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Gene Classi�ation using Expression Pro�les:A Feasibility Study�Mihihiro Kuramohi and George KarypisDepartment of Computer Siene/Army HPC Researh CenterUniversity of Minnesota4-192 EE/CS Building, 200 Union St. SEMinneapolis, MN 55455Fasimile: (612)626-1596fkuram, karypisg�s.umn.eduJuly 23, 2001AbstratAs various genome sequening projets have already been ompleted or are near ompletion, genomeresearhers are shifting their fous from strutural genomis to funtional genomis. Funtional genomisrepresents the next phase, that expands the biologial investigation to studying the funtionality of genesof a single organism as well as studying and orrelating the funtionality of genes aross many di�erentorganisms. Reently developed methods for monitoring genome-wide mRNA expression hanges hold thepromise of allowing us to inexpensively gain insights into the funtion of unknown genes. In this paperwe fous on evaluating the feasibility of using supervised mahine learning methods for determining thefuntion of genes based solely on their expression pro�les. We experimentally evaluate the performaneof traditional lassi�ation algorithms suh as support vetor mahines and k-nearest neighbors on theyeast genome, and present new approahes for lassi�ation that improve the overall reall with moderateredutions in preision. Our experiments show that the auraies ahieved for di�erent lasses variesdramatially. In analyzing these results we show that the ahieved auray is highly dependent onwhether or not the genes of that lass were signi�antly ative during the various experimental onditions,suggesting that gene expression pro�les an beome a viable alternative to sequene similarity searhesprovided that the genes are observed under a wide range of experimental onditions.1 IntrodutionAs various genome sequening projets have been reently ompleted or are near ompletion (e.g., mirobial,human, Arabidopsis), genome researhers are shifting their fous from strutural genomis to funtionalgenomis [15℄. Strutural genomis represents an initial phase of genome analysis, whose goal is to onstruthigh resolution geneti and physial maps as well as omplete sequene information of the hromosoms.Funtional genomis represents the next phase, that expands the biologial investigation to studying thefuntionality of genes of a single organism as well as studying and orrelating the funtionality of genesaross many di�erent organisms.Traditionally, researhers have been using sequene data (either nuleotide sequene in the ase of genes,or amino aid sequenes in the ase of proteins) to determine the funtion of genes and/or the orrespondingproteins. This approah relies on the fat that a set of genes that have suÆiently similar sequenes also�This work was supported by NSF CCR-9972519, EIA-9986042, ACI-9982274, by Army Researh OÆe ontratDA/DAAG55-98-1-0441, by the DOE ASCI program, and by Army High Performane Computing Researh Center ontratnumber DAAH04-95-C-0008. Aess to omputing failities was provided by the Minnesota Superomputing Institute.1



perform the same funtion. The explosive growth of the amount of sequene information available in publidatabases has made suh an approah partiularly aurate and an indispensable tool towards funtionalgenomis. Despite the fat that funtional genomi tehniques based on sequene data an provide a wealthof information about the funtionality of entire genomes; they also have two inherent limitations. First, insome ases the funtional similarity annot be inferred by sequene information alone as sequene omparisonsan be uninformative and even misleading. Seond, even though there are many projets for sequening entiregenomes of di�erent speies, there will be a lot of speies for whih we don't and will never have ompletesequene information (at least in the next several deades). This is a funtion of both the ost assoiatedwith sequening as well as the fat that there are a lot of speies.Reently developed methods for monitoring genome-wide mRNA expression hanges suh as oligonu-leotide hips [12℄, SAGE [33℄, and DNA miroarrays [30℄, are espeially powerful as they allow us toquikly and inexpensively observe the hanges at the di�erential expression levels of the entire omplement ofthe genome under many di�erent indued onditions. Knowing when and under what onditions a gene or aset of genes is expressed often provides strong lues as to their biologial role and funtion. Already, numeroussuh experiments involving relatively small genomes are performed at various sites worldwide. In the omingyear the number of this type of experiments involving miroarrays is expeted to inrease signi�antly.One way of using the data produed by miroarray experiments to determine the funtion of unknowngenes is to use lustering algorithms to group together genes that have similar expression pro�les. Based onthe distribution of known and unknown genes in suh lusters, then some information about the funtionof previously unknown genes an be inferred. In fat a large number of studies have already taken plae inwhih putative funtions of unknown genes have been identi�ed in this way. However, lustering being anunsupervised learning method is not ideally suited for this partiular task as it has no mehanism by whihto perform feature seletion. A better approah of inferring the funtion of unknown genes based on theirexpression pro�les is to use mahine learning tehniques based on supervised learning [24℄.This has been reently reognized by a number of researhers and a few attempts have been made touse suh algorithms. In partiular, Golub et al. [14℄, by looking at expression pro�les of a subset of humangenes, a partiular type of leukemia an be distinguished from another type of the disease. Brown et al. [2, 3℄used several lassi�ation algorithms to predit if a gene has a partiular funtion based on expressionpro�les and obtain enouraging results. Hvidsten et al. [16℄ applied rule-based indution to predit humangene funtionality based on the gene ontology database [6℄ from expression pro�les of the �broblast serumresponse [17℄ and showed high predition auray for 16 gene funtional lasses. Nevertheless, most of thesestudies were limited as they foused on only a small set of spei� funtions and/or did not provide anyinsights on the overall feasibility of this type of approah for determining the funtion of the genes.The fous of this paper is to perform a study on the suitability of supervised learning tehniques fordetermining the funtion of genes using solely gene expression data and attempts to identify the requirementsunder whih suh an approah will lead to aurate preditions. Our work fouses on the yeast genome anduses publily available miroarray datasets [11, 10℄ and overs a large number of gene funtions de�nedin the Munih Information Centre for Protein Sequenes (MIPS) database [21, 20, 22, 23℄. We present adetailed experimental study using two popular lassi�ation algorithms, support vetor mahines and k-nearest neighbors for prediting the funtions of the genes, and present �xed-size predition algorithms thatallow us to trade reall for preision. Our experimental results show that the auray ahieved by theproposed approahes varies widely depending on the funtion that we try to predit. For ertain lasses wean ahieve high auraies and for some lasses the auraies are quite poor. Our analysis shows that theauray ahieved for a partiular lass is highly dependent on whether or not the genes of that lass weresigni�antly ative during the various experimental onditions. This suggests that gene expression pro�lesan beome a viable alternative to sequene similarity searhes provided that the genes are observed undera wide range of experimental onditions that exerise the various ellular funtions.The rest of this paper is organized as follows. Setion 2 desribes the soure and the struture of twodatasets we use in our study, expression pro�les and gene funtional lass assignment. Setion 3 explainsthe detail of binary lassi�ation algorithms, support vetor mahines and the k-nearest neighbors. Wewill also propose two di�erent types of �xed-size predition algorithms. The results and the evaluation ofthe experiments are shown in Setion 4 and we disuss the relationship between those predition aurayresults and statistial measure of expression pro�les in Setion 5. Finally, Setion 6 provides some onluding2



remarks.2 Datasets DesriptionAs disussed in the introdution our goal is to develop algorithms for determining the funtion of the yeastgenes using supervised learning methods that are based entirely on gene expression data. In order to ahievethat we need to have aess to two key piees of information: (i) the atual expression pro�les, and (ii) thedi�erent funtional lasses that the various genes belong to. These are desribed in the rest of this setion.2.1 Expression Pro�lesIn our study we used the publily available expression pro�les from Brown's group at Stanford University [10,11℄. The soure of these pro�les were 8 di�erent miroarray experiments under di�erent onditions. They anbe ategorized into the following 4 types, (i) the mitoti ell division yle, (ii) sporulation, (iii) temperatureand reduing shoks, (iv) gene expression in the the budding yeast during the diauxi shift. These experimentsresulted in a total of 79 measurements, however, not all genes have the entire set of the 79 measurementsbeause eah experiment was performed on a di�erent subset of genes. We treat those missing values as zero.The 79 measures are base 2 logarithms of ratios of intensities sanned from two separate uoresene dyeimages, whih were obtained after hybridization. Even though the whole yeast genome ontains 6275 genes,the arrays used in the above experiments ontained only 2467 genes. Out of expression pro�les for those2467 genes, we used 2462 pro�les by disarding pro�les for genes that do not appear in the MIPS database.Setion 2.2 desribes the database in detail.2.2 Gene Funtional Class AssignmentDetermining the funtional lass of the di�erent genes is very muh an ongoing proess and to a large extentone of the key steps in understanding the genomes of the various speies. Fortunately, in the ase of theyeast genome, there exist extensive annotations for a large fration of the genes. For our study we used thefuntional annotations that are available in the MIPS database [21, 20, 22, 23℄. As of the time of this writing,the MIPS database de�nes a total of 249 gene funtion lasses, organized in a tree struture.Based on the amount of information that is known for eah gene, the MIPS database assigns it to oneor more nodes of the tree of funtion lasses. Genes for whih detailed funtional information is knowntend to be assigned towards the leaves of the tree (i.e., more spei� lasses), whereas genes for whih theinformation is more limited tend to be assigned at the higher-level nodes of the tree, (i.e., more abstratlasses). Out of the total number of 6275 genes of the yeast genome, MIPS provides at least one annotationfor 3902 genes. For example, a gene YBR069C is assigned a funtion named amino-aid transport. Beauseamino-aid transport is a sub-funtion of amino-aid metabolism whih is also a sub-funtion of the top-levelfuntion METABOLISM , YBR069C has all those funtions, famino-aid transport, amino-aid metabolism,METABOLISMg, i.e., a funtion at a node and all the funtions of its path to the top-level node. A genealso may have funtions assigned from multiple branhes. For the ase of YBR069C, it has funtions fromthe top level ategory METABOLISM and its subategories as well as ones from other top level lassesTRANSPORT FACILITATION , CELLULAR TRANSPORT AND TRANSPORTMECHANISMS and CELLULARORGANIZATION and their subategories. As a result of this funtional lass assignment, eah gene has 3.4funtions assigned on the average. All the 2462 genes in the expression pro�le dataset desribed in Setion 2.1do have at least one funtional annotation. The distribution of the number of lasses at the di�erent levelsof the tree is shown in Table 1.Figure 1(a) shows the size of the di�erent gene funtions in the MIPS lass assignment. By \size", wemean the number of genes assigned to the orresponding funtion. Most of the funtions are small in theirsize, whih makes funtionality predition diÆult. For this reason, we fous only on the 50 largest funtionallasses whose size distribution is shown in Figure 1(b). The name of those funtion ategories are shown inTable 2. Parenthesized numbers in eah funtion lass show the number of genes assigned to the ategory inthe pro�le dataset, and indentation orresponds to the depth of eah funtion ategory. On the average, agene has 4.6 gene funtions. 3



Table 1: Number of de�ned funtion ategories at eah level in the tree strutureLevel Funtions1 162 1073 854 395 2
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(b) The 50 largest funtionsFigure 1: Distribution of the size of gene funtions3 MethodsThe goal of supervised learning methods, also known as lassi�ation methods, is to build a set of models thatan orretly predit the lass of the di�erent objets. The input to these methods is a set of objets (trainingset), the lasses that these objets belong to (dependent variable), and a set of variables desribing di�erentharateristis of the objets (independent variables). One suh a preditive model is built, then it an beused to predit the lass of the objets for whih lass information is not known a priori. For the problemof lassifying genes based on their expression pro�les, the independent variables are the 79 gene expressionlevels obtained during the eight di�erent experiments, and the dependent variable is the funtion of the gene.The key advantages of supervised learning methods over unsupervised methods suh as lustering, is that byhaving an expliit knowledge of the lasses the di�erent objets belong to, these algorithms an perform ane�etive feature seletion (e.g., ignoring some of the independent variables) if that leads to better preditionauray.Over the years a variety of di�erent lassi�ation algorithms have been developed by the mahine learningommunity. Examples of suh algorithms are deision tree based [1, 26, 25℄, rule-based [4, 5℄, probabilisti [19℄,neural networks [8, 34℄, geneti [13℄, instane-based [9, 35℄, and support vetor mahines [31, 32℄. Dependingon the harateristis of the data sets being lassi�ed ertain algorithms tend to perform better than others.In reent years, algorithms based on the support vetor mahines and the k-nearest neighbors have beenshown to produe reasonably good results for problems in whih the independent variables are ontinuousand homogeneous (e.g., they measure a similar quantity). For this reason, our study uses primarily thesetwo lassi�ation algorithms. 4



Table 2: The 50 largest funtions in the expression pro�le dataset1. METABOLISM (1061)(a) amino-aidmetabolism (204)i. amino-aid biosynthesis (118)(b) nuleotide metabolism (144)() C-ompound and arbohydrate metabolism (414)i. C-ompound and arbohydrate utilization (261)ii. regulation of C-ompound and arbohydrate utiliza-tion (120)(d) lipid, fatty-aid and isoprenoid metabolism (213)i. lipid, fatty-aid and isoprenoid biosynthesis (118)2. ENERGY (247)3. CELL GROWTH, CELL DIVISION AND DNA SYNTHESIS (832)(a) budding, ell polarity and �lament formation (172)(b) pheromone response, mating-type determination, sex-spei� proteins (161)() DNA synthesis and repliation (91)(d) reombination and DNA repair (99)(e) ell yle ontrol and mitosis (347)4. TRANSCRIPTION (787)(a) rRNA transription (106)(b) tRNA transription (83)() mRNA transription (575)i. mRNA synthesis (422)A. transriptional ontrol (333)ii. mRNA proessing (spliing) (106)5. PROTEIN SYNTHESIS (351)(a) ribosomal proteins (208)

6. PROTEIN DESTINATION (579)(a) protein targeting, sorting and transloation (139)(b) protein modi�ation (187)() assembly of protein omplexes (93)(d) proteolysis (154)i. ytoplasmi and nulear degradation (98)7. TRANSPORT FACILITATION (310)8. CELLULAR TRANSPORT AND TRANSPORTMECHANISMS(495)(a) vesiular transport (Golgi network, et.) (125)(b) ellular import (101)9. CELLULAR BIOGENESIS (205)(a) biogenesis of ell wall (ell envelope) (107)10. CELL RESCUE, DEFENSE, CELL DEATH AND AGEING (363)(a) stress response (170)(b) DNA repair (88)11. IONIC HOMEOSTASIS (123)(a) homeostasis of ations (113)12. CELLULAR ORGANIZATION (2254)(a) organization of plasma membrane (144)(b) organization of ytoplasm (556)() organization of ytoskeleton (106)(d) organization of endoplasmati retiulum (155)(e) organization of Golgi (79)(f) nulear organization (764)(g) mitohondrial organization (364)Support Vetor Mahines Support vetor mahines (SVM) is a relatively new learning algorithm pro-posed by Vapnik [31, 32℄. This algorithm is introdued to solve two-lass pattern reognition problems usingthe Strutural Risk Minimization priniple [31, 7℄. Given a training set in a vetor spae, this method �ndsthe best deision hyperplane that separates two lasses. The quality of a deision hyperplane is determinedby the distane (referred as margin) between two hyperplanes that are parallel to the deision hyperplaneand touh the losest data points of eah lass. The best deision hyperplane is the one with the maximummargin. By de�ning the hyperplane in this fashion, SVM is able to generalize to unseen instanes quite ef-fetively. The SVM problem an be solved using quadrati programming tehniques [31, 7℄. SVM extends itsappliability on the linearly non-separable data sets by either using soft margin hyperplanes, or by mappingthe original data vetors into a higher dimensional spae in whih the data points are linearly separable.The mapping to higher dimensional spaes is done using appropriate kernel funtions, resulting in eÆientalgorithms. A new test objet is lassi�ed by looking on whih side of the separating hyperplane it falls andhow far away it is from it.k-Nearest Neighbors k-nearest neighbors (kNN) is a well-known and widely used instane-based lassi-�ation algorithm. The basi idea behind this lassi�ation paradigm is to ompute the similarity between atest objet and all the objets in the training set, selet the k most similar training set objets, and determinethe lass of the test objet based on the lasses of these k nearest neighbors. One of the advantages of kNN isthat it is well suited for multi-modal lasses as its lassi�ation deision is based on a small neighborhood ofsimilar objets. As a result, even if the target lass is multi-modal (i.e., onsists of objets whose independentvariables have di�erent harateristis for di�erent subsets), it an still lead to good lassi�ation auray.Two steps are ritial to the performane of the kNN lassi�ation algorithm. The �rst is the methodused to ompute the similarity between the test objet and the objets in the training set, and the seond is5



the method used to determine the lass of the test objet based on the lasses of the nearest neighbors. Fordata sets in whih the objets are represented by multi-dimensional vetors, like the gene expression dataused in this study, two approahes are ommonly used to ompute the similarity. The �rst approah is basedon using a Eulidean distane (or any other norm-based distane) between the test objet and the trainingobjets, whereas the seond approah is based on using the osine of the angle between the two vetors. Theprimary di�erene between these two distane measures, is that the Eulidean distane approah is a�etedby the length of the test objets whereas the osine-based approah is length invariant and only fouses inthe angles of the two vetors. Reent studies using gene expression data [2℄ have shown that osine-basedsimilarity funtions are better as they fous on the relative shape of the pro�le and not its magnitude. Forthis reason, in our experiments the similarity between two genes was omputed using the osine funtionwhih is de�ned as follows. If vi and vj are the two vetors, then their osine similarity is given byos(vi;vj) = vi � vj=kvik kvjk;where \�" denotes the dot-produt between two vetors, and kvk denotes the 2-norm (i.e., length) of thevetor.The simplest way to determine the lass of the test objet based on the lasses of its k-nearest neighborsis to assign it to the majority lass, i.e., the lass in whih most of the k-nearest objets belong to. Thisapproah an be easily extended to weighting di�erently the di�erent neighbors based on the atual similarity.In this ase, instead of simply adding the frequenies of the individual lasses we do so in a weighted fashionbased on how similar a partiular neighbor is to the test objet. If the training set ontains only two lasses,the positive and negative lass, then this an be done by looking at the value of the measure q that is de�nedas: q = kXi=1 os(vi;v)(vi); (1)where (vi) = (1 if vi belongs to the positive lass;�1 if vi belongs to the negative lass:If q is positive, then it is assigned to the positive lass, otherwise it is assigned to the negative lass.3.1 Binary Classi�ationTraditional lassi�ation algorithms are primarily suited for learning lassi�ation models in whih eah objetbelongs to only a single lass. Nevertheless, in our data set eah gene has more than one lasses assoiatedwith it. A ommon way of solving this type of lassi�ation problems is to build a set of binary lassi�ers,eah distinguishing the genes of one funtional lass from the genes that do not belong to this lass. We willrefer to the partiular funtional lass as the positive lass, and the rest of the genes as the negative lass.For our problem this leads to 50 di�erent binary lassi�ers, one for eah gene funtion. One the lassi�ershave been built, a new gene is lassi�ed by testing it against eah one of the 50 binary lassi�ers. Eah geneis then assigned to all the lasses for whih the partiular lassi�er determined that it was part of the positivelass.Given a set of genes for whih we already know their lasses and where not used during training we anuse a partiular binary lassi�er to predit their lasses. By omparing how many of them are preditedto be in the positive lass we an then evaluate its preditive performane. By ombining the preditionswith the atual lasses we an partition the test genes into four lasses. The true positives and the truenegatives whih are the set of genes that were orretly predited to be part of the positive or negative lass,respetively; and the false positives and false negatives whih are the sets of genes that were inorretlypredited as positives or negatives, respetively. A ommon way of measuring that performane is to use twomeasures alled the preision and reall. The preision p of a binary lassi�er is de�ned asp = Ntrue positivesNtrue positives +Nfalse positives ;6



and the reall is de�ned as r = Ntrue positivesNtrue positives +Nfalse negatives :The preision measures what fration of the genes that are predited positive are atually positive, and thereall measures what fration of the positive genes were atually predited as positive. An alternate way ofevaluating the performane of a lassi�er is to look at its auray, whih is de�ned as the fration of orretpreditions. However, when the di�erent lasses are of signi�antly di�erent sizes, the auray measure anbe misleading, and looking at preision and reall provides more meaningful information.In the SVM algorithm the lassi�ation deision is made by looking at how far a test objet is fromthe deision hyperplane, whereas in the ase of the kNN algorithm, the lassi�ation is made by looking atthe q measure de�ned in equation (1). If the distane to the hyperplane or the value of q is positive thealgorithms assign an objet to the positive lass. Essentially, in both of these algorithms the value zeroats as a threshold in determining the lass of the objet. However, in many ases a threshold value that isgreater or smaller than zero may be more appropriate. To avoid the arbitrariness of this partiular thresholdsetting, we set a threshold for lassi�ers at a value alled the break-even point where the preision and thereall beomes equal. In general, if the value of the deision threshold inreases (i.e., it beomes harder toassign something to the positive lass) the preision inreases and the reall dereases. On the other hand,if the deision threshold dereases the preision will tend to derease and the reall will tend to inrease. Byhanging the value of the deision threshold we an then �nd the point at whih the preision beomes thesame as the reall.3.1.1 Fixed-size PreditionsAs disussed in the previous setion the approah based on binary lassi�ers an be used to address theproblem of lassifying genes into multiple lasses. Nevertheless one limitation of that approah is that it doesnot allow us to diretly ontrol the number of lasses that eah gene is assigned to. In some ases we maywant to determine for eah gene a set of m lasses that it will most likely belong to. This is partiularlyimportant if expression pro�le based gene lassi�ation is used to identify a set of genes that we may wantto study further, for example to obtain their sequenes.In this study we explored two di�erent approahes for determining the m most likely funtions of a gene.The �rst approah is based on obtaining the list of andidate funtions by utilizing the results of the 50binary lassi�ers, whereas the seond approah is based on �nding these andidate lasses diretly.As disussed in Setion 3.1, for eah of the binary lasses, both the SVM and the kNN lassi�ers omputea quantity that essentially measures how strong a partiular genes belongs to a partiular lass. Our �rstapproah for identifying the m most likely funtions is based on using these strength measures of the di�erentbinary lassi�ers. In the ase of SVM, for a gene we ompute its distane to the 50 deision hyperplanes, andassign it to lasses that orrespond to the m largest values (i.e., strongest preditions). Similarly, in the aseof kNN we ompute the q measure for eah of the 50 lassi�ers and assign it to the lasses that orrespondto the m largest values. We will refer to these two approahes as the SVM-indued and the kNN-induedmethods, respetively.Our diret approah for determining the m most likely andidate funtions is based on the kNN approah.In partiular, for eah gene gi we identify a set of its k most similar genes, Ngi . We then ompute thesimilarity-weighted frequeny of the various lasses that the genes in Ngi belong to, and selet the m mostfrequent lasses as the predited lasses. This approah was motivated by similar algorithms developed by theinformation retrieval ommunity for building reommender agents [28, 27, 29℄. We will refer to this approahas the diret kNN method.4 Experimental ResultsAs disussed in Setion 2, beause some of the 249 gene funtion lasses de�ned in the MIPS database overa very small number of genes, our experimental evaluation was foused only on the 50 largest lasses shownin Table 2, using the lassi�ations and datasets desribed in Setion 2. In the rest of this setion we presentthe results for binary lassi�ation and �xed-sized lassi�ation.7



4.1 Binary Classi�ation ResultsWe applied the SVM and the kNN algorithms to predit gene funtionality of a subset of the yeast genome.To evaluate predition auray of eah algorithm, we performed 3-way ross validation. Eah preditionmeasure is obtained at the break-even point where its reall and preision are equal. The implementationof SVM we used is SVMlight, version 3.50 by Joahims [18℄. Among various types of kernels that SVMlightsupports, we hose linear, polynomial (quadrati and ubi) and radial basis funtions. We also spei�ed atrade-o� option \- 100" to �nish the learning program in reasonable running time. Other parameters areall used as their default settings.In the ase of SVM lassi�ation algorithm two parameters were found to play an important role inthe overall quality of the results. The �rst is how the di�erent 79-dimensional vetors representing eahgene are normalized and the seond is the hoie of the kernel. To evaluate the sensitivity on the vetornormalization, we performed two sets of experiments. In the �rst set, we used raw log-ratios of expressionlevels whereas in the seond experiment expression levels were normalized so that eah vetor is of unitlength. Figures 2(a) and 2(b) show the preision of the break-even point ahieved by the two representationsfor the ubi and the radial basis funtions. Note that the lasses are displayed in dereasing lass sizeorder. Looking at these graphs, we an see that in general, normalized representations lead to dramatiimprovements for some lasses espeially with the radial basis kernel.
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(b) Radial basis kernelFigure 2: Kernel types of SVM and the e�et of normalizationNext we ompare the average preision at the break-even point for di�erent types of the SVM kernels (seeFigure 3). The average preision over the 50 funtions for the linear, the quadrati, the ubi and the radialbasis kernels are 23.8%, 25.6%, 27.5% and 27.6% respetively, and the di�erene by the kernel type is ingeneral small. The performane of the ubi funtion is similar to that of the radial basis funtion and thosetwo types outperform the linear and the quadrati kernels. With 27 out of the 50 funtions, the radial basiskernel's preision is better than the ubi kernel's. Both the ubi and the radial basis kernels outperformlinear and quadrati for more than 31 funtions, respetively.In the ase of kNN lassi�er, we performed a sequene of experiments in whih we set the number ofneighbors, k, to be 1, 2, 5, 10, 20, 30 and 40. The average preision at the break-even point ahieved in thissequene of experiments was 24.4%, 24.7%, 26.2%, 26.4%, 25.9%, 24.9% and 24.2% respetively. Thus, with10 neighbors kNN shows the best results, however, the number of neighbors has less impat on the break-evenpoint preision ompared to the type of the SVM kernels.Finally, Figure 4 shows the binary lassi�ation results of SVM and kNN for the 50 funtions. For the8
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Figure 3: Comparison of 4 di�erent SVM kernel typesSVM lassi�er we used normalized gene vetors with the radial basis kernel, whih ahieved the better resultthan the other polynomial kernels. For the kNN lassi�ers we used 10 neighbors, beause again using 10neighbors ahieved the best preision at the break-even point on the average. From these results we an see
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Figure 4: Preision at the break-even point of prediting gene funtionality with SVM and kNNthat in general SVM ahieves slightly better preision than kNN does. Nevertheless, only a few lasses anbe identi�ed with reasonably high preision, regardless of the lassi�ation methods. The average preisionfor both radial basis SVM and kNN with k = 10 was 27.6% and 26.7%, respetively. Note that there istendeny that larger funtions are easy to get orret predition than smaller ones.4.2 Fixed-size Predition ResultsMotivated by the relatively poor results obtained by the binary lassi�ation algorithms, we foused ondeveloping algorithms that for eah gene, predit a �xed number m of andidate lasses. The key goal ofthis approah is to try to ahieve a higher level of reall|i.e., to predit most of the lasses of a partiulargene|at the ost of potentially ahieving a somewhat lower preision.As disussed in Setion 3.1.1, we developed three shemes: the SVM-indued and the kNN-induedshemes that obtain preditions using the 50 individual binary lassi�ers, and the diret kNN sheme that9



uses the kNN-type algorithm to diretly ompute these preditions.Figure 5 shows the results obtained in this set of experiments with all the three shemes, under di�erentvalues of m, and under di�erent parameters of the underlying lassi�ation algorithms. In the ase of theSVM-indued method, Figure 5(a) shows the results obtained using the linear (\p1"), the quadrati (\p2"),the ubi (\p3") and the radial basis (\r") kernels. In the ase of the kNN-indued method, Figure 5()shows the results ahieved for k equal to 5, 10, 20 and 30. In the ase of the diret kNN method, Figure 5(b)shows the results ahieved by using a neighborhood of size 5, 10, 20 and 30. Also for omparison purposes,the results labelled \All binary preditions" in Figures 5(a) and 5() show the results obtained by only usingthe binary preditions at the break-even point. Note that unlike the �xed-size results, in these two sets ofresults, the number of preditions made for eah gene is not uniform.
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Figure 5: Frations of genes and their reall in the �xed-size predition sheme. For the SVM-induedlassi�er, we used the linear (\p1"), the quadrati (\p2"), the ubi (\p3") and the radial basis (\r") funtionsas their kernel. For both the kNN-indued lassi�er and the diret kNN lassi�er, 5, 10, 20 and 30 neighborsare used.Looking at the di�erent �xed-size predition results we an see that as expeted the overall reall inreases10



as we inrease the number of preditions m. Nevertheless, as m inreases, the overall preision dereases.Comparing the results produed by the SVM-indued method with those produed by the kNN-induedmethod, we an see they are quite similar (at least for the radial basis kernel and the 10 nearest neighbors).On the other hand, the diret kNN method outperforms the other two and always produes at least 4%higher preision and 5% higher reall at eah orresponding experiment. This an be easier seen by lookingat the results in Table 3 that summarizes the overall preision and reall of the various shemes for theirbest set of parameters. The overall results indiate that relatively high levels of reall an be obtained witha moderate redution in preision. For instane, for m = 6, 2.4 (' 6� 0:398) preditions out of 6 from thediret kNN lassi�er are likely to be orret, and by those preditions we an disover all funtions of everyinoming gene with 51.6% probability.Table 3: Average preision and reall of 3 �xed-size predition shemes with 4, 6, 8 and 10 preditions. Forthe SVM-indued lassi�er and the kNN-indued lassi�er, the rows with the predition \all" show the resultsby onsidering all the predition returned by eah of the 50 indued lassi�ers, without limiting the numberof preditions. Method Preditions Preision (%) Reall (%)SVM-indued 4 41.9 37.0(radial basis) 6 34.5 44.98 29.8 51.310 26.1 55.9all 41.8 40.3kNN-indued 4 42.5 37.7(10 neighbors) 6 35.2 45.88 29.8 51.210 26.0 55.8all 43.5 40.4Diret kNN 4 48.6 43.4(10 neighbors) 6 39.8 51.68 33.7 56.810 30.0 61.35 Analysis of ResultsThe experimental results presented in Setion 4 showed that the preision of the preditions produed byeither the SVM or the kNN lassi�ation algorithms varies widely for di�erent funtional lasses. For somelasses we were able to ahieve high preision at the break-even point whereas for some of the other lassesthe preision was extremely low. In this setion we attempt to analyze these results and understand boththe limitations and advantages of the proposed approah for gene lassi�ation.Our analysis will primarily fous on relating the lassi�ation auraies with some of the properties ofthe gene expression data sets. In partiular we will fous on the following harateristis: (i) lass size, (ii)lass homogeneity, (iii) variability of the expression pro�les, and (iv) the level of the di�erentially expressedpro�les.As disussed in Setion 2.2, the number of genes ontained in the 50 largest funtional lasses that wereused in our dataset varied signi�antly. To see if there is a relation between the size of the lass and thepredition quality we plotted the size versus the preision at the break-even point for all the 50 lasses ahievedby the SVM lassi�er. These results are shown in Figure 6. From this plot we an see that, in general, ifthe size of the lass is large the preision that was obtained is quite high. Nevertheless, the opposite is nottrue, as for some small lasses, SVM was able to ahieve preisions that are quite high. Also, the fat thelarger lasses ahieve better preision at the break-even point should not be surprising, as they are easier tolassify even by a random lassi�er. 11
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Figure 6: SVM (radial basis funtion) binary lassi�ation preision at the break-even point and lass sizeThe seond harateristi that we foused was whether or not the \tightness" of a partiular lass playedsome role in determining the overall quality of the preditions. In determining how tight a partiular lassis we omputed the average pairwise similarity between the genes in eah lass using the osine similarityfuntion. Figures 7(a) and 7(b) plot the size of eah lass versus its tightness and the preision ahievedfor eah lass versus its tightness. From Figure 7(a) we an see that there is relatively little variation inthe tightness of the di�erent lasses, with the exeption of a few lasses that are partiularly tight. FromFigure 7(b) we an see that lass tightness does not play a signi�ant role in determining the preision of thelassi�er. For a relatively narrow range of lass tightness values, the auraies obtained di�er dramatiallyand there are lasses that ahieve high preision whih are not tight and vie versa.
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(b) Break-even point preision and lass tightnessFigure 7: Tightness and lass size of the 50 largest funtional ategoriesThe last set of harateristis that we foused has to do with whether or not the magnitude or thevariability of the di�erential expression of the genes in a lass was ritial for ahieving high preisions.Figures 8(a) and 8(b) plot the preision versus the average standard deviation of the expression pro�les12
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(b) Break-even point preision and average sum of ab-solute values in pro�lesFigure 8: SVM binary lassi�ation preision at the break-even point and funtion lass statistial propertiesof eah lass, and the average sum of the absolute expression levels, respetively. In omputing both thestandard deviation and the sum of the expression levels we used the log-ratios of the intensities of targetversus ontrol, without the unit-length normalization that we used for the lassi�ation experiments. Lookingat these results we an see that there is a relation between the preisions ahieved by SVM and the variabilityof the pro�les or their overall di�erential expression level. The higher the variability of overall expressionlevels the higher the preision that was obtained. We omputed the orrelation oeÆient for the two plotsand we found that they are 0.51 for Figure 8(a) and 0.47 for Figure 8(b).Table 4: Classes with high preision at the break-even pointFuntion SVM Size Tightness Standard Absolutelass Preision (%) deviation sumribosomal proteins 80.9 173 0.721 0.710 40.7CELLULAR ORGANIZATION 75.4 1803 0.295 0.526 32.4PROTEIN SYNTHESIS 62.8 298 0.591 0.619 36.7mitohondrial organization 59.4 296 0.382 0.495 30.5organization of ytoplasm 52.1 463 0.438 0.626 37.0METABOLISM 47.3 702 0.281 0.541 33.0ENERGY 47.1 157 0.415 0.636 37.0nulear organization 45.7 643 0.361 0.469 30.0The orrelation between the variability or the absolute levels of expression hange and whether or notwe an aurately predit them should not be surprising as in these type of lasses the genes tend to exhibita distintly di�erent behavior that an be used by the lassi�ation algorithms to build aurate modelsfor prediting them. On the other hand, if a lass ontains genes that either have not been turned onduring the experiments or they have a relative onstant pro�le, the lassi�ation algorithms annot reliablydistinguish them from genes of similarly behaving lasses. Our analysis indiates that in order for the genes ofa partiular lass to be predited aurately, the miroarray experiments that are performed must have eitherativated or surpassed them. Unfortunately, the eight di�erent miroarray experiments used in deriving our13



data set were primarily fouses on a small set of ellular funtions so do not provide a suÆient breadth.We believe, however, that as additional and more diverse experiments are performed, supervised learning isa viable method for determining the funtions(s) of a gene. To further illustrate this point, Table 4 showsthe eight lasses that ahieved the highest preision along with the values of their di�erent harateristis.From the desription of the experiments that used in obtaining the miroarray data (Setion 2.1) and thestudies reported in [11, 3, 2℄ the genes in these funtional lasses were shown to be ative in the ourse ofthe experiments.6 ConlusionsIn this paper we explored the possibility of using miroarray expression pro�les to �nd the funtions of genes.We applied two representative binary lassi�ation algorithms, SVM and kNN for the 2462 annotated genesout of all the 6275 identi�ed genes from the yeast genome. The goal of the lassi�ation was to preditfuntional ategories of genes de�ned in the MIPS database. Beause of nonuniform distribution of genesover funtional lasses, we foused on the 50 largest gene funtional ategories out of 249. The results showedthat the overall predition auray was poor exept a few funtional ategories whih are losely relatedwith the nature of the experimental onditions for obtaining expression pro�les.Provided that the binary lassi�ers produed the low predition preision, using SVM and kNN as theunderlying modules we developed three di�erent shemes, the SVM-indued, the kNN-indued and the diretkNN methods that an predit a spei�ed number of andidate funtions in order to ahieve high reall, andevaluated their predition performane in terms of preision and reall. It turned out that the diret kNNapproah outperforms the other two. Compared with the binary lassi�ation results, those three �xed-sizepredition shemes improved reall without a signi�ant loss of preision.To understand those results of the binary and the �xed-sized predition approahes, we analyzed therelationship between the binary predition preision of eah funtion lass and statistial measures of theDNA expression pro�les, whih revealed that (i) large funtional lasses are relatively easy to predit orretly,and (ii) the variability of expression pro�les has inuene on the predition preision.Based on those experiments and the analysis we believe it will be feasible to make use of expressionpro�les olleted under appropriate onditions to predit gene funtionality as more diverse experiments areperformed and pre-examined data are aumulated.Referenes[1℄ L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classi�ation and Regression Trees. Chapman& Hall, New York, 1984.[2℄ M. P. S. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey, M. Ares, Jr., andD. Haussler. Knowledge-based analysis of miroarray gene expression data by using support vetormahines. In Pro. Natl. Aad. Si., volume 97, pages 262{267, January 2000.[3℄ M. P. S. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, J. Manuel Ares, and D. Haussler.Support vetor mahine lassi�ation of miroarray gene expression data. Tehnial Report UCSC-CRL-99-09, Department of Computer Siene, University of California, Santa Cruz, 1999.[4℄ R. M. Cameron-Jones and J. R. Quinlan. EÆient top-down indution of logi programs. SIGARTBulletin, 5(1):33{42, 1994.[5℄ W. Cohen. Fast e�etive rule indution. In Pro. Twelfth International Conferene on Mahine Learning,1995.[6℄ T. G. O. Consortium. Gene ontology: tool for the uni�ation of biology. Nature Genet., 25:25{29, 2000.[7℄ C. Cortes and V. Vapnik. Support vetor networks. Mahine Learning, 20:273{297, 1995.14
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