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Abstract

Contact map prediction is of great interests for its application in fold recognition and protein 3D structure deter-
mination. In particular, we focusd on predicting non-localinteractions in this paper. We employed Support Vector
Machines (SVMs) as the machine learning tool and incorporated AAindex to extract correlated mutation analysis
(CMA) and sequence profile (SP) features. In addition, we evaluated the effectiveness of different features for vari-
ous fold classes.

On average, our predictor achieved an prediction accuracy of 0.2238 with an improvement over a random predictor
of a factor 11.7, which is better than reported studies. Our study showed that predicted secondary structure features
play an important roles for the proteins containing beta structures. Models based on secondary structure features
and CMA features produce different sets of predictions. Ourstudy also suggests that models learned separately for
different protein fold families may achieve better performance than a unified model.

1 Introduction
Proteins are the molecular devices of life. They are the molecules that regulate the vital fluxes of mass and energy
in biological systems. With the continued completion of genome projects their sequences become known at an ever-
increasing rate. The determination of the structure of proteins is deemed as a key step toward understanding the
behavior of proteins and initiating knowledge-based, rational approaches for engineering molecular solutions. Ex-
perimental efforts, such as x-ray crystallography and NMR techniques are not efficient enough to allow for rapid
structural determination of the ever increasing number of newly discovered sequences. Hence, computational, theo-
retical methodologies are becoming thesine qua nonof protein sequence/structure/function relationship research.

Although the mechanism of protein folding is not yet generally known, it can be reasonably assumed that non-local
interactions are necessary for secondary structural elements to result in a cohesive native structure, which is favored
energetically over alternative conformations. Whereas local interactions are responsible for secondary structuralchar-
acteristics, non-local interactions are crucial for proteins to attain their native state. Numerous experimental andthe-
oretical studies have demonstrated this importance of non-local interactions in foldability, as protein fold attainment
is commonly referred to [17, 1, 8]. Furthermore, and besidesthe foldability, non-local interactions are important for
maintaining the stability and hence the functionality of proteins [7, 15]. Site-directed mutagenesis experiments have
amply demonstrated this importance [27, 13, 24]. Hence, theprediction of non-local interactions is of great interests
for its use in protein fold recognition and 3D structure recovery. Specifically, identifying pairs of non-sequential amino
acid residues or secondary structural elements that interact in 3D space provides a set of topological constraints that
can be utilized in protein fold recognition. Nevertheless,if the contacts of a protein are known, its 3D structure can be
deduced from its contact map [31].

Over the years, a variety of different approaches have been developed for contact map prediction [6, 18, 28, 32, 21],
in which various machine learning tools as well as various features have been employed. The various learning mecha-
nisms include Neural Networks [6, 21], statistical approaches based on correlated mutation [18, 28], and association
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rule based classification [32]. Whereas, the various features include sequence profiles derived from multiple sequence
alignment [6, 32, 21], correlated mutation [6, 18, 28], predicted secondary structures [6, 21] and folding initiation
sites (I-sites) [32]. However, the accuracy of contact map prediction is still far from satisfactory. The current state-
of-art contact map predictor reported at CASP4 achieved an avarge accuracy of 0.21 (a 6-fold improvement over a
random predictor).

One of the interesting outcomes of previous research has been the observation that adding predicted secondary
structure information is very helpful for contact map predictions [21, 6], even more useful than sequence profiles
[21]. However, all previous approaches did not differentiate proteins of different fold families,i.e., the importance of
various features was studies based on their performance on all proteins from different fold families. On the other hand,
Reva and Topiol [26] recently found that beta-structures contribute more significantly to fold recognition than alpha-
structures, which raises the question whether beta-structures also contribute more significantly than alpha-structures
to contact map prediction. The available knowledge of protein fold families (CATH [19]) enables us to answer this
question by testing the effectiveness of predicted secondary structures in contact map prediction for various protein
fold families. Especially, we focused on the class level from CATH [19] and tested whether the predicted secondary
structure features are equally important for proteins withmainly alpha-structures, mainly beta-structures, and both
alpha and beta structures. Furthermore, we would like to address an even broader problem,i.e., for the various fold
classes, how effectively the different features (i.e., correlated mutation, sequence profiles and predicted secondary
structures) predict contact maps. In addition, we employedSupport Vector Machine (SVM) as the classification tool
and incorporated AAindex [12] to extract correlated mutation and sequence profile features.

On average, our predictor achieved a prediction accuracy of0.2238 with an improvement over a random predictor
of a factor 11.7, which is better than reported studies. Our study showed that predicted secondary structure features
play an important roles for the proteins containing beta structures. Models based on secondary structure features
and CMA features produce different sets of predictions. Ourstudy also suggests that models learned separately for
different protein fold families may achieve better performance than a unified model.

The rest of this paper is organized as follows. Section 2 provides some information on contact maps, non-local
interactions, CATH and Support Vector Machines (SVMs). Section 3 describes our approach of predicting contact
maps, including the features and models we studied. Section4 provides the detailed experimental evaluation of
various models for different protein fold groups and lengthgroups. Section 5 discusses some important observations
from the experimental results. Finally, Section 6 providessome concluding remarks.

2 Background Material

2.1 Contact Maps

Contact maps are two-dimensional, binary representationsof protein structures. For a protein withN residues, the
contact map for each pair of amino acidsk andl , (1 ≤ k, l ≤ N), will have a valueC(k, l ) = 1, if a suitably defined
distanced(k, l ) < dthr , wheredthr is a user-defined threshold distance between the amino acids, andC(k, l ) = 0
otherwise. Appropriate distances between amino acid residues can be, for example, the one between the center of
mass, theCα atoms, or the minimum one. A contact map is simply a convenient binary representation of a distance
matrix D, defined asD = [|rkl |], where|rkl | is the distance between the residuesk andl . A particular cutoff distance,
dthr , is chosen and we assignC(k, l ) = 1 for all D(k, l ) < dthr . In principle, contact maps can be built for alternative
unit geometrical objects. For instance, contact maps can becreated for pairs of secondary structural elements insteadof
residues, creating a more coarse-grained representation of the protein structure. In our study, we adopted the definition
of distances to be the distances between theCα atoms of two amino acids and the distance threshold to be 8Å.

2.2 Non-local Contacts

In our study, we focused on the off-diagnol regions of the contact maps, (i.e., non-local contacts). Consider a protein
sequence[a1, a2, . . . , aN] whereN is the number of amino acid residues. We define as non-local any pairwise inter-
actions between amino acidsai anda j with the sequence separation|i − j | > 6. Interactions between amino acids
with sequence separations|i − j | ≤ 6 we define as local, including intra-loop and intra-helix interactions between
any residuesi andi + 5. Non-local interactions are necessary for protein secondary structural elements to result in a
cohesive native structure, which is favored energeticallyover alternative conformations. The significance of non-local
interactions in the foldability, the stability, and the functionality of protein molecules results in a distinct signature of
amino acid residue conservation and covariation during evolutionary processes.
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2.3 CATH

Currently, CATH [19] and SCOP [16] are the major repositories of classified protein structures. CATH stands for Class,
Architecture, Topology, and Homologous superfamily, the four levels of protein hierarchical classification used. The
secondary structure elements and their packing are used to determine the Class. The Architecture level describes the
global shape of the protein incorporating the orientation of secondary structure elements, but ignoring the specific
connectivities. In the level of Topology, proteins are grouped based on shape and connectivity. Finally, sets of pro-
tein folds are grouped depending on their evolutionary relationships. More recently, a protocol was developed that
integrates gene sequences from GenBank [2] within the CATH database, resulting in a significant expansion of the
database to 176,597 domain sequences [20]. Class is determined according to the secondary structure composition and
packing within the structure. It can be assigned automatically for over 90% of the known structures using the method
of Michie et al. (1996). For the remainder, manual inspection is used and where necessary information from the
literature taken into account. Three major classes are recognized; mainly-alpha, mainly-beta and alpha-beta. This last
class (alpha-beta) includes both alternating alpha/beta structures and alpha+beta structures, as originally definedby
Levitt and Chothia (1976). A fourth class is also identified which contains protein domains which have low secondary
structure content. In our study, we focusd on the class levelonly, i.e., we differentiated the proteins by the types of
their secondary structure elements.

2.4 Support Vector Machines

Support vector machines is a state-of-the-art classification technique based on pioneering work done by Vapniket al,
[30]. This algorithm is introduced to solve two-class pattern recognition problems using the Structural Risk Minimiza-
tion principle [30]. Given a training set in a vector space, this method finds thebestdecision hyperplane that separates
two classes. The quality of a decision hyperplane is determined by the distance (referred as margin) between two hy-
perplanes that are parallel to the decision hyperplane and touch the closest data points of each class. Thebestdecision
hyperplane is the one with the maximum margin. By defining thehyperplane in this fashion, SVM is able to generalize
to unseen instances quite effectively. The SVM problem can be solved using quadratic programming techniques [30].
SVM extends its applicability on the linearly non-separable data sets by either using soft margin hyperplanes, or by
mapping the original data vectors into a higher dimensionalspace in which the data points are linearly separable. The
mapping to higher dimensional spaces is done using appropriate kernel functions, resulting in efficient algorithms. A
new example is classified by representing the point the feature space and computing its distance from the hyperplane.

SVM (Support Vector Machine) has been applied to a wide rangeof classification problems because of its many
attractive features, including effective avoidance of overfitting, and the ability to handle large feature spaces. The
success of SVM has been showed in documents classification [4] and secondary structure predictions [9].

3 Contact Map Prediction
The problem of contact map prediction can be stated as a classification problem. Given a set of proteins with known
structures, contact residues and non-contact residues areseparated as positive instances and negative instances. For
each instance, various features are collected to capture useful information of the pair of residues, including amino acid
content, physicochemical environment, secondary structures, evolutionary correlation, and other information thatcan
discriminate contacts from non-contacts. Then, these feature vectors of both positive instances and negative instances
are used as the input to a classification tool to learn a classifier (i.e., predictor). Given a sequence with unknown
structures, the resulting predictor classifies the pairs ofresidues of the sequence to be contacts and non-contacts based
on their feature vectors.

In our approach, we employed Support Vector Machines (SVMs)as the classification tool and collected various
features based on primary sequences, multiple sequence alignments, predicted secondary structures and correlated
mutation analysis. For the rest of this section, we will describe in detail how we extracted various features and
designed learning models.

Correlated Mutations Analysis (CMA) and Sequence Conserva tion
A variety of correlated mutations analysis (CMA) tools havebeen proposed to predict non-local contacts [18, 22,
23, 25, 6]. The correlated mutations analysis (CMA) utilizes evolutionary information. In evolutionary times, the
significance of non-local contacts is manifested in the observed conservation patterns and the covariation of amino
acid residues in multiple sequence alignments of homologous proteins. Pairs of distant sequence positions that are
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proximal in three-dimensional space appear to be conservedor mutated in a correlated fashion, i.e. the frequencies of
particular amino acid appearances in one position are dependent on the amino acid residue in the other position. In
principle, positions with high correlation coefficients, aquantitative measure of mutational covariance in familiesof
homologous proteins, can be inferred to be proximal in 3D.

Instead of following the simple employment of a few physicochemical vectors, such as the volume or the hydropho-
bicity, as was done in previous literature work, we used the ten first principal components that resulted from a principal
component analysis on 142 physicochemical vectors in AAindex, a database of published amino acid properties [12].

Given a multiple sequence alignment (MSA) of a protein, for each pair of amino acids of the protein, the extent of
covariation in mutations was calculated using a simple correlation coefficient

r i j =
1

NMS A
2

NMS A∑

l=1

(ql
i − mi )(ql

j − m j )

si sj
, (1)

whereql
i andql

j are the values for some amino acid physicochemical vector (volume, hydrophobicity, etc.) for se-
quencel at positionsi and j . mi , m j , si andsj are the mean values and the standard deviations of the amino acid
properties ati and j . The sum runs over all theNMS A sequences in the multiple sequence alignment. We also cal-
culated correlated mutations defined in [18], which also employed similar correlation coefficient measure, but used
pairwise amino acid scoring matrix of McLachlan [14] instead of physicochemical vectors. The positions that are
completely conserved or contain more than 10% gaps in MSAs are not included for CMA calculation.

The conservation of each position in the sequence is also calculated based on the Entropy value of the amino acids
appearing at the position in the multiple sequence alignment as follows,

Con(i ) = −

20∑

k=1

P(ak|i ) log P(ak|i ) (2)

whereak is one of the 20 amino acids andP(ak|i ) equals the number of sequences containingak at the positioni
divided by the total number the sequences in the multiple sequence alignment.

Features
For each pair of positions in a protein sequence, we identified five sets of features that capture different aspects of the
amino acids and the locationsi and j : sequence conservation (Con), sequence separation (Sep),correlated mutations
analysis (CMA), predicted secondary structures (PSS) and sequence profiles (SP).

Sequence Conservation (Con) Sequence conservation values based on multiple sequence alignment were cal-
culated for positionsi and j by using Equation 2.

Sequence Separation (Sep) Sequence separation is the distance between two amino acidsin the sequence and
defined by|i − j |.

Correlated Mutations Analysis (CMA) For positionsi and j , we extracted three sets of Correlated Mutations
Analysis (CMA) features. First, we calculated the correlated mutation value defined in [18] and refer this feature
asCMA (McLachlan). Second, we used the ten first principal components that resulted from a principal component
analysis on 142 physicochemical vectors in AAindex [12] as the property vectors. Then, for each one of ten vectors,
we calculated the correlated mutation value by using Equation 1. We refer these ten features asCMA (PCA10). Finally,
AAindex [12] provided a six-way clustering of all the 142 physicochemical vectors (alpha and turn propensities, beta
propensity, Physicochemical properties, composition, hydrophobicity and other properties). From each cluster, five
vectors were selected and used in correlated mutation calculation. We refer these 30 features asCMA (30). We also
referCMA to all the 41 correlated mutation analysis features.

Predicted Secondary Structures (PSS) For each residue, we used three values to represent whether it belongs
to an alpha helix, beta strand or coil. If the residue belongsto one of the three secondary structures, we set the
corresponding value to be 1, and 0 otherwise. For each residue pair(i, j ), we considered a window of width three,
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(i.e., we considered positionsi − 1, i , i + 1, j − 1, j , and j + 1). Hence, we have 18 secondary structure features in
total.

Sequence Profiles (SP) The use of sequence profiles, which are derived from a multiple sequence alignment of
homologous sequences, have been shown to be able to improve the prediction of contact maps [6, 21]. We adopted
the three-neighborhood approach in [6]. For positionsi and j , the occurrence frequencies of all the possible amino
acid pairs (210) were calculated from the multiple sequencealignment. Besides(i, j ), we also calculated the profiles
of (i − 1, j − 1), (i + 1, j + 1), (i − 1, j + 1) and(i + 1, j − 1) and we refer these 1050(210∗ 5) features as
SP (Amino Acids). In addition to using amino acid pair frequencies to represent the profile, we also used twelve
physicochemical vectors from AAindex [12] to describe the physciochemical environment around positionsi and j .
Again, we considered a window of width three aroundi and j . For each position, the average of one physicochemical
property was calculated by averaging the physicochemical property values for all the amino acid that appeared at that
position in the multiple sequence alignment. We refer these72 (12 ∗ 6) features asSP (AAindex)and all sequence
profile related features (SP (Amino Acids) + SP (AAindex)) asSP.

Models
We trained 15 SVM models by using different sets of features.Table 1 shows various models and the set of features
used in each model. Besides the features showed in the table 1, all the 15 models contain the sequence conservation
(Con) features for positionsi and j . The 15 models can be grouped into four sets, predicted secondary structure
(PSS) based, CMA based, Sequence Profile (SP) based, and combined models. We evaluated the different ways of
extracting CMA features and SP features by comparing the various CMA based models and SP based models. Finally,
we combined the five sets of features (Con, Sep, PSS, CMA, and SP) in various ways to evaluate their effectiveness.

Table 1: Features used in various models

Secondary Structure based Sequence Profile based Combined
Model Features Model Features Model Features

1 PSS 6 SP (AAindex) 9 Sep + PSS
7 SP (Amino Acids) 10 Sep + CMA

CMA based 8 SP 11 Sep + PSS + CMA
2 CMA (McLachlan) 12 PSS + SP
3 CMA (PCA10) 13 CMA + SP
4 CMA (30) 14 PSS + CMA + SP
5 CMA 15 Sep + PSS + CMA + SP

Support Vector Machine (SVM) Training
We adopted a three-way across-validation process for training and testing each model. The dataset was divided into
three subsets randomly, out of which the model was trained with two subsets as the training set and tested on the other
subset as the testing set. The splitting of the dataset was the same for each one of the 15 models.

Given a training set, the input for SVM training is a collection of feature vectors of all the position pairs from all the
sequences in the training set. We call each feature vector asa instance. We also input the true class label (positive for
contacts and negative for non-contacts) of each instance for SVM training. Since there are much more non-contacts
than contacts, we randomly sampled non-contact instances,so that the number of contact instances and the number of
non-contact instances are the same approximately. Again, the negative instance sampling is the same for each one of
the 15 models. All the 15 models were trained usingSV Mlight [10] with a linear kernel and the defaultC value.

Prediction of Contacts
Given a testing sequence, the input for a predictor (i.e., one of the 15 models) is also a collection of features vectors
of all the position pairs from that sequence. The predictor will return a score for each instance. If we assign contact to
be the positive class and non-contact to be the negative class, then the higher the score is, the more likely the pair of
amino acids is in contact. Hence, the returned scores can be sorted into a list, from which the top pairs are predicted
as contact points. Finally, the contacts can be predicted byeither setting a value threshold or the number of predicted
contacts.
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4 Experimental Results

4.1 Data Preparation

Dataset
The dataset we use in training and testing our predictors contains 177 proteins with known 3D structure from Protein
Data Bank (PDB [3]). The proteins whose chains are not interrupted and contain no more than two domains were
selected. The list of proteins was further reduced to only contain the proteins with pairwise sequence identity lower
than 25%. Finally, we excluded the proteins that have less than 15 homologous proteins returned by PSI-BLAST when
searching against non-redundant protein database (NR).

Multiple Sequence Alignment and Predicted Secondary Struc ture
To obtain multiple sequence alignments (MSAs), we first collected homologous sequences for each protein by using
PSI-BLAST searching against non-redundant protein database (NR). We used the default parameters of PSI-BLAST
and only kept sequences with more than 20% and less than 80% sequence identity. Then, we used ClustalW [29]
to generate the final MSAs of the target protein and its homologous sequences. The predicted secondary structures
for each proteins were obtained by using PSIPRED [11], a two-stage neural network predictor based on the position
specific scoring matrices generated by PSI-BLAST.

4.2 Experimental Methodology and Metrics

Evaluation Metrics
To compare the results with other approaches [6], we predictthe topL p/2 pairs to be contact points, whereL p is the
length of the protein. This cutoff is also based on the fact that in general the number of contacts increases linearly with
the length of the protein [18].

We evaluated the prediction by calculating the accuracy andthe improvement over a random predictor. The accuracy
of the prediction is defined by the ratio of the number of correct predictions and the total number of predictions,i.e.,

Acc=
Ncp

Np
(3)

whereNcp is the number of correct predictions andNp is the total number of predictions, which is also equal toL p

in our experiments. A random predictor will place contact pairs randomly on the list. Hence the accuracy of the top
L p/2 pairs is equal to the accuracy of the overall list,i.e., the density of contacts of the proteins, which is defined as
follows,

R Acc=
Nc

N
(4)

whereN is the total number of amino acid pairs with sequence separation greater than 6, andNc is the number of
observed contacts. Finally, the improvement over a random predictor is defined by the ratio betweenAccandR Acc.

Methodology
Recall from Section 3, each model was learned by using a three-way cross-validation. Each protein appeared in one
and only one testing set. Hence, the prediction accuracies of all the proteins were obtained after the three-way cross-
validation process. Since we are interested in the difference of prediction effectiveness for proteins of different fold
families, we grouped the proteins according to their CATH codes as well as their lengths. For example, theCATH1
group contains the proteins with CATH class code 1, (i.e., mainly-alpha class). Since the proteins may contain two
domains, we have combinations of single CATH classes. For example, theCATH1 & CATH3group contains the
proteins that have two domains, of which one belongs to CATH class 1 and the other belongs to CATH class 3. The
groupOtherscontains the proteins of unknown CATH codes or CATH class codes other than 1, 2 and 3. Note that the
CATH1, CATH2 and CATH3 group may also contain multi-domain proteins, in which cases, the different domains
belong to the same CATH class. In total, we have three length groups (i.e., short, median and long), and six fold
groups. Table 2 shows the average density of the proteins within each group. The numbers in parentheses are the
number of proteins in each group.
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Table 2: Statistics of the Density of Contacts for Various Protein Categories

CATH1 (34) CATH2 (35) CATH3 (75) CATH1 & CATH3 (9) CATH2 & CATH3 (6) Others (18)
l < 100 (40) 0.0211(13) 0.0588(9) 0.0517(13) -(0) -(0) 0.0728(5)
100< l < 300 (101) 0.0141(18) 0.0347(24) 0.0229(43) 0.0136(5) 0.0178(4) 0.0190(7)
l > 300 (36) 0.0088(3) 0.0135(2) 0.0099(19) 0.0110(4) 0.0107(2) 0.0100(6)

As shown from table 2, the CATH1 group, mainly-alpha class, has significantly lower average densities than the
other groups. Whereas, the CATH2 groups, mainly-beta class, has the highest average densities.

4.3 Results

Table 3 shows the average prediction accuracy and random improvement factor of various models for different fold
groups, in which each row represents each model and each column corresponds to each fold group. The overall
performance of each model is also included in the last column. The values in parentheses are the average improvement
over a random predictor for the proteins within each fold group. For each fold group, the entries of the best performance
are in bold face.

A number of observations can be made from table 3. First, the overall best model is model 15, which achieved
0.2238 accuracy and performs 11.7 times better than a random predictor. Second, in general, model 9, model 11
and model 15 behaved very similarly. Model 9 is based only on sequence separation (Sep) and predicted secondary
structure (PSS) features. By adding correlated mutation analysis (CMA) features, model 11 performed slightly better
than model 9 on average. By adding both CMA and sequence profile (SP) features, model 15 achieved the best
performance. Third, for the CATH1 group, model 13, which is based on CMA and SP features, produced the best
prediction accuracy of 0.0657 and random improvement factor of 4.6, which are 26% and 58% better than model
9, respectively. On the other hand, for the rest of the fold groups, except the CATH3 group, model 9 performed
the best. For the CATH3 group, model 15 produced the best prediction on average. Finally, model 14 and model 1
performed more than 40% worse than model 15 and model 9, respectively, whereas, model 5 and model 11 had similar
performance, which suggests that the sequence separation is indeed an important feature to be used together with PSS
features, but may not be very useful when combining with other features.

Table 3: Average Prediction Accuracy and Random Improvement of Various Models for Different Fold Groups

model CATH1 CATH2 CATH3 CATH1 & CATH3 CATH2 & CATH3 Others Overall
PSS 1 0.0545(2.9) 0.1504(3.9) 0.2024(9.6) 0.1547(12.6) 0.1225(8.3) 0.1435(6.4) 0.1523(6.9)
CMA 2 0.0528(3.3) 0.1304(3.6) 0.0910(4.4) 0.0990(8.2) 0.0596(4.1) 0.0804(3.3) 0.0897(4.1)
(based) 3 0.0476(2.8) 0.1120(2.9) 0.0921(4.1) 0.0719(5.7) 0.0459(3.2) 0.0832(3.6) 0.0839(3.6)

4 0.0502(3.0) 0.1088(2.9) 0.0933(4.1) 0.0632(5.0) 0.0486(3.6) 0.0737(2.5) 0.0830(3.5)
5 0.0489(3.2) 0.1256(3.4) 0.0900(4.4) 0.0958(7.9) 0.0643(4.4) 0.0730(2.5) 0.0868(3.9)

SP 6 0.0443(2.5) 0.1009(2.5) 0.0833(3.7) 0.0485(4.0) 0.0560(3.7) 0.0494(2.1) 0.0731(3.1)
(based) 7 0.0592(3.6) 0.1277(3.4) 0.1321(6.3) 0.1105(8.8) 0.0787(4.9) 0.0741(3.5) 0.1083(5.0)

8 0.0611(3.8) 0.1278(3.4) 0.1382(6.6) 0.1172(9.5) 0.0831(5.3) 0.0711(3.7) 0.1114(5.2)
Combined 9 0.0512(2.9) 0.2302(6.8) 0.2695(14.9) 0.2913(24.1) 0.3003(21.4) 0.2356(13.7) 0.2182(11.5)

10 0.0551(3.5) 0.1193(3.4) 0.0897(4.5) 0.0995(8.2) 0.0724(5.3) 0.0894(4.6) 0.0888(4.3)
11 0.0555(3.2) 0.2200(6.5) 0.2811(15.3) 0.2678(22.4) 0.2899(20.5) 0.2300(13.0) 0.2198(11.5)
12 0.0587(3.7) 0.1656(4.3) 0.2064(9.8) 0.1631(13.4) 0.1490(10.3) 0.1223(6.4) 0.1570(7.4)
13 0.0657(4.6) 0.1580(4.3) 0.1519(7.4) 0.1315(10.7) 0.1091(6.7) 0.0830(3.8) 0.1269(6.0)
14 0.0606(4.1) 0.1823(5.0) 0.2086(10.2) 0.1963(15.9) 0.1529(10.3) 0.1212(5.9) 0.1633(7.9)
15 0.0584(3.3) 0.2236(6.5) 0.2845(15.4) 0.2804(23.4) 0.2995(20.9) 0.2336(13.4) 0.2238(11.7)

We also summarized detailed performance of model 15 for different fold groups and length groups in table 4,
in which each row corresponds to each fold group and each column corresponds to each length group. The overall
average prediction accuracy and random improvement of eachlength group can be found in the last row. Again, the
values in parentheses are the average improvement over a random predictor. As shown in table 4, model 15 performed
well for the CATH3, CATH1 & CATH3 and CATH2 & CATH3 group. For these groups, the overall performance
is in the range of 0.2805-0.2995 and 15.4 − 23.4 times better than a random predictor. The best performancefor
CATH3 proteins may be due to the fact that the majority proteins in our dataset are CATH3 proteins (i.e., 75 out of
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177). Model 15 also performed relatively well for CATH2 proteins with an average prediction accuracy of 0.2236 and
an average random improvement factor of 6.5 overall. However, for CATH1 proteins, model 15 performed poorly,
only 3.3 times better than a random predictor with an averageprediction accuracy of 0.0584. Since we have similar
number of CATH1 proteins and CATH2 proteins in our dataset, the significant performance difference must relate to
some characteristics of each fold group. Another observation we can made from table 4 is that the prediction accuracy
decreases as the sequence length increases. However, the decrease is within the range of 13%-16%, which is much
less significant than the ones reported before [6, 32]. The relatively good performance for long proteins indicates that
our model is more robust to the length of proteins than other approaches.

Table 4: Average Prediction Accuracy and Random Improvement of Model 15 for Different Fold Groups and Length Groups

l < 100 100< l < 300 l > 300 Overall
CATH1 0.0501(2.2) 0.0670(4.0) 0.0426(4.0) 0.0584(3.3)
CATH2 0.2760(4.8) 0.2014(6.2) 0.2531(18.4) 0.2236(6.5)
CATH3 0.3125(6.9) 0.2836(13.5) 0.2664(26.0) 0.2845(15.4)
CATH1 & CATH3 -(-) 0.3021(23.0) 0.2532(23.8) 0.2804(23.4)
CATH2 & CATH3 -(-) 0.3121(18.4) 0.2744(25.8) 0.2995(20.9)
Others 0.2703(3.5) 0.2578(15.9) 0.1747(18.6) 0.2336(13.4)
Overall 0.2137(4.5) 0.2257(10.9) 0.2297(22.2) 0.2238(11.7)

5 Discussion
Different Fold Groups Prefer Different Sets of Features The most important observation from experimen-
tal results is that for different fold groups (e.g., CATH1, CATH2 and CATH3), the model that achieved the best
performance is different. Predicted secondary structure (PSS) features performed the best for CATH2 but poorly for
CATH1. On the other hand, correlated mutation analysis (CMA) and sequence profile (SP) features performed the
best for CATH1 but poorly for CATH2. Finally, for CATH3, in which sequences contain both alpha structures and
beta structures, the combined model (model 15) performed the best.

For CATH2 proteins, a great proportion of the non-local contacts are the contacts within each beta sheet, which are
closely related to the secondary structures. Hence, the predicted secondary structures contain very strong signals for
identifying such non-local contacts and performed very effectively for CATH2 proteins. On the other hand, for CATH1
proteins, in which sequences contain mainly alpha structures, PSS features are less effective than CMA features and SP
features, which indicates that the non-local contacts in CATH1 proteins are not greatly related to secondary structure
of the residues in contact.

In addition, the different performance of the various models also suggests that we can learn separate models for
each fold class (mainly alpha, mainly beta, and alpha-beta), which may achieve better performance than a unified
model. Since the state-of-art of the secondary structure prediction achieves an accuracy of 76%, it is feasible to first
predict which CATH class the sequence is and than apply the corresponding predictor.

Predicted Secondary Structure (PSS) Features and Correlat ed Mutation Analysis (CMA) Features
Predict Different Sets of Contacts To further study the prediction ability of various features, we looked at the
predictions of PSS and CMA features more closely. Figures 1 and 2 shows the true contact map, the contact map
predicted by model 9 (PSS + Sep) and model 4 (CMA (30)) for protein 5pti and 3gatA, respectively. Note that the
thin bands anti-parallel to the main diagonal in the contactmap correspond to beta-sheets. As shown in both figures,
clearly, PSS features and CMA features predict different sets of contacts. As we discussed before, the contacts within
each beta sheet are closely related to the secondary structure, it is not surprised to see that PSS features discovered
these non-local contacts effectively. On the other hand, CMA targets the problem from a different angle and utilizes
the evolutionary information. Therefore, the predictionsin general are not limited to be the non-local contacts within
the same secondary structure.

Since FSS and CMA features predict different sets of contacts, the next question is how we can combine these
two types of features. The combined model (model 15) in our study was trained usingSV Mlight [10] with a linear
kernel. The resulting model was dominated by FSS features (Model 15 behaves similarly as model 9), which indicates
that linear kernels are not able to combine these two types offeatures effectively and non-linear kernels are desired.
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Figure 1: (a)true contact map for 5pti (b)contact map predicted by model 9 (c)contact map predicted by model 4
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Figure 2: (a)true contact map for 3gatA (b)contact map predicted by model 9 (c)contact map predicted by model 4

Another possible reason is that thatSV Mlight [10] optimizes the overall classification accuracy insteadof the ranking
of the instances. By adding more features,SV Mlight [10] is able to improve the overall classification accuracy.
However, this improvement does not always translate to a better ranking of the instances.

The Use of AAindex in correlated mutation analysis (CMA) and sequence profile (SP) Features As
shown in table 3, model 2 (CMA (McLachlan)) performed the best among the CMA based models. Our attempts of
incorporating AAindex in CMA did not improve the performance, which may be due to the fact that we included too
many physicochemical vectors from various AAindex clusters. The prediction abilities of the vectors from different
clusters may vary for various fold classes. Since we trainedall the models using a linear kernel, the overall performance
may be damaged by including all the various vectors.

As for sequence profile (SP) features, although model 6 (SP (AAindex)) performed worse than model 7 (SP (Amino
Acids), adding SP (AAindex) features (model 8) indeed improved the performance with a factor of 10% on average,
which indicates that the average values of each physicochemical vector for a position contain useful information about
the environment and can be used to improve predictions.

Comparing to Other Approaches The comparison to previous reported results is in general difficult for contact
map prediction for two reasons. First, previous studies adopted different definitions of the distance between two amino
acids, contact threshold and the scope of contacts. For example, Fariselli et al. [6] focused on non-local contacts
(|i − j | > 6), whereas, Pollastri and Baldi [21] considered all contacts without any sequence separation constraints.
Since the scope of contacts influences the density of the contacts directly and the prediction of local contacts is quite
different from non-local contacts, the direct comparison between the results of predicted contact maps with different
scope is not fair. Second, average accuracy is not a good measure for it is influenced by the proportions of different
length groups and fold groups. It will favor more short proteins and non-CATH1 proteins. However, we can still make
relatively fair comparison to the results reported by Fariselli et al. [6, 5], the best contact map predictor reported at
CASP4, because their dataset contains more short sequencesand is “lack of representation of all-α proteins” [5].
They reported an average accuracy of 0.21 and with an improvement over random of a factor greater than 6. Whereas,
our predictor achieved an average accuracy of 0.2238 with an improvement over a random predictor of a factor 11.7.
Especially, our predictor achieved average accuracies of 0.2257 and 0.2297 with random improvement factors of 10.9
and 22.2 for median and long sequences, respectively. Our average accuracies are more than 20% and 100% better
than those reported in [5] for median and long sequences, respectively, which indicates that our model can predict
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long sequences more robustly.

6 Concluding Remarks
In this paper, we present our approach of predicting contactmaps using support vector machines (SVMs). Our pre-
dictor achieved better results than those of previous approaches, especially for median and long sequences. We also
evaluated the effectiveness of different features for various protein fold families. Our experimental results showedthat
different set of features achieved the best performance forvarious protein fold families, which directly leads to our
future work. That is, learning models that are specific for each fold family. We also would like to adopt non-linear
kernels to learn models that combine predicted secondary structure (PSS) features and correlated mutation analysis
(CMA) features more effectively and develop filtering processes based on secondary structure constraints to further
improve the accuracy of our predictors.
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