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Abstract

Phylogenetic reconstruction from gene-order data
has attracted attention from both biologists and com-
puter scientists over the last few years. So far, our software
suite GRAPPA is the most accurate approach, but it re-
quires that all genomes have identical gene content, with
each gene appearing exactly once in each genome. Some
progress has been made in handling genomes with un-
equal gene content, both in terms of computing pair-
wise genomic distances and in terms of reconstruction.
In this paper, we present a new approach for comput-
ing the median of three arbitrary genomes and ap-
ply it to the reconstruction of phylogenies from arbi-
trary gene-order data. We implemented these methods
within GRAPPA and tested them on simulated datasets un-
der various conditions as well as on a real dataset of
chloroplast genomes; we report the results of our simula-
tions and our analysis of the real dataset and compare them
to reconstructions made by using neighbor-joining and us-
ing the original GRAPPA on the same genomes with
equalized gene contents. Our new approach is remark-
ably accurate both in simulations and on the real dataset,
in contrast to the distance-based approaches and to recon-
structions using the original GRAPPA applied to equalized
gene contents.

1. Introduction

Reconstructing phylogenies from gene-order data has
been studied intensely since the pioneering papers of

Sankoff [3, 4, 19]. For smaller genomes, such as the sin-
gle chromosome of organelles (mitochondria and chloro-
plasts), it has become possible to obtain the complete,
ordered list of genes along the chromosome; animal mito-
chondria typically have around 40 genes, while chloroplast
DNAs have around 120 genes. In such genomes, rear-
rangement of genes under inversion or other operations
that change gene order (such as transposition) may form
the principal evolutionary mechanism [7, 8]; other mech-
anisms may include duplication, insertion, and deletion of
genes. Deletion is also a ubiquitous process in chloroplast
genomes: an ongoing process of gene migration to the nu-
cleus results in a low, but observable rate of gene loss from
cp genomes in plants and algae ([13, 14]). In some cases,
such as the cpDNA of a parasitic plant Epifagus virgini-
ana, many deletion events, but only one inversion, separate
its plastid genome from that of tobacco, a photosyn-
thetic relative [23]. Thus, inversion and deletion represent
two dominant processes in chloroplast genome evolution.

Because it uses the complete genome, gene-order data
does not suffer from the notorious gene-tree vs. species-tree
problem; and because rearrangements, insertions, and dele-
tions of genes are rare events, gene-order data enables the
reconstruction of events far back in the evolutionary his-
tory of organisms. Simulations studies conducted by our
group [16, 22] indicate that gene-order data leads to very
accurate reconstructions—far more accurate than those ob-
tained from analyses of DNA sequence data.

However, gene-order data is much harder to work with
than DNA sequence data. For instance, computing the edit
distance between two genomes, (the smallest number of
evolutionary events that can transform one genome into
the other), an easy task with DNA sequence data, remains
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mostly unsolved for gene-order data—an exact solution is
possible only when the permitted events are restricted to
inversions and deletions. Almost all of the approaches to
date have assumed that the genomes have equal gene con-
tent and do not contain any duplicate genes, both quite
unrealistic assumptions (even if useful in first approxima-
tion). Recently, Marron et al. [12] gave a polynomial-time
approximation algorithm to compute the distance between
two genomes without any assumptions about their content.
The most accurate reconstruction tool to date, our GRAPPA
software, requires repeated (potentially tens of millions
of times) computations of the inversion median of three
genomes—a problem proved NP-hard some years ago [5].
While exact approaches to the median problem have been
published [6, 20] and incorporated in the GRAPPA soft-
ware [1], where they work well at the scale of organellar
genomes [16, 22], these approaches only work for equal
gene contents without duplication.

Recently, we proposed a simple approach to the median
problem in the presence of limited duplications and dele-
tions [21], but that approach, based on reducing the problem
to one with equal gene contents by evaluating all possible
resolutions of the duplications and deletions, does not scale
to instances where the gene contents of the three genomes
can differ significantly.

In this paper, we extend the approach of Siepel and
Moret [20] to the median problem. We use a two-phase
method, in which we begin by computing the best gene
contents for the median, then use a branch-and-bound ap-
proach, with new lower bounds, to determine the best order-
ing of these gene contents. (New lower bounds are neces-
sary, as the fixed gene contents of the median may make the
lower bounds used in [20] inapplicable.) We then present
the results of experimental tests on simulated datasets as
well as on a biological dataset of green plant chloroplasts,
The simulations show that our method produces very accu-
rate results (no false positives and typically one false neg-
ative on datasets of 10 and 11 genomes) at reasonable
costs—a typical dataset of 10 or 11 genomes takes from a
few minutes to a few hours of computation. The biological
dataset, which contains genomes with both high and low re-
arrangement rates, illustrates the power of our approach:
our method reconstructs the tree posited by biologists and
also reproduces the uncertainty among them about the posi-
tion on the tree of one of the species. In contrast, neighbor-
joining (using a linear measure of inversion and deletion
distance) returns a tree with false positives and GRAPPA
run on datasets with equalized gene contents returns a tree
with only one resolved edge when using the breakpoint dis-
tance and with errors (and huge computation times) when
using the inversion distance. In summary, our new method
is both faster and more accurate than previous approaches.

We recently demonstrated [22] that GRAPPA can be

scaled up from 10-14 genomes to a thousand genomes (with
equal gene content) by combining it with the Disk-Covering
methods (DCM) of Warnow and her group; the same ap-
proach will work with our new methodology for unequal
gene content, enabling us finally to realize the promise of
gene-order data in phylogenetic reconstruction.

2. Definitions and Notation

Suppose a dataset has N genomes and a fixed set of n
genes S = g1, g, . . ., gn- Each genome GG; contains a sub-
set S; = {gi,,- - -, gi, } of these genes (with k < n); we call
S; the gene content of G;. Then the genome G; can be rep-
resented as a signed permutation w; = (m;,,...,m;, ) de-
fined on subset S;.

The median problem for a set of permutations m; =
M1, T2, ..., Ty is to find a permutation 7, that minimizes
the median score, 221 di v, where d; pr is the pairwise
edit distance between m; and ;. We denote the optimal
(minimal) median score by D(M). In phylogenetic prac-
tice, we examine binary trees, so that the median problem
has m = 3.

For any genome, we can define an undirected graph
G = (V, E), in which each vertex in V corresponds to a
signed permutation and an edge connects two vertices v;
and v; if and only if v; can be transformed into v; by a sin-
gle inversion, deletion, or insertion. We call this graph the
evolution graph; if we only allow inversions, then the graph
is reduced to an inversion graph. In such a graph, the neigh-
bors of a permutation 7 are those permutations that can be
obtained from 7 by subjecting it to one evolutionary event;
if only inversions are allowed, then 7 has (%) neighbors.
A shortest path between two permutations 7; and 7; is the
simple path of shortest length in G between the vertices cor-
responding to 7; and ;.

3. An Algorithm for the Median Problem

GRAPPA has two methods to solve the problem of inver-
sion medians. One was developed by Caprara and is based
on an extension of the breakpoint graph; its foundation re-
lies on equal gene contents and thus makes it very diffi-
cult to extend to events such as insertions and deletions. The
other one is a branch-and-bound method developed by Sie-
pel and Moret [20]; it is slower than Caprara’s method
because of a rather loose bound (we will show a bet-
ter bound in the next subsection), but it can use any defini-
tion of distance and thus forms a good starting point for the
development of our new median solver. We now briefly re-
view that algorithm.
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3.1. The Algorithm of Siepel and Moret

This algorithm uses a simple branch-and-bound ap-
proach:

e Given the three permutations 71, m and w3, com-

pute the lower bound on the median score, D(M) =
di,2+d2,3+d3,1
B

e Pick one permutation from m;, w2, 73 as start (a so-
called trivial median) and push it into a queue; its me-
dian score is the initial best-so-far.

e Iteratively remove a permutation 7 from the queue un-
til the queue is empty:

— If the median score of ™ meets the lower bound,
dri +dr2+ dr s = D(M), then stop.

— If the median score of 7 is less than the current
best-so-far, update the latter, create all (%) neigh-
boring permutations (one inversion away from
m), discard those with lower bounds exceeding
the best-so-far, and queue up the surviving ones.

Clearly, the success of this algorithm relies on good lower
bounds. In [20], the authors proved two bounds:

Lemma 1 For three permutations w1, mo and 73, the opti-
mal median score, D(M), obeys:

< D(M)
< min{(di,2 + d1,3), (d1,2 + da,3), (d1,3 + d2.3)}

di2+daz+dis
2

Lemma 2 If ¢ is a permutation on the shortest path from
1 to the median, then it obeys:

d d d
dig+ 2,6 T ;,q5+ 2,3

< D(M)

The left side of Lemma 2 is the lower bound used in

GRAPPA to check if a new permutation can be discarded;

in practice, this bound is loose and the search space re-

mains too large even for datasets with small edge lengths

(with an average of 4 evolutionary events per tree edge).
We now provide an improved lower bound.

Lemma 3 If ¢ is a permutation on the shortest path from
w1 to the median and v is derived from ¢ by applying one
inversion, then, if v is also on the shortest path from 11 to
M, itobeysdi y+do+d3y <dig+dog+dse+1

Figure 1 illustrates the situation.

Proof From the triangle inequality, we have ds , + d3 4 <
da,¢ + d3,4; since we have dg 4 = 1, we can write dy ¢ +
1 < dy, and we immediately get

diy+doy+dzy <dig+dag+dse+1

Figure 1. An illustration of Lemma 3

If the bound is not met, then either ¢ or ~ is not on the
shortest path; in other words, v (and perhaps ¢ as well)
should be discarded. However, it is hard to verify that the
failure is due to ¢; hence, in our implementation, we dis-
card only 7. This bound is much tighter than the original
bound of Siepel and Moret and no more expensive to com-
pute; using it in the median solver achieves very significant
speed gains.

3.2. New Median Bounds

Lemma 3 depends on the existence of a trivial median.
When we want to handle unequal gene contents, it is not al-
ways possible to find a trivial median (as we explain be-
low), hence we must find a new way to compute a good
lower bound.

The following lemma is the immediate extension of
Lemma 1:

Lemma 4 Given three permutations w1, 7, and 73, and
another permutation Ty, then the optimal median score,
D(M), obeys:
dig+dizg+das
2
If the branch-and-bound process starts with a permutation

that is not one of 71, o or 73, then we can use the follow-
ing bound:

<D(M) <dp1+do2+dogs

Lemma 5 Given three permutations w1, ms, and 73, and
another permutation g close to w1, if a permutation ¢ is
on the shortest path from g to the optimal median permu-
tation, then the optimal median score D(M) obeys:

d2,¢ + d37¢ + d273
2

Figure 2 illustrates the situation.

+do,p —do1 < D(M)

Proof Since ¢ is on the shortest path from 7 to M, then,
as proved in [20], it obeys

do,g +ds g+ das
d0’¢—|— ¢ 2¢

<do,pm +do2y +d3 v
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Figure 2. An illustration of Lemma 5

Now, because we have dy.ar < do,1 + di, 0, We can write

d2,¢ + d37¢ + d273

do,¢ + 5

<di,m+day +d3 v+ don
which directly implies

do,p +dsz,¢ +dos
2

+do,¢ —do1 < D(M)

If my coincides with one of the three given permutations,
then this lower bound is the same as defined in Lemma 2.
In the same manner, we can extend Lemma 3.

Lemma 6 Given permutations 7, w2, and w3, and permu-
tation o close to w1, if a permutation ¢ is on the short-
est path from mq to the optimal median permutation and its
neighbor vy is also on the shortest path, then v obeys

diy+doy+d3y <dig+dag+dsg+1
3.3. The New Median Solver

Using the new set of bounds, we can easily extend the al-
gorithm of Siepel and Moret to permutations with unequal
gene content. Before solving the median problems, we de-
termine the gene content for each internal node, as dis-
cussed in the next section. Once these contents have been
determined, we proceed to determine the gene orders. Thus
we need to pick starting permutations that respect the prede-
termined contents at each internal node, after which we can
start the branch-and-bound search as in the algorithm of Sie-
pel and Moret, except that we now use the distance compu-
tation for unequal gene content and the new bounds. Note
that the number of neighbors of a permutation remains (’2’) :
that is, we only take into account inversions in the search,
since insertions and deletions were accounted for in the pro-
cess of assigning gene contents.

From Lemmata 5 and 6, when dp ; is small and 7 is
very close to 71, the lower bound will be tight. Our ex-
periments confirm that the choice of 7y has a huge impact
on the search procedure. For instance, choosing a random
permutation of the assigned gene content results in very

poor performance. The best method we found is to choose
a permutation 7y which is closest to one of the three given
permutations and which minimizes the initial upper bound
do,1+do,2+do 3. Since finding such a permutation is itself a
complex optimization problem, we use a simpler heuristic:

e From my, create g by first deleting all genes not in
the median content, then inserting all genes needed to
complete the median content in a single block to the
end; now compute dy = dp,; and [ = dy 2 + do 3.

e Repeat the above procedure for w5 and 3.

e Pick that 7y, if any among the three constructed, which
minimizes both dy and [; otherwise, pick that which
minimizes dy (because the lower bound is more im-
portant in pruning than the initial upper bound).

4. Determining the Gene Content of Internal
Nodes

The gene content is determined based on the same as-
sumptions that we used in earlier work [21], namely that
deletions and insertions are rarer events than inversions and
that concurrent change in two neighbors is much less likely
than a single complementary change from the third neigh-
bor. (That is, whenever we face the choice of assigning
the gene loss or gain to the parent or to both of its chil-
dren, we always assign it to the parent.) Thus, at each inter-
nal node, when the contents of its two children are known,
we face three possibilities in deciding the presence or ab-
sence of a gene g:

1. If both children have g, then g should be in the median;
otherwise, g would be inserted into both children—
with vanishingly small probability.

2. If neither child has g, then, for the same reason, g
should not be in the median.

3. If one child has g and the other does not, then, because
the tree is unrooted, we face a deletion or insertion and
cannot assign a higher probability to one than to the
other. If we also know the gene content of the parent,
we can break the tie in the obvious way; otherwise, we
are left with an undetermined outcome for g.

Cases (1) and (2) have been used by biologists to con-
struct phylogenies (e.g., [15]). When the tree is rooted,
then the problem is greatly simplified, because gene loss is
much more likely than gene gain [13, 14, 15].

If a gene is undetermined at some internal node, it may
become determined through a propagation of content deci-
sions from the leaves (of known prior content) to the root.
However, GRAPPA only deals with unrooted trees. (It does
use a temporary root in its computation, but this root is
picked arbitrarily and is thus unlikely to be the biologi-
cally correct choice.) Thus, in order to resolve undeter-
mined gene contents at internal nodes, we decided to use
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an iterative improvement algorithm similar to the core algo-
rithm in GRAPPA itself:

1. For each sibling pair of leaves, if a gene appears in
both, we place it in the parent (an internal node); if
it is absent from both, we do not place it in the par-
ent. If the gene appears in one leaf, but not the other,
we mark its status as undetermined in the parent.

2. Starting from the (arbitrary) root, we carry out a depth-
first search of the tree to propagate resolutions accord-
ing to our standard rule (if two neighbors have the
gene, so will the node; if two neighbors are lacking
that gene, so will the node) and thus to resolve undeter-
mined states through look-ahead and cost propagation.

This model extends naturally to gene duplications: if g is
duplicated, with one child having s; copies and the other s
copies, then we have:

e With s = s1 = s9, then the node has s copies of g.
e With s; > s, then the node has at least sy copies of
g, with another s; — s2 undetermined copies.

Undetermined copies are again resolved in the iterative im-
provement phase through propagation.

5. Putting the Pieces Together

Our new method can be summarized as follows:

e Compute the NJ tree and use its score as the initial up-
per bound.
e For each possible tree:

— Test the lower bound based on the distance ma-
trix.

— If the lower bound exceeds the upper bound, dis-
card the tree and move to the next.

— Determine the gene content of each inter-
nal node, initialize the gene order of internal
nodes, and iteratively solve the median prob-
lem until no change occurs.

— Update the upper bound if this tree’s score im-
proves it.

e Return the tree(s) with the lowest score.

5.1. Distance Computations

We implemented a linear-time algorithm to compute the
distance for two genomes with deletion and insertion, which
is based on El-Mabrouk’s algorithm [9]. Because there is no
polynomial-time algorithm available for genomic distances
under a combination of insertions, deletions, and duplica-
tions, we adopted the renaming strategy presented in [21]
to handle cases when genes are duplicated, which is appro-
priate for our intended genomes of cpDNAs—as opposed

to the more general, but more complex and, for smaller
genomes, less accurate method of Marron et al. [12].

True distance estimators have proved very useful both
in distance-based reconstruction and with GRAPPA [16]—
with equal gene content in both cases. We have no true dis-
tance estimator as yet for unequal gene content; how-
ever, since we separately compute the number of inversions
and that of insertions/deletions, we use our EDE correc-
tion [17] for the number of inversions, thereby obtaining
a partial distance correction that both decreased the run-
ning time and improved the quality of reconstruction.

5.2. Initialization

The median problem requires the gene orders of the
three neighboring nodes to be known. Initially, how-
ever, none of the internal nodes of a tree has a known
gene order, so each must be initialized in some fash-
ion. In previous work [18, 22], we showed that this initial-
ization is crucial to both speed and quality of reconstruction
with GRAPPA. Among the various initialization meth-
ods used in GRAPPA, the nearest-neighbor method is the
best: it picks the three closest (in terms of number of edges)
leaves to the internal node, then solves the median prob-
lem of these three leaves and assigns the resulting gene or-
der to that internal node. We use the same strategy in our
new system, with some enhancements. The gene con-
tent determined from the scope of the whole tree may differ
from that obtained by considering only the three near-
est leaves; in that case, we can use the gene content de-
termined by the three nearest leaves and later add to the
resulting gene order the additional genes needed to com-
plete the gene content determined in the first phase. (Our
experiments show that simply deleting the unwanted, or in-
serting the missing, genes introduces large errors.) Because
the three nodes are further away from the internal node than
the three neighbors, the median problems in the initializa-
tion procedure are typically harder than those encountered
in the iterative improvement stage. Since we just want rea-
sonable initial gene orders for a start, but do not really re-
quire optimal solutions to the leaf-median problems, we in-
crease the lower bound by a fixed factor (e.g., 10%), which
may eliminate some good solutions, but allows the initial-
ization to run in time comparable to the scoring phase.

6. Experimental Results
6.1. Simulations

For the simulation study, we chose datasets of 10 and 11
genomes; these sizes, while appearing small, in fact formed
the bulk of the subproblems solved by our DCM-GRAPPA
when working on datasets of one thousand taxa [22].
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We chose genome sizes of 50 and 100 (roughly match-
ing typical animal mitochondria and land plant chloroplast
genomes, respectively). Finally, we used three evolution-
ary rates, of 2, 4 and 6 expected events per tree edge—the
last one representing a high rate of evolution even on small
datasets. In our simulations, each tree node (internal and ex-
ternal) has a 5% chance to lose one segment of genes;
the length of this segment is at most 10% of the num-
ber of genes in its parent. For each combination of param-
eter settings, we ran 10 datasets; all our tests were run on
1.8GHz Pentium 4 desktop with 512MB of memory.

Tables 1 and 2 show the average false positives and false
negatives for each dataset. The new method achieves high
accuracy: for each dataset, the expected number of edges
in error is considerably less than one. Running times (not
shown) are about 10 ~ 15 times slower than what we have
typically seen with equal gene content (using Caprara’s me-
dian solver). Given the significant additional complexity
of the task, this is quite acceptable: a typical 12-genome
dataset takes about 15-20 minutes to complete.

r=2 r=4 r==~6
10102061 0.1 ]07] 02107
11100 | 08 | 0.1 | 051 0.0 09

r=2 r=4 r==~6
101 01|06 011|031 01] 04
11102051 03]03]| 02]0.6

Table 2. Average number of edges in error for
50 genes

6.2. A cpDNA Dataset

Molecular phylogenies using concatenated plas-
tid genes and different methods provide clear evidence that
the chloroplast genomes are derived from a cyanobacteria-
like ancestral genome with many subsequent gene losses
and gene transfers to the nucleus [13]. Typical chloro-
plast genomes or cpDNAs are circular, encoding 50-200
genes involved in transcription, translation, ATP synthe-
sis, electron transport, photosynthesis and other functions.
Most chloroplast DNAs (cpDNA) include two almost iden-
tical regions in opposite orientation, called the inverted
repeat (IR). Genes located in the inverted repeats are there-
fore duplicated.

Genome rearrangement is frequently observed in algal
chloroplast genomes, including the expansion and deletion
of inverted repeats, a unique feature of chloroplast genomes.
Cosner et al. [7] first tested several phylogenetic methods

on the cpDNA gene-order data of the flower plant family
Campanulaceae and discovered an unusual variety of re-
arrangements; later, this dataset was extensively analyzed
by our group, with the best reconstructions provided by an
inversion-only estimation.

We extracted 77 genes from each of 7 fully se-
quenced chloroplast genomes, with Chlorella vulgaris
missing 3 genes. The data set includes land plants (Nico-
tiana tabacum, Marchantia polymorpha), a coleochaetales
green alga (Chaetosphaeridium globosum), where most
cpDNAs have very few rearrangements, as well as choro-
phytic green algae (Nephroselmis olivacea, Chlorella vul-
garis, and Chlamydomonas reinhardtii) with extensive re-
arrangements in cpDNA gene order. This implies very het-
erogeneous rates of evolution along the branches, which
is a unique challenge to phylogenetic reconstruction—one
that we did not include in the simulation study. Chloro-
plast genomes from most photosynthetic land plants
and the coleochaetales algae, including Chaetosphaerid-
ium globosum, share nearly identical gene content and
gene order. Chlamydomonas reinhartii is closely re-
lated to the green alga Chlorella, while the latter contains
only one copy of the IR; however, the cpDNA of Chlamy-
domonas is highly rearranged with respect to related green
algal cpDNA sequences [14]. The phylogenetic posi-
tion of the dinoflagellate Mesostigma viride is not fully re-
solved: it is either an early branch off all the green plants
or more closely related to the Charophycean green al-
gae [2, 10, 11]. We ran maximum parsimony and
neighbor-joining analyses using concatenated protein se-
quences of 50 chloroplast genes, with Cyanophora para-
doxa as the outgroup, and used the bootstrap consensus
phylogeny (using PAUP 4.0b with 1,000 bootstrap repli-
cates) as a reference tree; each node had bootstrap support
60 or higher in both analyses.

We then ran four different reconstruction methods on this
gene-order data: (i) our new method; (ii) neighbor-joining
on a distance matrix computed by using our exact linear-
time algorithm for inversion/deletion distance; (iii) the reg-
ular GRAPPA code using breakpoint medians on a reduced
dataset with the largest common gene content; and (iv) the
same as in (iii), but using inversion medians.

Our method returned two phylogenies with equal score.
We presented the one with higher congruence to the refer-
ence phylogeny. The other was only different in the relation-
ship of Chaetosphaeridium and land plants. The reference
phylogeny and phylogenies returned by methods (i) through
(iii) are shown in Figure 3. In the reference phylogeny,
the position of Mesostigma is unresolved due to low boot-
strap support. The phylogeny returned by the new method
is congruent with the reference phylogeny. (The neighbor-
joining phylogeny, in contrast, introduces false positive
edges among the three algae Mesostigma, Chlamydomonas
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Nicotiana
Marchantia
Chaetosphaeridium
Nephroselmis
Chlamydomonas
Chlorella

Mesostigma

(a) reference phylogeny

Nicotiana
Marchantia
Chaetosphaeridium
Nephroselmis
Chlamydomonas
Chlorella

Mesostigma

(c) neighbor-joining

Nicotiana
Marchantia
Chaetosphaeridium
Nephroselmis
Chlamydomonas
Chlorella

Mesostigma

(b) our new method

Nicotiana
Marchantia
Chaetosphaeridium
Nephroselmis
Chlamydomonas
Chlorella

Mesostigma

(d) breakpoint GRAPPA

Figure 3. Phylogenies on the 7-taxa cpDNA dataset

Marchantia

Chlorella

Chlamydomonas

Nephroselmis

Chaetosphaeridium
Nicotiana

Figure 4. The phylogeny returned by our methods, showing estimated branch lengths

and Chlorella.) Our new method yields one polytomy due
to a branch of zero length, but it involves Mesostigma,
whose exact position in the tree is subject to debate [2, 10,
11]. As seen in Figure 4, the branch lengths, representing
the number of inferred rearrangements, differ significantly
among the land plant cluster (generally short branches) and
the green algae cluster (generally long branches), a finding
in agreement with previous observations [14].

7. Conclusion

We presented the first computational approach for the re-
construction of phylogenies from arbitrary gene-order data.

Results from our simulations indicate that our approach is
remarkably accurate; results from the real dataset confirm
this finding. The real dataset posed phylogenetic challenges
that we did not encounter in our simulations. The place-
ment of Mesostigma is not well resolved by the data, which
echoes the conflicts of Mesostigma position in DNA and
protein based analyses. The major concordance of our re-
sults and the sequence-based results suggest the potential
of our method for solving difficult deep phylogeny ques-
tions. These results are in contrast to the distance-based
approaches and to our same method (GRAPPA) applied to
equalized gene contents. The difference between the results
is in fact striking, a stark reminder of how much informa-
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tion is lost when the gene contents are equalized. While we
have only tested the method on small datasets, the approach
can easily be extended to large datasets by using the Disk-
Covering Method as we did recently in developing DCM-
GRAPPA [22]; thus our approach will extend to datasets
with hundreds of taxa and moderate gene losses and du-
plications. Extending our approach to much larger nuclear
genomes remains a major computational challenge.
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