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Abstract— We analyze the performance of likelihood-
based approaches used to reconstruct phylogenetic trees.
Unlike other techniques such as Neighbor-Joining (NJ)
and Maximum Parsimony (MP), relatively little is known
regarding the behavior of algorithms founded on the
principle of likelihood. We study the accuracy, speed, and
likelihood scores of four representative likelihood-based
methods (fastDNAml, MrBayes, PAUP*-ML, and TREE-
PUZZLE) that use either Maximum Likelihood (ML) or
Bayesian inference to find the optimal tree. NJ is also
studied to provide a baseline comparison. Our simulation
study is based on random birth-death trees, which are
deviated from ultrametricity, and uses the Kimura 2-
parameter + Gamma model of sequence evolution. We find
that MrBayes (a Bayesian inference approach) consistently
outperforms the other methods in terms of accuracy and
running time.

I. INTRODUCTION

Evolutionary biology is founded on the concept that
organisms share a common origin and have subsequently
diverged through time. Phylogenies (typically formulated
as trees) represent our attempts to reconstruct evolution-
ary history. Phylogenetic analysis is used in all branches
of biology with applications ranging from studies on
the origin of human populations to investigations of
the transmission patterns of HIV [14], and beyond,
with a variety of uses in drug discovery, forensics, and
security [1]. The accurate estimation of evolutionary
trees is a challenging computational problem. For a
given set of organisms (or taxa), the number of possible
evolutionary trees is exponential. There are more than
two million different trees for 10 taxa, and more than
2 x 10'82 different trees for 100 taxa. An exhaustive
search through the tree space is certainly not an option.
Thus, scientists have designed a plethora of heuristics
to assist them with phylogenetic analysis. Here, we
study the performance of likelihood-based approaches
for reconstructing phylogenetic trees.

Likelihood is the probability of observing the data
given a particular model. It is represented mathematically
as Pr(D|M), read “probability of D given M”. Here,

D is the observed data and M is the model [18].
Different models may make the observed data more
or less probable. For instance, suppose you toss a fair
coin. After 100 independent tosses, you observe heads
once and fails 99 times. Under the assumed model of
a fair coin, the likelihood of this event is (1(1)0) . 21%
or 7.89 x 102°, For a coin tossed 100 times, there are
2100 different, equally-likely possibilities. Only 100 of
those sequences yield a single heads. Hence, the above
event is not very likely if a fair coin is used. A more
likely event is the appearance of 50 heads and 50 tails,
which has a likelihood of (15000) . 21—100 or 7.96 x 1072,
Many biologists prefer likelihood approaches since they
are statistically well-founded, possibly producing the
most accurate phylogenetic trees. However, techniques
such as Neighbor-Joining (NJ) [22] and Maximum Par-
simony(MP) are also popular, since they are relatively
fast, whereas likelihood-based approaches are extremely
slow, limiting their use to small problems.

Many of the reconstruction methods used by biologists
(distance methods, parsimony search, or quartet puz-
zling) have been studied extensively in an experimental
environment [15], [20], [25]. Yet, very little is known
concerning the behavior of likelihood-based methods.
Previous work has studied the performance of such
algorithms in a limited context, where typically a single
criterion is of interest (i.e, number of taxa, execution
time, or accuracy) [3], [7], [11], [12], [20].

Our study is the first (to the best of our knowledge) to
examine the behavior of likelihood methods under a vari-
ety of different conditions. Specifically, our study varies
the number of taxa (20, 40, 60), sequence length (100,
200, 400, 800, 1600), and evolutionary distance (0.1, 0.3,
and 1.0). Space constraints force us to refer the reader
to [27] for performance results with an evolutionary
distance of 0.1. We study four representative likelihood
methods (fastDNAml, MrBayes, PAUP*-ML, TREE-
PUZZLE) that use either Maximum Likelihood (ML) or
Bayesian inference to find the optimal tree. PAUP*-ML
denotes using the ML procedure in PAUP*4.0 [26]. NJ
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is also used to provide a baseline comparison. For all
experiments, MrBayes (a Bayesian inference approach)
clearly outperformed its competitors.

The rest of this paper is organized as follows. Sec-
tion II provides background information on using likeli-
hood in phylogenetic analysis. Our experimental method-
ology is presented in Section III. Results are presented
in Section IV. Finally, Section V provides concluding
remarks.

II. BACKGROUND

The principle of likelihood suggests that the explana-
tion that makes the observed outcome the most likely
occurrence is the one to be preferred. Formally, given
data D and a model M, the likelihood of that data is given
by L = Pr(D|M), which is the probability of obtaining
D given M. In the context of phylogenetics, D is the
sequences of interest, and M is a phylogenetic tree.
Below, we describe two approaches that use the principle
of likelihood—Maximum Likelihood (ML) and Bayesian
inference.

A. Maximum Likelihood

The Maximum Likelihood (ML) estimate of a phy-
logeny is the tree for which the observed data are most
probable. Consider the data as aligned DNA sequences
for n taxa. ML reconstruction consists of two tasks. The
first task involves finding edge lengths that maximize
the likelihood given a particular topology. Techniques to
estimate branch lengths are based on iterative methods
such as Expectation Maximization (EM) [2] or Newton-
Raphson optimization [17]. Each iteration of these meth-
ods requires a large amount of computation. For a given
tree, we must consider all possible nucleotides (A, G,
C, T) at each interior node. The number of nucleotide
combinations to examine for an n-taxa tree is 4(”’2),
since there are n — 2 interior nodes.

The second task is to find a tree topology that max-
imizes the likelihood. Naive, exhaustive search of the
tree space is infeasible, since the number of blfurcatlng
unrooted trees to be explored for n taxa is 3 2;' ”5 3
Furthermore, finding the best tree is hampered by tf1e
costly procedure of estimating edge lengths for different
trees. Instead, the most likely tree is constructed in a
greedy fashion by using a stepwise-addition algorithm.
An initial tree is created by starting with three randomly
chosen taxa. There is only one possible topology for a
set of three taxa. A fourth randomly chosen taxon is
attached, in turn, to each branch of the initial tree. The
tree with the highest score is used as the starting tree
for adding a fifth randomly chosen taxon. The process
continues until all # taxa are added to the tree.

B. Bayesian inference

The Bayesian approach to phylogenetics builds upon
a likelihood foundation. It is based on a quantity called
the posterior probability of a tree. Bayes’ theorem

Pr(Data|Tree) x Pr(Tree)
Pr(Data)

Pr(Tree|Data) =

is used to combine the prior probability of a phy-
logeny (Pr(Tree)) with the likelihood (Pr(Data|Tree))
to produce a posterior probability distribution on trees
(Pr(Tree|Data)). The posterior probability represents
the probability that the tree is correct. Note that, unlike
likelihood scores, posterior probabilities sum to 1. Infer-
ences about the history of the group are then based on
the posterior probability of trees. For example, the tree
with the highest posterior probability might be chosen
as the best estimate of phylogeny. Typically all trees are
considered a priori equally probable, and likelihood is
calculated using a substitution model of evolution.

Computing the posterior probability involves a sum-
mation over all trees, and, for each tree, integration over
all possible combinations of branch length and substi-
tution model parameter values. A number of numerical
methods are available to allow the posterior probability
to be approximated. The most common is Markov Chain
Monte Carlo (MCMC). For the phylogeny problem, the
MCMC algorithm involves two steps. First, a new tree
is proposed by stochastically perturbing the current tree.
Afterwards, the tree is either accepted or rejected with a
probability described by Metropolis ef al. [13] and Hast-
ings [5]. If the new tree is accepted, then it is subjected
to more perturbations. For a properly constructed and
adequately run Markov chain, the proportion of the time
that any tree is visited is a valid approximation of the
posterior probability of that tree.

C. ML versus Bayesian inference

Bayesian analysis of phylogenies is similar to ML in
that the user postulates a model of evolution and the
program searches for the best tree(s) that are consis-
tent with both the model and the data. Both attempt
to estimate a conditional probability density function:
Pr(Data|Tree) for ML and Pr(Tree|Data) for Bayesian
methods. The salient difference between the two methods
is that Bayesian analysis requires an additional parame-
ter, the prior probability, that must be fixed in advance.
Since the prior probability is unknown, using any fixed
guess introduces a potential source of error. Another
difference that is often argued is that ML seeks the single
most likely tree, whereas Bayesian analysis searches
for the best set of trees leading to a construction of
a consensus tree. However, such a difference is more
a matter of traditional usage than one of algorithmic
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design. For example, the ML approach does not prohibit
the user from keeping the top 10 trees and computing
their consensus.

III. EXPERIMENTAL METHODOLOGY

We use a simulation study in order to evaluate the
likelihood-based methods under consideration. In a sim-
ulated environment, the true (or model) tree is artificially
generated and forms the basis for comparison among
phylogenetic methods are compared. (With real data, the
true tree is typically unknown). The simulation process
starts with evolving a single DNA sequence (placed
at the root of the model tree) under some assumed
stochastic model of evolution to a set of sequences
(located at the leaves of the tree). These sequences
are given to the phylogenetic reconstruction methods,
which infer a tree based on the given sequences. The
inferred trees are then compared against the model tree
for topological accuracy. The above process is repeated
many times to obtain a statistically significant test of the
performance of the methods under these conditions.

A. Model Trees

We used random birth-death trees as model trees for
our experiments. The birth-death trees were generated
using the program r8s [23], using a backward Yule
(coalescent) process with waiting times taken from an
exponential distribution. An edge e in a tree generated
by this process has length A., a value that indicates the
expected number of times a random site changes on the
edge. Trees produced by this process are ultrametric,
meaning that all root-to-leaf paths have the same length.
A random site is expected to change once on any root-
to-leaf path; that is the (evolutionary) height of the tree
is 1.

In our simulation study, we scale the edge lengths
of the trees to give different heights (or evolutionary
distances). To scale the length of the tree to height
h, we multiply each edge of the tree by h. We used
heights of 0.1, 0.3, and 1.0 in our study. We also modify
the edge lengths of birth-death trees to deviate the tree
away from the assumption that sites evolve under a
strong molecular clock. To deviate a tree away from
ultrametricity with deviation ¢ we proceed as follows.
For each edge e € T, choose a number, x, uniformly from
[—1gc,lgc]. Afterwards, multiply the branch length A,
by ¢*. Given deviation c, the expected deviation will be
(¢—1/c)/21Inc. In our experiments, the deviation factor,
¢, was set to 4. Hence, the expected value each branch
length is multiplied by is 1.36.

B. DNA Sequence Evolution

Once model trees are constructed, sequences are gen-
erated based on a model of evolution. The software used

for sequence evolution is Seq-Gen [19]. We generated
sequences under the Kimura 2-parameter (K2P) [10] +
Gamma [28] model of DNA sequence evolution, one
of the standard models for studying the performance of
phylogenetic reconstruction methods. Under K2P, each
site evolves down the tree under the Markov assumption.
In this model, nucleotide substitutions are categorized
based on the substitutions of pyrimidines (C and T) and
purines (A and G). A transition substitutes a purine for
a purine or a pyrimidine for a pyrimidine, whereas a
transversion is a substitution of a purine for a pyrimidine
or vice versa. The probability of a given nucleotide
substitution depends on the edge and upon the type
of substitution. We set the transition/transversion ratio,
K, to 2 (the standard setting). For rate heterogeneity,
different rates were assigned to different sites according
to the Gamma distribution with parameter o set to 1 (the
standard setting).

C. Measures of Accuracy

We use the Robinson-Foulds (RF) distance [21] to
measure the error between trees. For every edge e in a
leaf-labeled tree, T defines a bipartition 7, on the leaves
(induced by the deletion of e). The tree T is uniquely
characterized by the set C(T) = {n,: e € E(T)}, where
E(T) is the set of all internal edges of T. If T is a
model tree and 7" is the tree obtained by a phylogenetic
reconstruction method, then the error in the topology can
be calculated as follows:

« False Positives (FP): C(T') — C(T).

o False Negatives (FN): C(T) — C(T").

The RF distance is the average of the number of False
Positives and False Negatives. Our figures plot the RF
rates, which are obtained by normalizing the RF distance
by the number of internal edges. Thus, the RF rate varies
between 0% and 100%.

D. Phylogenetic Reconstruction Methods

We considered five phylogenetic reconstruction meth-
ods in our simulation study. Three of the methods (fastD-
NAml, TREE-PUZZLE, and PAUP*-ML) use ML to
construct the inferred tree. MrBayes is the sole algorithm
that uses a Bayesian approach. NJ was used to provide
a baseline comparison. The software package PAUP*4.0
was used to construct ML and NJ trees, which we denote
by PAUP*-ML and NI, respectively.

1) fastDNAml: fastDNAmIl [17] uses the stepwise-
addition algorithm (described in Section II-A) to build
a tree consisting of n-taxa. The best tree resulting from
each step is subjected to local rearrangements, which
explore the search space for a more likely tree. After
all n taxa are added to the tree, a global rearrangement
stage may be invoked.
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2) MrBayes: MrBayes [6] is a Bayesian infer-
ence method that incorporates both Markov Chain
Monte Carlo (MCMC) (described in Section II-B) and
Metropolis-Coupled Markov Chain Monte Carlo (MC? )
analysis [4]. MC? can be visualized as a set of indepen-
dent searches that occasionally exchange information,
which may allow a search to escape an area of local
optima. For both types of analysis, the final output is
a set of trees that the program has repeatedly visited.
A majority rule consensus tree may be built from the
output trees.

3) TREE-PUZZLE: TREE-PUZZLE [24] is a quartet-
puzzling (QP) algorithm. Let S be the set of sequences
labeling the leaves of an evolutionary tree T. A quartet
of S is a set of four sequences taken from S, and a quartet
topology is an evolutionary tree on four sequences. The
QP algorithm consists of three steps. In the ML step,
all () quartet ML trees are reconstructed to find the
most likely relationship for each set of four out of n
sequences. During the puzzling step, these quartet trees
are composed into an intermediate tree adding sequences
one by one. The result of this step is highly dependent on
the order of sequences. As a result, many intermediate
trees from different input orders are constructed. From
these intermediate trees a consensus tree (typically using
a majority rule) is built in the consensus step.

4) PAUP*-ML : Similarly to fastDNAml, PAUP*-ML
uses a stepwise-addition strategy to build the final tree.
Local rearrangements occur after each taxon has been
added to find a better tree. Once the final taxon has been
added, a series of global rearrangements occur to find the
final tree.

5) Neighbor-Joining: Neighbor-Joining [22] is one
of the most popular distance-based methods. NJ use a
distance matrix to compute the resulting tree. For every
pair of taxa, it determines a score based on the distance
matrix. The algorithm joins the pair with the minimum
score, making a subtree whose root replaces the two
chosen taxa in the matrix. Distances are recalculated
based on this new node, and the “joining” continues until
three nodes remain. These nodes are joined to form an
unrooted binary tree. Appealing features of NJ are its
simplicity and speed.

IV. EXPERIMENTAL RESULTS

Our simulation study explores the behavior of the phy-
logenetic methods under a variety of different conditions.
We generated 10 model trees for each tree size (20, 40,
and 60 taxa) and scaled their heights by 0.1, 0.3, and
1.0 to vary the evolutionary distance. Afterwards, DNA
sequences of lengths 100, 200, 400, 800, and 1600 were
created from the scaled trees. All programs were run
with the recommended default settings on Pentium 4
computers. Since MrBayes incorporates MC> analysis,

we ran MrBayes with 2 chains, denoted MrBayes-CH?2.
Section IV-D considers the performance of MrBayes
when the number of chains varies. For MrBayes, we used
60,000 generations, the current tree was saved every 100
generations, and consensus analysis ignored the first 120
trees (the burn-in value).

A. Speed

Figure 1 presents the execution time required by the
different phylogenetic methods. NJ is fast and requires
less than 1 second to output a final tree. The likelihood
approaches, on the other hand, require large amounts
of time to complete a phylogenetic analysis. For 20
taxa, TREE-PUZZLE is the fastest likelihood-based al-
gorithm, but the algorithm is unable to complete an
analysis for either 40 or 60 taxa. (A three-day limit
was placed on an experimental run.) The maximum
likelihood calculation of () quartet trees is the source of
TREE-PUZZLE’s inability to produce an answer within
a reasonable amount of time.

MrBayes is the only likelihood-based method that
consistently produced a tree on all of our datasets. Its
running time scales linearly with the sequence length.
Neither fastDNAml nor PAUP*-ML terminated for 60
taxa. Instead, these ML methods cycled infinitely among
equally likely trees. With increases in both the number
of taxa and sequence length, the likelihood score ap-
proaches negative infinity, which cannot be represented
precisely in computer hardware. Bayesian approaches
avoid infinite loops since the user must specify the
number of generations an analysis will execute. (PAUP*-
ML provides an option to place a time limit on the
heuristic search, but we did not use it.) For 40 taxa,
the ML methods require 1-3 hours of computation
time. MrBayes, on the other hand, requires less than
30 minutes of execution time on all datasets. MrBayes
is quite fast for a likelihood-based approach. However,
if compared to other methods (i.e., NJ, Weighbor, and
Greedy MP), its slow nature becomes apparent [16].

B. Accuracy

Figure 2 shows the accuracy of the phylogenetic
methods as a function of the sequence length. Although
NIJ is computationally fast, it is the worst performer in
terms of accuracy. NJ does outperform TREE-PUZZLE
in Figure 2(a). All methods improve their RF rates
as the sequence length is increased. Our results are
consistent with those of Nakhleh et al. in that NJ’s
ability to produce a topologically correct tree degrades
rapidly with an increase in evolutionary distance [16].
MrBayes and PAUP*-ML are less susceptible to changes
in accuracy as the evolutionary distance increases. When
PAUP*-ML terminated, the tree it produced was quite
accurate. fastDNAmI, on the other hand, finds it more
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Fig. 1. Execution time of the phylogenetic methods as a function of
the sequence length for various values of taxa and height.
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Fig. 3. Likelihood scores of fastDNAml, MrBayes-CH2, and PAUP*-
ML as a function of sequence length for 40 taxa and a height of 1.0.

difficult to produce a topologically accurate solution on
trees with large evolutionary distances.

At 60,000 generations, MrBayes converges to a stable
posterior estimate. However, the number of generations
affects the overall running time. We considered the ac-
curacy of MrBayes as the number of generations varies.
A shorter number of generations (20,000 and 40,000)
resulted in a serious drop in topological accuracy. In-
creases in the number of generations (100,000) resulted
in relatively small changes in accuracy (not shown).

C. Likelihood scores

The likelihood, L, of a tree is often a very small num-
ber. So, likelihoods are expressed as natural logarithms
and referred to as log likelihoods, InL. Since the log
likelihood of a tree is typically negative, our graphs plot
positive log likelihoods or —InL. Consequently, in our
graphs, the best likelihood is the one with the lowest
score.

Figure 3 plots the likelihood scores of fastDNAml,
MrBayes-CH2, and PAUP*-ML as a function of se-
quence length. The likelihood scores increase linearly
with sequence length. Similar behavior was observed
with an increase in the number of taxa (not shown). It is
widely believed that higher likelihood scores correlates
with an increase in topological accuracy. Yet, our results
do not support this hypothesis. Although the likelihood
scores returned by the phylogenetic methods are prac-
tically indistinguishable, the error rates are not. Once
a method reaches its top trees, their likelihood values
are so similar that selecting a tree essentially becomes a
random choice.

D. MrBayes: A Closer Examination

Our results clearly establish MrBayes as the best
likelihood-based method, so we take a closer look at its
performance. MrBayes is capable of both Markov Chain
Monte Carlo (MCMC) and Metropolis-Coupled Markov
Chain Monte Carlo (MC? ) analysis. Proponents of the
MC? method claim that multiple chains enable the search

to avoid being trapped in a suboptimal region. We study
the performance of MrBayes when 1, 2, and 4 chains
are used.

Figure 4 plots the execution time of MrBayes for
different numbers of chains as a function of the sequence
length. Clearly, using multiple chains requires additional
execution time. The increase in running time is due to
chains swapping with each other to explore different
parts of the tree space. An MCMC (single chain) analysis
avoids such overhead. However, are multiple chains
worth the extra computational effort? In many cases,
the answer is no (see Figure 5). Running MrBayes
with a single chain produced fairly good trees for low
evolutionary rates (0.1, 0.3). As the evolutionary rates
increase, multiple chains provide better solutions.

The results above show that MrBayes achieves consis-
tent accuracy if two chains are used. Figure 6 plots the
average RF rates of MrBayes-CH2 and NJ on trees of
various heights. In this figure, MrBayes-0.1, MrBayes-
0.3, and MrBayes-1.0 are the plots of MrBayes-CH2
for trees of height 0.1, 0.3, and 1.0, respectively. The
accuracy of NJ degrades dramatically as the evolu-
tionary distance is increased. MrBayes, on the other
hand, seems to overcome this problem. On trees of
large height, MrBayes-1.0 approaches the topological
accuracy achieved on trees of lower height.

V. CONCLUDING REMARKS

This is the first study (to the best of our knowledge)
to experimentally study the performance of likelihood
methods as the number of taxa, sequence length, and
evolutionary distance vary. Our results clearly demon-
strate that MrBayes is the best algorithm of the methods
we studied. The ML methods (fastDNAmI, PAUP*-ML,
and TREE-PUZZLE) have difficulty producing an an-
swer on a consistent basis. (When PAUP*-ML converged
to a solution, the inferred tree was quite good.)

We recommend running MrBayes with two chains
for phylogenetic analysis. MC® analysis seems to be
best suited for large evolutionary distances. Although
MrBayes runs relatively quickly, its running time is still
a limiting factor. One cannot expect to use MrBayes,
in its current form, to solve large datasets (of several
thousand taxa). Although MrBayes produced the best
trees, its likelihood score was indistinguishable from the
scores returned by the other methods. For the top trees of
a heuristic search, likelihood scores do not correlate well
to topological accuracy. These results do not imply that
such scores are unimportant—ijust that the correlation,
which clearly exists over the tree space as a whole, is
lost in regions of high likelihood.

There are many directions for future work. Combining
disk-covering methods (DCMs) [8], [9] with Bayesian
inference is one approach to speeding up a likelihood
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Fig. 6. Average RF rate for MrBayes and NJ as a function of (a)
sequence length and (b) number of taxa. MrBayes-0.1, MrBayes-0.3,
and MrBayes-1.0 are the plots of MrBayes-CH2 for trees of height
0.1, 0.3, and 1.0, respectively.
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calculation. The question of whether likelihood scores
correlates with topological accuracy is an interesting
one that needs further exploration.
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