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Abstract

We propose a method for finding seeds for the local align-
ment of two nucleotide sequences. Our method uses ran-
domized algorithms to find approximate seeds. We present
a dynamic index to store the fingerprints ofk-grams and a
highly scalable and accurate (HSA) algorithm to incorpo-
rate randomization into process of seed generation. Experi-
mental results show that our method produces better quality
seeds with improved running time and memory usage com-
pared to traditional non-spaced and spaced seeds. The pre-
sented algorithm scales very well with higher seed lengths
while maintaining the quality and performance.

1 Motivation
Locatingsimilar subsequences between a query sequence
and the sequences in a database is one of the most fun-
damental problems in bioinformatics known as thelocal
alignmentproblem. It matches pairs of letters between two
subsequences and an appropriate score is then assigned for
each match and mismatch. The score of the local alignment
is then computed as the sum of all such scores.

One of the earliest algorithms to solve the local align-
ment problem is the Smith-Waterman algorithm [13] (SW).
SW uses dynamic programming to find all local alignments
and has, both, time and space complexity of isO(mn),
wherem andn are the lengths of the two sequences aligned.
A number of efficient heuristics that use less space and time
have been developed. One such tool, BLAST [1], works in
two phases: (i) search phase - it first finds thek-grams(k
letter subsequence) in the target sequence that have a per-
fect match in the query sequence with the help of a hash
table. The region is popularly referred asseed. (ii) align-
ment phase - it stitches and extends the seeds found in the
first phase into significant alignments.

There is a tradeoff between execution speed and sensi-
tivity for selected seed length,k. If k is large, the search
phase may miss high scoring alignments that do not have
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k consecutive matches. On the other hand, increasingk
will produce fewer seeds for the alignment phase. Thus,
the overall computation time decreases. In other words,k
provides a tradeoff between performance and quality. Sev-
eral approaches address this problem by using spaced seeds
or different length seeds [12, 14]. Although, these meth-
ods aim at improving the performance and seed quality, the
underlying problem with BLAST’s seed selection remains
untouched. Ifk is very large, the amount of memory to
store the hash table may exceed available resources as the
space taken-up by it is exponential ink. Such large val-
ues ofk are commonly used by tools that analyze very large
datasets. For examplek = 24 and 28 for Arachne [2] and
megaBLAST [14] respectively.

A simple solution to the seed length scalability problem
is to keep uniquek-grams from query sequence in a alpha-
betically sorted list. Though, sorted list increases the cost
of locating ak-gram since its position in the sorted list is
not known. Binary search incurs logarithmic search time
compared to constant time search cost of hash tables.

In this paper, we describe a new,highly scalable and ac-
curate(HSA) algorithm and a dynamic index structure for
finding seeds. Our method employs randomization tech-
nique for choosing initial seeds. HSA is more efficient and
accurate than the existing tools, such as BLAST, that use
a fixed seed size. Unlike existing methods, HSA provides
worst-case guarantees on either its efficiency or its accuracy
or both.

The rest of the paper is organized as follows. Section 2
presents background on randomized algorithms. Section 3
discusses our index structure and algorithms. Section 4,
presents experimental results. Section 5 discusses the re-
lated work. We end with a brief discussion in Section 6.

2 Randomized algorithms and fingerprinting
Assume that sequences are defined over a fix set of alphabet
Σ = {α1, α2, · · · , ασ}, whereσ is the alphabet size. For
nucleotide sequencesΣ = {A, C, G, T}. Each letter in this
alphabet can be represented usinglog σ bits. For example,
for nucleotides A= 00, C = 01, G = 10, and T= 11.



Given ak-grama = a1a2 · · · an, the hash value fora, h(a),
can be computed by concatenating the bit representations
of its letters. Therefore,k log σ bits are needed to store the
hash value of ak-gram. The hash value of ak-gram varies
between zero andσk. Two k-grams have the same hash
value if and only if they are equal.

Fingerprint of ak-grama is defined as
Fp(a) = h(a) mod p,

wherep is a given prime number [9]. Ifp ≥ σk, then the
fingerprint ofa will be equal to its hash value. Otherwise,
Fp(a) may be smaller thanh(a). Fingerprinting suggests
the use of fingerprints instead of hash values in order to find
similar k-grams. Thus, we call twok-gramsa andb simi-
lar if Fp(a) = Fp(b). The advantage of using fingerprints
instead of hash values is that onlyO(min{log p, σk}) bits
are needed to store a fingerprint. For smallp, fingerprints
require much less space than hash values.

One can show that ifa = b thenFp(a) = Fp(b). There-
fore, fingerprints find all the true positive matches. On the
other hand differentk-grams may have the same fingerprint.
That is,Fp(a) = Fp(b) does not imply the equality ofa
and b. Therefore, fingerprints may produce false positive
matches. This is also known as theadversary problem:
Given a fixed prime numberp and a database sequence, an
adversary can come up with a query sequence that will pro-
duce many false positives by choosing queryk-grams such
that they will have different hash values than the database
k-grams but same fingerprints.

The adversary problem can be solved by choosingp at
random for every query instead of having a fixedp. Next,
we discuss how bad this strategy can go. Assume thatc =
|h(a)− h(b)|, a is incorrectly classified as similar tob only
whenc > 0 andp dividesc (i.e., a andb are different but
they have the same fingerprint.) Then the question boils
down to the number of prime numbers that can dividec.
If c has a large number of prime divisors, then it is more
likely that a randomly chosenp will divide c. Prime Number
Theoremstates that for any numberτ , the number of primes
less thanτ is asymptotically τ

ln τ . It is also known from
number theory that, the number ofdistinct prime divisorsof
any number less than2n is at mostn. Thus, given an upper
boundτ , if the prime numberp is chosen randomly among
the primes less thanτ , then the probability of returning a
false positive (i.e., error probability) can be computed as

Pr[Fp(a) = Fp(b)|a 6= b] ≤ 2k

τ/lnτ
(1)

If we chooseτ = 4k2 log 4k2, for some valuet, the error
probability becomesO(1/2k).

We now extend our discussion on fingerprinting to
the problem of subsequence matching. LetX =
x1x2 · · ·xm+k−1 be nucleotide sequence in the database
and b be ak-gram from query sequence.X containsm

k-grams. If we assume that the signatures of thesek-grams
are randomly distributed, then the probability that a false
match occurs for any of them isO((m2k log τ)/τ). If we
chooseτ = m22k log m22k, that gives us:

Pr[at least one false positive returns] ≤ O(1/m) (2)

3 The HSA algorithm
In this section, we consider the problem of incorporating de-
scribed randomized algorithm and fingerprinting technique
to find seeds by way of presenting a new highly scalable and
accurate algorithm and a dynamic index structure.
Notations and data structure: The query sequence of size
m is denoted byQ = q1q2 · · · qm, and a database sequence
of sizen is denoted byS = s1s2 · · · sn. Thek-gramstart-
ing at thejth character of the query sequence is denoted by
Q(j) and likewise for the database sequence byS(j). The
integer representation of thek-gram starting at thejth po-
sition in the query is denoted byh(Q(j)) and likewise for
the database sequence byh(S(j)). p is the prime number
andτ is the threshold for selection ofp. Fp is the mod
fingerprint function used andk is the length of the seed.

HSA index is essentially an array, size of which is dy-
namically decided in its initialization. Each entry in the ar-
ray is referred as a bucket and stores the fingerprint of a
queryk-gram. Associated with each bucket is the list of in-
tegers indicating positions of thek-grams in query sequence
with that fingerprint value.
HSA method: We build an index structure to store different
k-grams of an input query sequence. The size of the index
structure is dynamically decided based on the prime number
p selected for fingerprinting. Ifp is small, we use direct
hashing and store the fingerprints of all possiblek-grams in
a hash table. Thus, the hash table hasp entries. Ifp is too
large to fit the hash table into allowed memory, we choose
sorted list option for uniquek-grams of a query sequence.
In this case, the number of entries of the sorted list is equal
to the number of unique fingerprint values for thek-grams
in the query sequence. Both of these index structures store
pointers to all thek-grams in the query sequence according
to their fingerprint values. The methods are sketched in
Figure 1.

In the Initialize method we mainly select the random
prime number for fingerprinting and then dynamically set
the size and type of our structure to a sorted list or a hash
table. InsertandSearchmethods directly follow from the
type of selected structure. In case of direct hashing, simply
insert the position of thek-gram into the bucket suggested
by a hash function, whereas for the sorted type we perform
binary search to decide the target bucket.

Seed generation algorithm that first reads query sequence
and the index structure is created on the fingerprints of its
k-grams. Next, the database sequences are scanned to ob-
tain fingerprints of itsk-grams. Each database fingerprint is



/* TYPE= how HSA is structured,SIZE = number of buckets */
/* TABLE= array of buckets,LIST = array of integers for each bucket*/
/* k = k-gram size,m = length of query sequence */
/* maxMem = maximum allowable memory */
Method Initialize (k, m, maxMem)

τ := m22k log m22k;
Randomly select a primep < τ ;
SIZE := min (p, 4k, maxMem);
if SIZE ≥maxMem then TYPE:= SORTED;
elseTYPE:= HASH;
return p;

/* fp = fingerprint value,pos = position of thek-gram */
Method Insert (fp, pos)

if TYPE= HASH then
Add pos to TABLE[fp mod SIZE ].LIST ;

else
ptr := Search (fp);
Add pos to TABLE[ptr].LIST ;
if TABLE[ptr].LIST = 1 then

Sort (TABLE);

Method Search(fp)
if TYPE= HASH then

if TABLE[fp mod SIZE ].LIST 6= ∅ then
return (fp mod SIZE );

elseptr := Binary Search (fp) ;
return ptr;

Figure 1. HSA Methods. Initialize sets the type of the index

structure.Insert inserts ak-gram into an existing structure.Search

locates the positions of thek-grams given certain fingerprint.

searched in the index structure for a match. Every matched
positions in the database and query sequence are returned
as seeds. For the complete algorithm see [?].

One important parameter for our algorithm isτ . The
value ofτ upper bounds the selected prime. As stated be-
fore, we have three choices for the index structure size:
prime p, 4k, andmaxMem, i.e., memory limit. Clearly,
every time we get a prime smaller than the last two val-
ues, we not only build a smaller structure, but also speed-up
fingerprint search. Thus choosing a small value forτ im-
proves both performance and memory usage. On the other
hand, as mentioned in the Section 2, error probability di-
rectly depends on the value ofτ . The smaller the value of
τ , the more we are prone to an error, and vice versa. In
our algorithm, we usedτ = m22k log m22k, to bound our
error probability toO(1/m). Clearly, theτ and thus the er-
ror probability depends of value of seed length,k and query
lengthm. Since we are assuming that our query always fits
into memory, we can see memory size as an upper bound for
m. Thus, we can conclude that for given fixedk, the error
probability decreases with more available memory. Also,
for a given fixed memory size, the error probability of HSA
increases with increasingk.

Figure 2. Scores for dissimilar seq. (k = 11) before extending.

4 Experimental evaluation

In this section, we present a set of experiments aimed at
benchmarking the performance of our algorithm. Using
the C++ programming language we have implemented and
tested a suit of query sequences for seeds used by BLAST,
spaced seeds [5], and the HSA algorithm. For first two cases
we executed each query sequence as follows: We build a
hash table of size4k to store the k-grams from query if it
fits in available memory. Otherwise, we build a sorted list
similar to one described by the HSA algorithm.

We tested all three scenarios on two categories: com-
parison of similar sequences and dissimilar sequences. For
both categories we performed 100 pairwise sequence com-
parisons as follows. We created three sets of sequences.

• Set18a: This dataset consists of 100 sequences of
human chromosome 18, chopped into size of 4000 letters
each. The sequences are then mutated (i.e., insert, delete, or
modify) with 5 % probability.

• Set18b: Same asSet18a, but is mutated with 10 %
probability.

• Set22:Same asSet18a, but for chromosome 22.

The ith sequences fromSet18aandSet18bdiffer by at
most 15 % of their letters. For comparison of similar se-
quences, we used these two datasets. Since the sequences
from Set18aandSet22are selected from different chromo-
somes, there is no upper bound on the difference between
theith query sequence andith database sequence. We used
these two datasets for comparison of dissimilar sequences.
In each scenario, a run consisted ofith database sequence
againstith similar query sequence andith dissimilar query
sequence giving total 200 runs. The experiments were per-
formed on a Linux workstation with 2.4 Ghz clock speed
and a 2GB of RAM.



Figure 3. Scores for similar seq. (k = 18) before extending.

4.1 Quality comparison results

Our first experiment set inspects the quality of the seeds
found in each of three scenarios. In order to have fair
comparison, we first constructed a SW score matrix using
Smith-Waterman algorithm [13] for a given database and a
query sequence. We used a score of +1 for every matching
letter and a penalty of -1 for every mismatch, insertion, or
deletion. A seed found by any of the three algorithms maps
to a set ofk entries in the SW matrix. These entries essen-
tially form a diagonal for BLAST and HSA, and a gapped
diagonal for spaced seeds. On SW score matrix, each en-
try corresponds to a pair of letters, one from the query se-
quence and one from the database sequence. The value of
this entry shows the best score obtained by aligning the in-
put sequences up to and including these letters. For each of
the three strategies, we find all the seeds generated by that
strategy. We then plot the score of the SW matrix entries
generated by these seeds in decreasing order.

In Figure 2 that shows the scores for comparison of dis-
similar sequences whenk = 11, HSA seeds are always
higher than both BLAST and spaced seeds. BLAST results
are very close to HSA results. This is mainly because the
error probability is very low fork = 11. On the other hand,
HSA finds a number of high scoring seeds that BLAST fails
to find. Similar results are observed for the similar datasets
with the gap between HSA, BLAST, and spaced seed negli-
gible (plots not shown).

For similar sequences withk = 18 (Figures 3) BLAST
and spaced seeds produce some seeds, HSA finds many
matches that they miss. This is because ask increases, the
probability of having two exactly samek-grams decreases
exponentially. For dissimilar sequences (plots not shown),
BLAST and spaced seed did not find any seeds while HSA
finds many seeds out of which many have significant score.

One important observation that follows from these ex-
periments is that spaced seeds miss many high scoring en-
tries contrary to the results of spaced seed papers. We there-
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Figure 4. Scores for similar seq. (k = 18) after extending.

fore performed another experiment to verify these results as
follows. Instead of intersecting the seeds with SW matrix,
we extended the seeds produced by each of the methods to
right and left until the alignment score drops below by 20.
We used +1 score for each match and -3 penalty for each
mismatch. Figure 4 shows the scores obtained after extend-
ing the seeds for the experiments in Figure 3. These results
concur with the earlier ones. Therefore, we conclude that
1) HSA can find at least as good alignments as BLAST and
spaced seeds (usually much better than BLAST and spaced
seeds), and 2) spaced seeds do not necessarily produce bet-
ter results than non-spaced seeds. Note that comparison of
spaced and non-spaced seeds is not within the scope of this
paper. The fingerprinting and randomization ideas of HSA
can be applied to spaced seeds as well.

4.2 Performance comparison results

We compared the runtime performance as well as the mem-
ory usage of HSA, BLAST, and spaced seeds for seed
lengths ranging from 12 to 28. In case of the spaced seed
scenario the execution is done only for available spaced
seeds of length 9 to 18. It can be seen from Table 1 that
seed creation time increases slowly untilk = 13 and sud-
denly there after. This is because, atk = 13, the hash table
becomes too large to fit in available memory. Therefore, a
sorted list is maintained to create seeds. For all values ofk,
HSA has the lowest seed creation time because if it picks
a small enough prime number it uses hash table instead of
sorted list even for largek.

Table 1 also shows that the memory usage of all three
methods increase exponentially untilk = 13 as the size of
the hash table increases exponentially withk. At k = 13,
the memory usage suddenly drops for BLAST and spaced
seed and increases gradually after that. This is because, they
use sorted list instead of hash table which can not be fit in
main memory. On the other hand, the memory usage of
HSA remains almost same. This is because HSA efficiently
uses the allowable memory to keep a hash table if it selects



an appropriate prime number. More experimental results
are further described in [?].

Table 1. Performace comparison results

k 12 18 22 28
Time HSA 0.005 0.38 0.45 0.52
(Sec) Blast 0.006 8.06 8.07 8.05

S.Seed 0.005 8.08 - -
Mem. HSA 44097 14779 12215 14017
Usage Blast 67124 32 32 32
(KB) S.Seed 67124 32 - -

5 Related work
The dynamic programming solution to the problem of find-
ing the best alignment between two strings of lengthsm
andn runs inO(mn) time and space [11, 13]. For large
data and query strings, this technique is infeasible in terms
of both time and space. Myers improved the time and space
complexity toO(rn), wherer is the amount of allowed er-
ror, by maintaining only the required part of the distance
matrix. [10] However, for large error rates,r is O(m), so
the complexity is stillO(mn).

Many heuristic-based search tools have been developed
to align strings faster. They fall into two categories:
hash-table–based tools and suffix-tree–based tools. Some
of the important hash table based tools are FASTA [12],
BLAST [1], PatternHunter [8]. The main difference be-
tween the tools is that they use different seed lengths and
types, and they have different seed extensions strategies.

A number of homology search tools are based on suf-
fix trees and derivatives. These include MUMmer [6],
QUASAR [4], REPuter [7], and AVID [3]. There are two
significant problems with the suffix-tree approach: (1) Suf-
fix trees manage mismatches inefficiently. They are good
for highly similar strings, but fail to recognize more distant
homologies. (2) Suffix trees have a high space overhead.

6 Conclusion and future work
The problem of local alignment of two biological sequences
is one of the most fundamental problems in bioinformatics.
Finding initial, fixed size seeds first and then stitching and
extending them to obtain significant alignments remains the
most popular heuristic. A seed can be obtained either by
exact match or a pattern match ofk-grams. We proposed
to employ randomized algorithms that are suitable for pat-
tern matching to find initial approximate seeds. Our main
contribution is the development of a highly scalable and ac-
curate (HSA) algorithm and a dynamic index structure. Our
method outperforms competing algorithms in terms of qual-
ity of the seeds, running time, and memory usage. Unlike
existing methods, HSA scales very well with higher seed
lengths, maintaining its quality as well as performance. Fi-
nally, HSA also provides guarantees in form of error prob-
abilities (compared to exact match) and upper bound the

running time and space usage during the execution.
One obvious direction for the future work is extending

and incorporating randomization in the entire process of
local alignment and thereby providing some probabilistic
guarantees on quality of a local alignment score. It might
be possible in the future to self-tune theτ by learning from
the type of target sequences. For example, in case of similar
sequences a smallerτ can be selected to potentially speed-
up the execution without much affecting the quality of the
seeds. Finally, the technique of randomization can also be
used to find the anchors for multiple sequence alignment.
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