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Abstract

Contact map prediction is of great interests for its apfiticain fold recognition and protein 3D structure deter-
mination. In particular, we focusd on predicting non-loitaéractions in this paper. We employed Support Vector
Machines (SVMs) as the machine learning tool and incorpadrdtAindex to extract correlated mutation analysis
(CMA) and sequence profile (SP) features. In addition, wéuewed the effectiveness of different features for vari-
ous fold classes.

On average, our predictor achieved an prediction accurfd@ @38 with an improvement over a random predictor
of a factor 117, which is better than reported studies. Our study showattedicted secondary structure features
play an important roles for the proteins containing betacstires. Models based on secondary structure features
and CMA features produce different sets of predictions. Qudy also suggests that models learned separately for
different protein fold families may achieve better perfame than a unified model.

1 Introduction

Proteins are the molecular devices of life. They are the oubds that regulate the vital fluxes of mass and energy
in biological systems. With the continued completion of @& projects their sequences become known at an ever-
increasing rate. The determination of the structure ofginstis deemed as a key step toward understanding the
behavior of proteins and initiating knowledge-based oral approaches for engineering molecular solutions. Ex-
perimental efforts, such as x-ray crystallography and NM&hhiques are not efficient enough to allow for rapid
structural determination of the ever increasing numberesfin discovered sequences. Hence, computational, theo-
retical methodologies are becoming #iee qua norof protein sequence/structure/function relationshigaesh.

Although the mechanism of protein folding is not yet gerigdahown, it can be reasonably assumed that non-local
interactions are necessary for secondary structural eftsnte result in a cohesive native structure, which is fagore
energetically over alternative conformations. Whereaallmteractions are responsible for secondary structinal-
acteristics, non-local interactions are crucial for piriddo attain their native state. Numerous experimentalthad
oretical studies have demonstrated this importance oflocal-interactions in foldability, as protein fold attaient
is commonly referred to [17, 1, 8]. Furthermore, and besttegoldability, non-local interactions are important for
maintaining the stability and hence the functionality ofteins [7, 15]. Site-directed mutagenesis experiments hav
amply demonstrated this importance [27, 13, 24]. Hencepthdiction of non-local interactions is of great interests
for its use in protein fold recognition and 3D structure nesny. Specifically, identifying pairs of non-sequentialiam
acid residues or secondary structural elements that citer&D space provides a set of topological constraints that
can be utilized in protein fold recognition. Neverthelggt)e contacts of a protein are known, its 3D structure can be
deduced from its contact map [31].

Over the years, a variety of different approaches have beeglaped for contact map prediction [6, 18, 28, 32, 21],
in which various machine learning tools as well as varioasuiees have been employed. The various learning mecha-
nisms include Neural Networks [6, 21], statistical apprescbased on correlated mutation [18, 28], and association
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rule based classification [32]. Whereas, the various featinclude sequence profiles derived from multiple sequence
alignment [6, 32, 21], correlated mutation [6, 18, 28], jiceztl secondary structures [6, 21] and folding initiation
sites (I-sites) [32]. However, the accuracy of contact mgaligtion is still far from satisfactory. The current state
of-art contact map predictor reported at CASP4 achievedvarga accuracy of 0.21 (a 6-fold improvement over a
random predictor).

One of the interesting outcomes of previous research has theeobservation that adding predicted secondary
structure information is very helpful for contact map padiins [21, 6], even more useful than sequence profiles
[21]. However, all previous approaches did not differdmstiaroteins of different fold families,e., the importance of
various features was studies based on their performandémoizins from different fold families. On the other hand,
Reva and Topiol [26] recently found that beta-structuregrioute more significantly to fold recognition than alpha-
structures, which raises the question whether beta-gnestlso contribute more significantly than alpha-stmestu
to contact map prediction. The available knowledge of pnofeld families (CATH [19]) enables us to answer this
guestion by testing the effectiveness of predicted seagrateuctures in contact map prediction for various protein
fold families. Especially, we focused on the class leveifr@ATH [19] and tested whether the predicted secondary
structure features are equally important for proteins withinly alpha-structures, mainly beta-structures, ant bot
alpha and beta structures. Furthermore, we would like toesddan even broader problene,, for the various fold
classes, how effectively the different features.( correlated mutation, sequence profiles and predictednsiacy
structures) predict contact maps. In addition, we empl&@pport Vector Machine (SVM) as the classification tool
and incorporated AAindex [12] to extract correlated matatind sequence profile features.

On average, our predictor achieved a prediction accura®y?2a@f38 with an improvement over a random predictor
of a factor 117, which is better than reported studies. Our study showatpitedicted secondary structure features
play an important roles for the proteins containing betacstmres. Models based on secondary structure features
and CMA features produce different sets of predictions. Sudy also suggests that models learned separately for
different protein fold families may achieve better perfarme than a unified model.

The rest of this paper is organized as follows. Section 2iges/some information on contact maps, non-local
interactions, CATH and Support Vector Machines (SVMs). tlBac3 describes our approach of predicting contact
maps, including the features and models we studied. Sedtiprovides the detailed experimental evaluation of
various models for different protein fold groups and lenggtbups. Section 5 discusses some important observations
from the experimental results. Finally, Section 6 provisesie concluding remarks.

2 Background Material
2.1 Contact Maps

Contact maps are two-dimensional, binary representatibipsotein structures. For a protein with residues, the
contact map for each pair of amino acidandl, (1 < k,|1 < N), will have a valueC(k, |) = 1, if a suitably defined
distanced(k, ) < dihr, Whered, is a user-defined threshold distance between the amino,aad€<(k,1) = 0
otherwise. Appropriate distances between amino acid wesidan be, for example, the one between the center of
mass, theC, atoms, or the minimum one. A contact map is simply a convergrary representation of a distance
matrix D, defined adD = [|rk|], where|rk| is the distance between the residkemdl. A particular cutoff distance,
dinr, is chosen and we assi@hk, |) = 1 for all D(k, |) < dinr. In principle, contact maps can be built for alternative
unit geometrical objects. For instance, contact maps cardated for pairs of secondary structural elements ingttad
residues, creating a more coarse-grained representdtioa protein structure. In our study, we adopted the definiti

of distances to be the distances betweerdhatoms of two amino acids and the distance threshold toke 8

2.2 Non-local Contacts

In our study, we focused on the off-diagnol regions of theteonmaps, i(e., non-local contacts). Consider a protein
sequencé¢ay, ay, ..., an] whereN is the number of amino acid residues. We define as non-loggbainwise inter-
actions between amino acids anda; with the sequence separatifin- j| > 6. Interactions between amino acids
with sequence separatiofis— j| < 6 we define as local, including intra-loop and intra-helitenactions between
any residues andi + 5. Non-local interactions are necessary for protein seagnstructural elements to result in a
cohesive native structure, which is favored energetiaalyr alternative conformations. The significance of naralo
interactions in the foldability, the stability, and the @tionality of protein molecules results in a distinct sigma of
amino acid residue conservation and covariation duringuéemary processes.



2.3 CATH

Currently, CATH [19] and SCOP [16] are the major repositedéclassified protein structures. CATH stands for Class,
Architecture, Topology, and Homologous superfamily, therflevels of protein hierarchical classification used. The
secondary structure elements and their packing are usesteontine the Class. The Architecture level describes the
global shape of the protein incorporating the orientatibsexondary structure elements, but ignoring the specific
connectivities. In the level of Topology, proteins are gred based on shape and connectivity. Finally, sets of pro-
tein folds are grouped depending on their evolutionarytieiahips. More recently, a protocol was developed that
integrates gene sequences from GenBank [2] within the CAdtdlwhse, resulting in a significant expansion of the
database to 176,597 domain sequences [20]. Class is desgfatcording to the secondary structure composition and
packing within the structure. It can be assigned automigtif@ over 90% of the known structures using the method
of Michie et al. (1996). For the remainder, manual inspect®used and where necessary information from the
literature taken into account. Three major classes argréred; mainly-alpha, mainly-beta and alpha-beta. Ttis la
class (alpha-beta) includes both alternating alpha/biatatares and alpha+beta structures, as originally defiyed
Levitt and Chothia (1976). A fourth class is also identifieldielh contains protein domains which have low secondary
structure content. In our study, we focusd on the class lensl i.e., we differentiated the proteins by the types of
their secondary structure elements.

2.4 Support Vector Machines

Support vector machines is a state-of-the-art classifinaéchnique based on pioneering work done by Vaphi,
[30]. This algorithm is introduced to solve two-class patteecognition problems using the Structural Risk Minimiza
tion principle [30]. Given a training set in a vector spates method finds thbestdecision hyperplane that separates
two classes. The quality of a decision hyperplane is detexthby the distance (referred as margin) between two hy-
perplanes that are parallel to the decision hyperplaneardhtthe closest data points of each class. @émdecision
hyperplane is the one with the maximum margin. By definingwygerplane in this fashion, SVM is able to generalize
to unseen instances quite effectively. The SVM problem @sadived using quadratic programming techniques [30].
SVM extends its applicability on the linearly non-sepaeathata sets by either using soft margin hyperplanes, or by
mapping the original data vectors into a higher dimensigpate in which the data points are linearly separable. The
mapping to higher dimensional spaces is done using apptegkérnel functions, resulting in efficient algorithms. A
new example is classified by representing the point the feafpace and computing its distance from the hyperplane.
SVM (Support Vector Machine) has been applied to a wide rarfgdassification problems because of its many
attractive features, including effective avoidance ofréitteng, and the ability to handle large feature spaces. The
success of SVM has been showed in documents classificatimnddsecondary structure predictions [9].

3 Contact Map Prediction

The problem of contact map prediction can be stated as aftdasisn problem. Given a set of proteins with known
structures, contact residues and non-contact residuesepegated as positive instances and negative instances. Fo
each instance, various features are collected to captafelusformation of the pair of residues, including aminadac
content, physicochemical environment, secondary stresfevolutionary correlation, and other information et
discriminate contacts from non-contacts. Then, thesefeatctors of both positive instances and negative inst&anc
are used as the input to a classification tool to learn a €kassie., predictor). Given a sequence with unknown
structures, the resulting predictor classifies the pairesitiues of the sequence to be contacts and non-contaets bas
on their feature vectors.

In our approach, we employed Support Vector Machines (SVadsthe classification tool and collected various
features based on primary sequences, multiple sequemgeraits, predicted secondary structures and correlated
mutation analysis. For the rest of this section, we will didgcin detail how we extracted various features and
designed learning models.

Correlated Mutations Analysis (CMA) and Sequence Conserva  tion

A variety of correlated mutations analysis (CMA) tools hdeen proposed to predict non-local contacts [18, 22,
23, 25, 6]. The correlated mutations analysis (CMA) utdizvolutionary information. In evolutionary times, the

significance of non-local contacts is manifested in the nkeskconservation patterns and the covariation of amino
acid residues in multiple sequence alignments of homolsgwateins. Pairs of distant sequence positions that are



proximal in three-dimensional space appear to be consenveulitated in a correlated fashion, i.e. the frequencies of
particular amino acid appearances in one position are digm¢on the amino acid residue in the other position. In
principle, positions with high correlation coefficientsgaantitative measure of mutational covariance in famities
homologous proteins, can be inferred to be proximal in 3D.

Instead of following the simple employment of a few phystwemical vectors, such as the volume or the hydropho-
bicity, as was done in previous literature work, we usedéhditst principal components that resulted from a principal
component analysis on 142 physicochemical vectors in Aéind database of published amino acid properties [12].

Given a multiple sequence alignment (MSA) of a protein, fachepair of amino acids of the protein, the extent of
covariation in mutations was calculated using a simpleedation coefficient

1 Nusa(gl —mi(a} —mj)

I’ij =
Nmsa? & S Sj
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WhereqiI andq'j are the values for some amino acid physicochemical vectuifve, hydrophobicity, etc.) for se-
guencd at positions and j. mj, mj, s ands; are the mean values and the standard deviations of the amitho a
properties at and j. The sum runs over all thBly s a sequences in the multiple sequence alignment. We also cal-
culated correlated mutations defined in [18], which also leggd similar correlation coefficient measure, but used
pairwise amino acid scoring matrix of McLachlan [14] instezf physicochemical vectors. The positions that are
completely conserved or contain more than 10% gaps in MS&sairincluded for CMA calculation.

The conservation of each position in the sequence is alsaletéd based on the Entropy value of the amino acids
appearing at the position in the multiple sequence align@agifollows,

20
Con(i) = — ) _ P(adi)log P(ali) @
k=1

whereak is one of the 20 amino acids a(ax|i) equals the number of sequences contairngt the position
divided by the total number the sequences in the multipleeecg alignment.

Features

For each pair of positions in a protein sequence, we idedfffie sets of features that capture different aspects of the
amino acids and the locationgnd j: sequence conservation (Con), sequence separation (de@lated mutations
analysis (CMA), predicted secondary structures (PSS) agdence profiles (SP).

Sequence Conservation (Con) Sequence conservation values based on multiple sequegiemeaht were cal-
culated for positions and j by using Equation 2.

Sequence Separation (Sep) Sequence separation is the distance between two aminoiadigssequence and
defined byli — j].

Correlated Mutations Analysis (CMA) For positions and j, we extracted three sets of Correlated Mutations
Analysis (CMA) features. First, we calculated the cormdamutation value defined in [18] and refer this feature
asCMA (McLachlan) Second, we used the ten first principal components thalteesiuiom a principal component
analysis on 142 physicochemical vectors in AAindex [12]hesgroperty vectors. Then, for each one of ten vectors,
we calculated the correlated mutation value by using Eqodti We refer these ten features<GdA (PCA10) Finally,
AAindex [12] provided a six-way clustering of all the 142 igochemical vectors (alpha and turn propensities, beta
propensity, Physicochemical properties, compositiomrbghobicity and other properties). From each cluster, five
vectors were selected and used in correlated mutationlatifmu We refer these 30 features@BIA (30) We also
referCMAto all the 41 correlated mutation analysis features.

Predicted Secondary Structures (PSS) For each residue, we used three values to represent whighiedwigs
to an alpha helix, beta strand or coil. If the residue belaiogene of the three secondary structures, we set the
corresponding value to be 1, and 0 otherwise. For each reegidiu(, j), we considered a window of width three,



(i.e., we considered positions— 1,i,i +1, ] — 1, j, andj + 1). Hence, we have 18 secondary structure features in
total.

Sequence Profiles (SP)  The use of sequence profiles, which are derived from a malspfuence alignment of
homologous sequences, have been shown to be able to impeyeadiction of contact maps [6, 21]. We adopted
the three-neighborhood approach in [6]. For positioasd j, the occurrence frequencies of all the possible amino
acid pairs (210) were calculated from the multiple sequetigpment. Besided, j), we also calculated the profiles
ofi —1,j—-1,(i+1j+1,0d—-1j+21)and@ +1,j — 1) and we refer these 105R@10x 5) features as
SP (Amino Acids) In addition to using amino acid pair frequencies to repnedlee profile, we also used twelve
physicochemical vectors from AAindex [12] to describe tiggtiochemical environment around positiorend j.
Again, we considered a window of width three arourahd j. For each position, the average of one physicochemical
property was calculated by averaging the physicochemicglgyty values for all the amino acid that appeared at that
position in the multiple sequence alignment. We refer thi&s€l2 x 6) features asSP (AAindexand all sequence
profile related featuresSP (Amino Acids) + SP (AAIndgx3sSP.

Models

We trained 15 SVM models by using different sets of featufiedle 1 shows various models and the set of features
used in each model. Besides the features showed in the tahletie 15 models contain the sequence conservation
(Con) features for positionsand j. The 15 models can be grouped into four sets, predicted dacpstructure
(PSS) based, CMA based, Sequence Profile (SP) based, anthedmiodels. We evaluated the different ways of
extracting CMA features and SP features by comparing tHewsalCMA based models and SP based models. Finally,
we combined the five sets of features (Con, Sep, PSS, CMA, BhihSarious ways to evaluate their effectiveness.

Table 1: Features used in various models

Secondary Structure based Sequence Profile based Combined
Model | Features Model | Features Model | Features
1 PSS 6 SP (AAindex) 9 Sep + PSS
7 SP (Amino Acids) 10 Sep + CMA
CMA based 8 SP 11 Sep + PSS + CMA

2 CMA (McLachlan) 12 PSS + SP
3 CMA (PCA10) 13 CMA +SP
4 CMA (30) 14 PSS + CMA + SP
5 CMA 15 Sep + PSS + CMA + SH

Support Vector Machine (SVM) Training

We adopted a three-way across-validation process foritigaieind testing each model. The dataset was divided into
three subsets randomly, out of which the model was trainéutwio subsets as the training set and tested on the other
subset as the testing set. The splitting of the dataset wasatine for each one of the 15 models.

Given a training set, the input for SVM training is a collectiof feature vectors of all the position pairs from all the
sequences in the training set. We call each feature vectoiratance. We also input the true class label (positive for
contacts and negative for non-contacts) of each instanc®8\fM training. Since there are much more non-contacts
than contacts, we randomly sampled non-contact instasodhat the number of contact instances and the number of
non-contact instances are the same approximately. Ademegative instance sampling is the same for each one of
the 15 models. All the 15 models were trained ussgM'9"t [10] with a linear kernel and the defa@value.

Prediction of Contacts

Given a testing sequence, the input for a prediater, (one of the 15 models) is also a collection of features wscto
of all the position pairs from that sequence. The predictiireturn a score for each instance. If we assign contact to
be the positive class and non-contact to be the negativs, ¢leen the higher the score is, the more likely the pair of
amino acids is in contact. Hence, the returned scores caortegldnto a list, from which the top pairs are predicted
as contact points. Finally, the contacts can be predicteglthgr setting a value threshold or the number of predicted
contacts.



4 Experimental Results

4.1 Data Preparation

Dataset

The dataset we use in training and testing our predictoraom1177 proteins with known 3D structure from Protein
Data Bank (PDB [3]). The proteins whose chains are not inpted and contain no more than two domains were
selected. The list of proteins was further reduced to onhtaio the proteins with pairwise sequence identity lower
than 25%. Finally, we excluded the proteins that have lems 15 homologous proteins returned by PSI-BLAST when
searching against non-redundant protein database (NR).

Multiple Sequence Alignment and Predicted Secondary Struc ture

To obtain multiple sequence alignments (MSAs), we firstemtitfd homologous sequences for each protein by using
PSI-BLAST searching against non-redundant protein da@fidR). We used the default parameters of PSI-BLAST
and only kept sequences with more than 20% and less than 8§dérsee identity. Then, we used ClustalW [29]
to generate the final MSAs of the target protein and its hogmis sequences. The predicted secondary structures
for each proteins were obtained by using PSIPRED [11], agtage neural network predictor based on the position
specific scoring matrices generated by PSI-BLAST.

4.2 Experimental Methodology and Metrics

Evaluation Metrics

To compare the results with other approaches [6], we préuctopl /2 pairs to be contact points, whelrg is the
length of the protein. This cutoff is also based on the faat ithgeneral the number of contacts increases linearly with
the length of the protein [18].

We evaluated the prediction by calculating the accuracytlamanprovement over a random predictor. The accuracy
of the prediction is defined by the ratio of the number of carpgedictions and the total number of predictides,

Nep
Np

Acc=

®3)

whereNcp is the number of correct predictions ahg) is the total number of predictions, which is also equal tp

in our experiments. A random predictor will place contadtpeandomly on the list. Hence the accuracy of the top
L p/2 pairs is equal to the accuracy of the overall ligt, the density of contacts of the proteins, which is defined as
follows,

N
RAcC= — 4)
N

whereN is the total number of amino acid pairs with sequence sdpargteater than 6, and; is the number of
observed contacts. Finally, the improvement over a randaigtor is defined by the ratio betwedrcandR Acc

Methodology

Recall from Section 3, each model was learned by using a-thagecross-validation. Each protein appeared in one
and only one testing set. Hence, the prediction accuratialt the proteins were obtained after the three-way cross-
validation process. Since we are interested in the differeri prediction effectiveness for proteins of differentfo
families, we grouped the proteins according to their CATideas well as their lengths. For example, @#&TH1
group contains the proteins with CATH class codeik,,(mainly-alpha class). Since the proteins may contain two
domains, we have combinations of single CATH classes. Famgle, theCATH1 & CATH3group contains the
proteins that have two domains, of which one belongs to CAlRdsc1 and the other belongs to CATH class 3. The
groupOtherscontains the proteins of unknown CATH codes or CATH classsatther than 1, 2 and 3. Note that the
CATH1, CATH2 and CATH3 group may also contain multi-domanotgins, in which cases, the different domains
belong to the same CATH class. In total, we have three lengibps {.e., short, median and long), and six fold
groups. Table 2 shows the average density of the proteifgnnéach group. The numbers in parentheses are the
number of proteins in each group.



Table 2: Statistics of the Density of Contacts for Various Protein Categories

CATHI (34) | CATH2 (35) | CATH3 (75) | CATH1 & CATH3 (9) | CATH2 & CATH3 (6) | Others (18)
I < 100 (40) 0.0211(13) | 0.0588(9) | 0.0517(13) -0) -0) 0.0728(5)
100< | < 300 (101) | 0.0141(18) | 0.0347(24) | 0.0229(43) 0.0136(5) 0.0178(4) 0.0190(7)
| > 300 (36) 0.0088(3) | 0.0135(2) | 0.0099(19) 0.0110(4) 0.0107(2) 0.0100(6)

As shown from table 2, the CATH1 group, mainly-alpha class significantly lower average densities than the
other groups. Whereas, the CATH2 groups, mainly-beta diessthe highest average densities.

4.3 Results

Table 3 shows the average prediction accuracy and randomowement factor of various models for different fold
groups, in which each row represents each model and eacmeatorresponds to each fold group. The overall
performance of each model is also included in the last colurhe values in parentheses are the average improvement
over arandom predictor for the proteins within each foldugra~or each fold group, the entries of the best performance
are in bold face.

A number of observations can be made from table 3. First, Yeeati best model is model 15, which achieved
0.2238 accuracy and performs.Iltimes better than a random predictor. Second, in geneaeh®, model 11
and model 15 behaved very similarly. Model 9 is based onlyegjuence separation (Sep) and predicted secondary
structure (PSS) features. By adding correlated mutatiatyais (CMA) features, model 11 performed slightly better
than model 9 on average. By adding both CMA and sequence @(&®) features, model 15 achieved the best
performance. Third, for the CATH1 group, model 13, which é&sé&d on CMA and SP features, produced the best
prediction accuracy of.0657 and random improvement factor ab4which are 26% and 58% better than model
9, respectively. On the other hand, for the rest of the fololpgs, except the CATH3 group, model 9 performed
the best. For the CATH3 group, model 15 produced the besigti@d on average. Finally, model 14 and model 1
performed more than 40% worse than model 15 and model 9,asgg, whereas, model 5 and model 11 had similar
performance, which suggests that the sequence sepamatiateed an important feature to be used together with PSS
features, but may not be very useful when combining with ofb&tures.

Table 3: Average Prediction Accuracy and Random Improvement of Various Models for Different Fold Groups

model CATH1 CATH2 CATH3 CATH1 & CATH3 | CATH2 & CATH3 Others Overall
PSS 1 | 0.0545(2.9)| 0.1504(3.9)| 0.2024(9.6) 0.1547(12.6) 0.1225(8.3) 0.1435(6.4) | 0.1523(6.9)
CMA 2 | 0.0528(3.3)| 0.1304(3.6)| 0.0910(4.4) 0.0990(8.2) 0.0596(4.1) 0.0804(3.3) | 0.0897(4.1)
(based) 3 | 0.0476(2.8)| 0.1120(2.9)| 0.0921(4.1) 0.0719(5.7) 0.0459(3.2) 0.0832(3.6) | 0.0839(3.6)
4 | 0.0502(3.0)| 0.1088(2.9)| 0.0933(4.1) 0.0632(5.0) 0.0486(3.6) 0.0737(2.5) | 0.0830(3.5)
5 | 0.0489(3.2)| 0.1256(3.4)| 0.0900(4.4) 0.0958(7.9) 0.0643(4.4) 0.0730(2.5) | 0.0868(3.9)
SP 6 | 0.0443(2.5)| 0.1009(2.5)| 0.0833(3.7) 0.0485(4.0) 0.0560(3.7) 0.0494(2.1) | 0.0731(3.1)
(based) 7 | 0.0592(3.6)| 0.1277(3.4)| 0.1321(6.3) 0.1105(8.8) 0.0787(4.9) 0.0741(3.5) | 0.1083(5.0)
8 | 0.0611(3.8)| 0.1278(3.4)| 0.1382(6.6) 0.1172(9.5) 0.0831(5.3) 0.0711(3.7) | 0.1114(5.2)
Combined| 9 | 0.0512(2.9)| 0.2302(6.8) | 0.2695(14.9)|  0.2913(24.1) 0.3003(21.4) 0.2356(13.7) | 0.2182(11.5)
10 | 0.0551(3.5)| 0.1193(3.4)| 0.0897(4.5) 0.0995(8.2) 0.0724(5.3) 0.0894(4.6) | 0.0888(4.3)
11 | 0.0555(3.2)| 0.2200(6.5)| 0.2811(15.3)|  0.2678(22.4) 0.2899(20.5) | 0.2300(13.0)| 0.2198(11.5)
12 | 0.0587(3.7)| 0.1656(4.3)| 0.2064(9.8) 0.1631(13.4) 0.1490(10.3) 0.1223(6.4) | 0.1570(7.4)
13 | 0.0657(4.6) | 0.1580(4.3)| 0.1519(7.4) 0.1315(10.7) 0.1091(6.7) 0.0830(3.8) | 0.1269(6.0)
14 | 0.0606(4.1)| 0.1823(5.0)| 0.2086(10.2) 0.1963(15.9) 0.1529(10.3) 0.1212(5.9) | 0.1633(7.9)
15 | 0.0584(3.3)| 0.2236(6.5)| 0.2845(15.4) 0.2804(23.4) 0.2995(20.9) | 0.2336(13.4)| 0.2238(11.7)

We also summarized detailed performance of model 15 foewifft fold groups and length groups in table 4,
in which each row corresponds to each fold group and eachreotorresponds to each length group. The overall
average prediction accuracy and random improvement of leagjth group can be found in the last row. Again, the
values in parentheses are the average improvement ovedl@mnapredictor. As shown in table 4, model 15 performed
well for the CATH3, CATH1 & CATH3 and CATH2 & CATH3 group. Fohese groups, the overall performance
is in the range of 2805-02995 and 15 — 23.4 times better than a random predictor. The best performforce
CATHS3 proteins may be due to the fact that the majority prateén our dataset are CATH3 proteiri( 75 out of



177). Model 15 also performed relatively well for CATH2 peits with an average prediction accuracy of 0.2236 and
an average random improvement factor of 6.5 overall. Howdwe CATHL1 proteins, model 15 performed poorly,
only 3.3 times better than a random predictor with an avepagdiction accuracy of 0.0584. Since we have similar
number of CATH1 proteins and CATH2 proteins in our dataget,dignificant performance difference must relate to
some characteristics of each fold group. Another obsenvatie can made from table 4 is that the prediction accuracy
decreases as the sequence length increases. Howevercthasgeis within the range of 13%-16%, which is much
less significant than the ones reported before [6, 32]. Tla¢ively good performance for long proteins indicates that
our model is more robust to the length of proteins than othpr@aches.

Table 4: Average Prediction Accuracy and Random Improvement of Model 15 for Different Fold Groups and Length Groups

<100 | 100<I < 300 > 300 Overall
CATH1 0.0501(2.2)| 0.0670(4.0) | 0.0426(4.0) | 0.0584(3.3)
CATH2 0.2760(4.8)| 0.2014(6.2) | 0.2531(18.4)| 0.2236(6.5)
CATH3 0.3125(6.9)| 0.2836(13.5) | 0.2664(26.0)| 0.2845(15.4)
CATH1 & CATH3 () 0.3021(23.0) | 0.2532(23.8)| 0.2804(23.4)
CATH2 & CATH3 -() 0.3121(18.4) | 0.2744(25.8)| 0.2995(20.9)
Others 0.2703(3.5)| 0.2578(15.9) | 0.1747(18.6)| 0.2336(13.4)
Overall 0.2137(4.5)| 0.2257(10.9) | 0.2297(22.2)| 0.2238(11.7)
5 Discussion
Different Fold Groups Prefer Different Sets of Features The most important observation from experimen-

tal results is that for different fold groupe.f, CATH1, CATH2 and CATH3), the model that achieved the best
performance is different. Predicted secondary structe&S)) features performed the best for CATH2 but poorly for
CATH1. On the other hand, correlated mutation analysis (§M®d sequence profile (SP) features performed the
best for CATH1 but poorly for CATH2. Finally, for CATH3, in vith sequences contain both alpha structures and
beta structures, the combined model (model 15) performebtdist.

For CATH2 proteins, a great proportion of the non-local ect are the contacts within each beta sheet, which are
closely related to the secondary structures. Hence, thigbeel secondary structures contain very strong signals fo
identifying such non-local contacts and performed vergaffely for CATH2 proteins. On the other hand, for CATH1
proteins, in which sequences contain mainly alpha stras{i?SS features are less effective than CMA features and SP
features, which indicates that the non-local contacts iR proteins are not greatly related to secondary structure
of the residues in contact.

In addition, the different performance of the various medibko suggests that we can learn separate models for
each fold class (mainly alpha, mainly beta, and alpha-pethjch may achieve better performance than a unified
model. Since the state-of-art of the secondary structwedigtion achieves an accuracy of 76%, it is feasible to first
predict which CATH class the sequence is and than apply tiresjgonding predictor.

Predicted Secondary Structure (PSS) Features and Correlat  ed Mutation Analysis (CMA) Features
Predict Different Sets of Contacts To further study the prediction ability of various feature® looked at the
predictions of PSS and CMA features more closely. Figuresdl @ shows the true contact map, the contact map
predicted by model 9 (PSS + Sep) and model 4 (CMA (30)) forginobpti and 3gatA, respectively. Note that the
thin bands anti-parallel to the main diagonal in the contiaap correspond to beta-sheets. As shown in both figures,
clearly, PSS features and CMA features predict differetst gecontacts. As we discussed before, the contacts within
each beta sheet are closely related to the secondary s&uittis not surprised to see that PSS features discovered
these non-local contacts effectively. On the other handAGMgets the problem from a different angle and utilizes
the evolutionary information. Therefore, the predictiomgeneral are not limited to be the non-local contacts withi
the same secondary structure.

Since FSS and CMA features predict different sets of costdbe next question is how we can combine these
two types of features. The combined model (model 15) in authstvas trained usingV M'9"t [10] with a linear
kernel. The resulting model was dominated by FSS featuresl@/L5 behaves similarly as model 9), which indicates
that linear kernels are not able to combine these two typésadfires effectively and non-linear kernels are desired.
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Figure 1: (a)true contact map for 5pti (b)contact map predicted by model 9 (c)contact map predicted by model 4

Figure 2: (a)true contact map for 3gatA (b)contact map predicted by model 9 (c)contact map predicted by model 4

Another possible reason is that tig M9t [10] optimizes the overall classification accuracy instegithe ranking
of the instances. By adding more featur&/ M'9"t [10] is able to improve the overall classification accuracy.
However, this improvement does not always translate totehenking of the instances.

The Use of AAindex in correlated mutation analysis (CMA) and sequence profile (SP) Features As
shown in table 3, model 2 (CMA (McLachlan)) performed thettzaong the CMA based models. Our attempts of
incorporating AAindex in CMA did not improve the performanavhich may be due to the fact that we included too
many physicochemical vectors from various AAindex clustéfhe prediction abilities of the vectors from different
clusters may vary for various fold classes. Since we traatidtie models using a linear kernel, the overall perforneanc
may be damaged by including all the various vectors.

As for sequence profile (SP) features, although model 6 (2fh@hex)) performed worse than model 7 (SP (Amino
Acids), adding SP (AAindex) features (model 8) indeed imprbthe performance with a factor of 10% on average,
which indicates that the average values of each physicachaéwector for a position contain useful information about
the environment and can be used to improve predictions.

Comparing to Other Approaches The comparison to previous reported results is in geneffadult for contact
map prediction for two reasons. First, previous studiepseatbdifferent definitions of the distance between two amino
acids, contact threshold and the scope of contacts. Formgafmariselli et al. [6] focused on non-local contacts
(Il — j| > 6), whereas, Pollastri and Baldi [21] considered all caistagthout any sequence separation constraints.
Since the scope of contacts influences the density of thectndlirectly and the prediction of local contacts is quite
different from non-local contacts, the direct compariseteen the results of predicted contact maps with different
scope is not fair. Second, average accuracy is not a gooduneefas it is influenced by the proportions of different
length groups and fold groups. It will favor more short pineseand non-CATH1 proteins. However, we can still make
relatively fair comparison to the results reported by Fdliit al. [6, 5], the best contact map predictor reported at
CASP4, because their dataset contains more short sequamdes “lack of representation of all-proteins” [5].
They reported an average accuracy of 0.21 and with an imprereover random of a factor greater than 6. Whereas,
our predictor achieved an average accuracy.®288 with an improvement over a random predictor of a factor.1
Especially, our predictor achieved average accuracie2@50 and ®297 with random improvement factors of.20
and 222 for median and long sequences, respectively. Our averageaxies are more than 20% and 100% better
than those reported in [5] for median and long sequencegectgely, which indicates that our model can predict



long sequences more robustly.

6 Concluding Remarks

In this paper, we present our approach of predicting comteagis using support vector machines (SVMs). Our pre-
dictor achieved better results than those of previous amhves, especially for median and long sequences. We also
evaluated the effectiveness of different features forotariprotein fold families. Our experimental results shothed
different set of features achieved the best performancedious protein fold families, which directly leads to our
future work. That is, learning models that are specific farhefold family. We also would like to adopt non-linear
kernels to learn models that combine predicted secondeugtste (PSS) features and correlated mutation analysis
(CMA) features more effectively and develop filtering preses based on secondary structure constraints to further
improve the accuracy of our predictors.
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