalog that has metadata about source capabilities and source contents. Usefulmetadata includes domain de�nitions; metrics such as end-to-end latencies, cardinalities and distribution of valuesfor some domain; and semantic knowledge about the contents of sources and relationships amongmultiple sources.A Wrapper Broker interoperates between the mediator and wrappers. Wrappers [BGRV99, CHN+95, RS97,SA99, CDSS98, Lac00] handle query execution of wrapper subqueries on individual sources. A source is accessiblevia the http protocol, and stores data in database or non database servers. A Web-based interface provides alimited query capability, and returns answers in XML or HTML or ASCII. Results of wrapper subqueries that arereturned by individual wrappers are further processed by the Evaluation Engine of the mediator. If the wrapper5
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 Wrapper BrokerFigure 1: Wrapper Mediator Architecturereturns ASCII or HTML, it is �rst converted to XML. Next, the XML is processed by XML queries [CFR+00]that can express all expected data transformations (reorganization) and manipulations as in [Lac01].Next, we describe how source capabilities may be formally represented by the mediator. We then illustrateplans for some sample queries.3.1 Source CapabilitiesWe refer those readers who are not familiar with the biological data sources that have been mentioned to Figure2 that identi�es some of the commonly accessed biological data sources. The purpose of the �gure is to simplyillustrate the navigation capabilities that are provided. We note that it is not meant to represent accurate detailsof speci�c sources and their capabilities. In the rest of this section, we discuss how speci�c source capabilitiescan be accurately described.Each of the data sources is represented by a mediator schema. For simplicity, we assume the use of the relationaldata model for the mediator schema. We also assume that each source, e.g. PubMed, implements a single relationPubMed. It is the task of the PubMed wrapper to provide an interface which accepts queries on the PubMedrelation; process these queries against the actual contents of the PubMed source; and return appropriate results.We note that the sources typically may not support the mediator schema, e.g., the PubMed source may notactually implement a relation PubMed. We further note that most sources are semi-structured; their contentswould typically be represented by multiple object types (classes); and a complex result (object) from one or moreof these classes could be encapsulated within the answers.We describe the query capability of a source as an input-output relationship ior of the form ior: Input !Output or ior: Input !! Output; the ior is further described in Figures 3, 4 and 5.Most sources do not support arbitrary select-project-join (SPJ) queries over their content, e.g., PubMed will6
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Figure 2: Web data sources capabilitiesnot support a scan over relation PubMed that will return all the citation records that it maintains. Thus, anior speci�es the actual query capability implemented by the source. Typically, the Input is a set of bindings forinput attributes. The Output are the elements that are returned in the answer. The relationship between Inputand Output could be represented by a functional or a multi-valued dependency.The values for Input may be singular or set valued; they also may be required or optional (see Figure 4). Thetypes and occurrences of Output are in Figure 5. To explain, the output could be (scalar) values or hyperlinks.A global identi�er is a unique identi�er (key) maintained by a particular source, e.g., MedLineId. The values ofthe output could also be singular or set valued. In the case that there is a multi-valued dependency betweenthe Input and the Output, there may be duplicates occurring in the output. fDupjNoDupg indicates if theseduplicates are eliminated. Most of the sources are semi-structured; missing values for attributes in the outputmay not be interpreted as NULL (as is done in the relational model). We distinguish the relational model fromthe semi-structured model with All and All �, respectively.Figure 6 illustrates some of the capabilities implemented by the sources that we have mentioned. For example,capability ior cit1 of source PubMed accepts a set of values of input bindings of PubMedId. This capability(ior cit1) also implements a functional dependency. For each value of PubMedId that is input, only one resultis returned, i.e., the output is functionally dependent on each input value of PubMedId. In contrast, ior cit5implements a multi-valued dependency; this capability represents a (boolean) keyword search capability.3.2 Examples of Queries and PlansWe use examples of queries and query evaluation plans or plans to illustrate how di�erent plans may changethe order of access to sources, or may access completely di�erent sources to answer a query.7



3.2.1 Exploring Alternate Order of Accessing SourcesQuery 2: Return accession numbers and de�nitions of GenBank EST sequences that are similar(60% Identical over 50AA) to calcium channel sequences in SwissProt that have references publishedsince 1995 and mention brain. [EKL01]We consider two plans that access the same sources. However, the order of accessing the sources is di�erent, asare the queries that are submitted to the sources. One possible plan for this query is as follows: First access PubMedand retrieve references published since 1995 that mention "brain". Then extract from all these references theSwissProtId and obtain the corresponding sequences from SwissProt whose function is calcium channel. Finally,execute a BLAST search using a wrapped BLAST application to retrieve similar sequences from GenBank (gbestsequences).An alternative approach accesses SwissProt and retrieves sequences whose function is "calcium channel". Inparallel, one can retrieve citations from PubMed that mention "brain" and are published since 1995 and extractsequences from them. One can then determine which sequences are in common. Finally, one can execute aBLAST search to retrieve similar sequences from GenBank (gbest sequences).A graphical representation of both plans is in Figures 7 and 8.We also represent the �rst plan using the following algebraic notation similar to the relational algebra.Plan 1 for Query 2T1  �SwissProtId;��� (EXT�(brain;1995��)(PubMed))T2  �Sequence;��� (T1 Dep 1SwissProtId EXT �(Ca Channel) (SwissProt))T3  T2 Dep 1Sequence EXT�(60%;50AA) (BLAST)Result  �Accession;Definition (T3)To explain this plan, the expression EXT�( � � �) (PubMed) represents an external scan (plus optional selection)that is submitted to the wrapper to access data from the relations that are maintained by the source; in thiscase it is relation Pubmed. The actual query that is submitted to the source is identi�ed by the ior which is aparameter of EXT�. The ior is not identi�ed in the plan; instead for simplicity we indicate the bindings that arepassed to each EXT�. Thus, the �rst source that is accessed is PubMed (using ior ior cit5), and the keywordbrain and date since 1995 are pushed to that source. We use the operator � to identify attributes that mustbe extracted or projected from the results of the EXT� operator. These attributes are either required in the �nalanswer or it is used at intermediate nodes. The Dep 1 is a dependent join operator. It is used when output fromaccessing one source is passed as an input binding to another source. For example, to explain the expression(T1 Dep 1SwissProtId EXT�(CaChannel) (SwissProt)),the values of SwissProtId are obtained from evaluating the expression T1; they are then passed via the Dep 1operator to the scan operator EXT� that is evaluated on SwissProt. In addition, the keyword Ca Channel is alsopassed to the source SwissProt via the scan operator EXT�.An alternate plan for this query is as follows:Plan 2 for Query 2T1  �Sequence;PubMedId;SwissProtId (EXT �(CaChannel) (SwissProt) )T2  �SwissProtId ( EXT�(brain;1995��) (PubMed) )T3  T1 1SwissProtId T2 where 1 is over SwissProtIdT4  T3 Dep 1SwissProtId EXT�(60%;50AA) (BLAST)In the second plan, both PubMed and SwissProt are accessed in parallel. We then perform the 1 operatorover the values of SwissProtId to determined which sequences are in common. Finally, we execute BLAST search8



to determine the similar EST sequences.Verifying if the two plans are semantically equivalent, i.e., the answers that are returned from the two plansare identical, is non trivial. Metadata on the particular query capability, encapsulated by the speci�c ior usedto access each source is relevant. In addition, semantic knowledge about the links between sources, and aboutcombinations of iors may also be required. The task is somewhat simpli�ed in this query since both plans accessthe same sources, but in a di�erent order.3.2.2 Accessing Multiple Alternate SourcesQuery 3: Return the UniGene cluster(s) of all SwissProt proteins with keyword apoptosis.There are at least two potential plans for the query. The two plans access di�erent sources. In the �rst plan, onecan �rst access the SwissProt source and select all proteins that are annotated with the keyword apoptosis, andproject EMBL/GenBank cross references, or the GenBankId. Next, one can access UniGene with the GenBankIdand retrieve the corresponding UniGene cluster(s). The second plan will also access SwissProt. However, itwill project HUGO names from this source. Next, it will retrieve the corresponding UniGene cluster(s) from theGeneCards source.Plan 1 for Query 3Alt T3;1;1  �GenBankId ( EXT�(apoptosis) (SwissProt) )Alt T3;1;2  �UniGeneCl ( Alt T3;1;1 Dep 1GenBankId EXT � (UniGene) )Plan 2 for Query 3Alt T3;2;1  �HUGO ( EXT�(apoptosis) (SwissProt) )Alt T3;2;2  �UniGeneCl ( Alt T3;2;2 Dep 1HUGO EXT � (GeneCards) )We note that determining if these two plans are semantically equivalent in this example is more complex sincethe two plans access di�erent sources and use signi�cantly di�erent capabilities. Semantic knowledge about thecontents of the sources as well as the links between the sources will be required.4 Optimization: Choosing Low Cost PlansWe �rst describe the task of optimization with databases. Next, we discuss the challenges of optimization withremote biological data sources. We then describe an approach that we have developed for two phase optimization.In the �rst pre-optimization phase, sources and capabilities are selected. In the second phase, an optimal planis generated a la relational optimization. Finally, we discuss a decision support model for the pre-optimizationphase which considers both semantics and costs. We compare our approach with related approaches, in particularthe cost-based optimization of [HSK+01].4.1 Overview of OptimizationConsider a typical database query on a set of relations (or collections of objects). We can deconstruct thisquery as a tree of (algebraic) operators to be executed on the relations or collections of objects. Examples ofrelational operators are a scan or a selection operator. A query execution plan or plan must select an orderingof these operators. It must also select an implementation for each of these operators, i.e., a piece of algorithmiccode to implement each of these operators. For example, the relational join operator may be implemented as ahash join or a nested loop join. A plan is then evaluated by a database evaluation engine to produce answers fora query.Query optimization [Ull89, Ull97] is the science and the art of applying equivalence rules to rewrite the treeof operators and produce an optimal plan. There are well known syntactic, logical, and semantic equivalencerules that are used during optimization [Ull89]. The objective of the task of query optimization is producing an9



optimal or a good low cost query execution plan for a query. In order to obtain the cost of a plan, one must havea Catalog of accurate metrics, e.g., the cardinality or the number of result tuples in the output of each operator,the cost of accessing a source and obtaining results from that source, etc. One must also have a cost formulathat can be used to calculate the processing cost for each implementation of each operator. The overall cost istypically de�ned as the total time needed to evaluate the query and obtain all of the answers.It has been shown that the complexity of producing an optimal low cost plan for a relational query is NP-complete [Mor88, Ull89], and there is much work on developing reasonable heuristics to solve this problem.Both dynamic programming and randomized optimization based on simulated annealing provide good solutions[IK90, SAC+79, SMK97, UFA98].Next, we consider the special challenges of query evaluation on remote biological data sources. There hasbeen signi�cant research on query optimization for sources with multiple diverse capabilities in recent years. Thisextension to query optimization has been termed capability based rewriting or CBR, to re
ect that the rewritingmust respect the capabilities or the functionality supported by the sources. [FLM98, FLMS99, HKWY97, LRO96,TRV98, Ull97, VP97, Vid00, Wie92, YLGMU99]. It has been shown that the size of the search space of queryexecution plans increases, with multiple sources, each with di�erent and diverse capabilities. The size of thesearch space also increases due to the possible overlap of content and capabilities among the sources [Vid00].Finally, developing costs models and cost formulas for remote autonomous sources accessible on the dynamicInternet can be very di�cult and there has been some e�ort in recent years to develop cost models [HKWY97,GRZZ00, ZRZB01, NGT98, NK01].4.2 Two-Phase OptimizationWe have developed an approach for e�cient two-phased query optimization with limited capability sources[Vid00]. This approach can be brie
y summarized as follows: In the �rst pre-optimization phase, we selectsources and capabilities prior to the more expensive optimization step. A cost based decision support model isused in the pre-optimization phase to choose good low cost sources and capabilities that will lead to good low costplans in the optimization phase. In the second phase, we extend a traditional relational optimizer to generatelow cost plans that respect the choice of the sources and capabilities of the pre-optimization phase.To develop a cost based decision support model for pre-optimization, we must understand the factors thatimpact the e�ciency of execution of complex queries posed by the genome researchers. They include the sizeof each relation involved in the query or the cardinality of the relation; the number of results that are returnedor the selectivity of the query; the number of queries that are submitted to the sources; the order of accessingsources; etc.As ofMay 4th, 2001, SwissProt contains 95,674 entries whereas PubMed contains more than 11 million citations;these are the values of cardinality for the corresponding relations. Again, we note that these relations are notactually implemented in the source and it is the responsibility of the wrapper to implement the capabilities onthese relations. A query submitted to PubMed (as used in the �rst plan to evaluate Query 2) retrieves 727,545references that mention \brain". Alternately, the query retrieves 206,317 references that mention "brain" andwere published since 1995. This is the selectivity of the query. We note that the query is actually identi�ed by aspeci�c capability and speci�c value(s) of binding for input attributes.We now consider the impact of changing the order of accessing sources. The �rst plan for Query 2 accessesPubMed, extracts values for SwissProtId, and then passes these values of SwissProtId to the query on SwissProt,via the Dep 1 operator. Passing these values of SwissProtId has the potential to constrain the query and couldreduce the number of results returned from SwissProt. The second plan submits queries to both PubMedand SwissProt in parallel. It does not pass values of SwissProtId to SwissProt; potentially more results may bereturned from SwissProt. However, there is a single query submitted to SwissProt in the second plan. Also both10



sources are accessed in parallel. We further note that executing a BLAST search can take up to several hoursand generally should be performed as infrequently as possible. These factors, as well as additional factors thatwe will discuss next, have an impact on the cost of each plan. Further, we need to determine if alternate plansprovide identical answers.4.3 Cost Based Decision Support for Pre-OptimizationWe summarize the factors that impact the decision support model that is used during pre-optimization. Sev-eral of these factors are tailored to exploit the complex and diverse capability and metadata characterizing thebiological data sources.For each combination of sources and capabilities that are relevant to a query, the decision model will use thefollowing factors to evaluate the choice:� Using metadata on cardinality, distribution of distinct values in selected domains, statistics associated withparticular values of bindings for input attributes, etc. we estimate the selectivity of each capability. Thedecision model will favor capabilities that are more selective and that minimize the size of the result.� The decision model must consider typical delays (end-to-end response time) experienced at each source.Sources that are located in Europe and Israel, may experience signi�cant delay, as well as be sensitive tothe time of the day and the day of the week [GRZZ00].� These two factors are not independent. For example, a more expensive call (greater delay) may be moreselective. The decision model may need to consider the trade-o� of these two factors in making a choice.� The model will explore di�erent orders for accessing multiple sources. Based on order or sequences ofaccess and the particular capabilities, we can estimate the number of queries (wrapper calls) that will besubmitted to source. In some cases, we can exploit parallel access to sources as we did in the second plan forQuery 2. The decision model will choose a particular order for accessing sources that reduces the numberof queries and maximizes the advantage of parallel access.We now consider the semantic knowledge that must be exploited to determine if plans are semantically equiv-alent and produce identical answers. When the sources and query capabilities that are accessed are identical,and when the decision model only considers di�erent orders for accessing the sources, then verifying that theplans are semantically equivalent is straightforward. When the sources that are accessed are identical, but thequery capabilities that are utilized are di�erent, then semantic knowledge about the iors as well as about links(explicit or implicit) between these sources must be examined to make a decision. Finally, when di�erent sourcesare accessed, then semantic knowledge about the contents of the sources must also be considered, together withknowledge about the iors and links between sources.Once a set of (possibly) alternate sources and capabilities are chosen, which may or may not be equivalent,the combinations of sources and capabilities will be ranked by the decision model. Then, the best combinationor the top N combinations will be used to drive an optimizer to generate a low cost plan.We now brie
y compare our approach with related work in optimization. The K2 optimizer [DCB+01] isan extensible rule-based optimizer. It provides algebraic simpli�cation of complex queries, and eliminates theintermediate collection of results which could be expensive. It also simpli�es and rewrites queries to groupoperations performed on the same data source.DiscoveryLink [HSK+01, ROL99] performs extensive syntactic and semantic simpli�cation and cost-basedoptimization. For example, they identify good implementations for expensive operators, e.g., sort. They also use11



cost based heuristics to �nd optimal join orderings. As in our approach, they use both query capabilities andmetadata about evaluation costs to perform optimization.A key di�erence from our approach is that we explicitly represent sources, query capabilities and metadatawithin the mediator. The Garlic mediator[ROL99] which is used by DiscoveryLink relies on the wrapper andits cost model to determine the query capability to be used to access a wrapped source. One consequence isthat the wrapper makes a decision without knowledge of the complete query and the other sources and querycapabilities that may also be used in the query. Thus, the Garlic mediator may not consider some potentialcapabilities and plans. Our approach allow us to explore alternate combinations of sources and capabilities, e.g.,the alternate sources GenBank and GeneCards, for Query 3. The reliance of the Garlic mediator on semanticknowledge captured in the wrappers may not support this 
exibility. A more important drawback is that sincethe Garlic mediator does not explicitly capture semantic knowledge of sources and capabilities, it will be moredi�cult to extend their approach to determine if plans are semantically equivalent. This is critical in the domainof biological data sources, where there are multiple alternate sources and complex and diverse query capabilities.5 ConclusionIn this paper, we consider the following challenges for evaluating complex queries on biological data sources:capturing the diverse query capabilities of sources; extracting and representing metadata on the contents ofsources and relationships among sources; optimization to generate low cost query evaluation plans in an e�cientmanner and determining if alternate plans were semantically equivalent. In future work, we will develop anextensive Catalog of source capabilities and metadata and verify the e�ectiveness of our optimizer. This researchsigni�cantly extends on current work on metadata representation on the Web as currently carried out by theW3C Semantic Web Activity [BLCS99, BLHL01] and more speci�c e�orts to use the OIL [FHvH+00] to capturealternative representations of data to extend biomolecular ontologies as proposed in [Cri00]. Our Catalog capturesboth multiple alternate sources as well as their capabilities. This knowledge will be used by our mediator to exploremultiple alternate evaluation plans to choose the best (least cost) query evaluation plan and to determine if plansare semantically equivalent. None of the current e�orts to optimize query execution against Web sources addressesthe variety of source capabilities of our catalog or addresses the issue of semantic equivalence.Acknowledgments: We thank Susan Chacko of the National Institutes of Health for her feedback.References[AGM+90] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic Local Alignment Search Tool. Journal ofMolecular Biology, 215(3):403{10, October 1990. http://www.ncbi.nlm.nih.gov/BLAST.[BA99] A. Bairoch and R. Apweiler. The SWISS-PROT protein sequence databank and its supplement TrEMBL.Nucleic Acids Res, 1(27):49{54, January 1999. http://www.expasy.ch/sprot.[Bax00] A. Baxevanis. The molecular biology database collection. Nucleic Acids Research, 28(1):1{7, 2000.http://nar.oupjournals.org/cgi/content/ full/27/1/1.[BBB+98] P. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton, and R. Stevens. TAMBIS: Transparent Access toMultiple Bioinformatics Information Sources. An Overview. In Sixth International Conference on IntelligentSystems for Molecular Biology (ISBM98), 1998.[BCD+98] P. Buneman, J. Crabtree, S. Davidson, V. Tannen, and L. Wong. BioKleisli. BioInformatics, 1998.http://www.cbil.upenn.edu/K2/. 12
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