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Abstract—Various multivariate time series analysis techniques
have been developed with the aim of inferring causal relations
between time series. Previously, these techniques have proved
their effectiveness on economic and neurophysiological data,
which normally consist of hundreds of samples. However, in
their applications to gene regulatory inference, the small sample
size of gene expression time series poses an obstacle. In this
paper, we describe some of the most commonly used multivariate
inference techniques and show the potential challenge related
to gene expression analysis. In response, we propose a directed
partial correlation (DPC) algorithm as an efficient and effective
solution to causal/regulatory relations inference on small sample
gene expression data. Comparative evaluations on the existing
techniques and the proposed method are presented. To draw
reliable conclusions, a comprehensive benchmarking on data sets
of various setups is essential. Three experiments are designed to
assess these methods in a coherent manner. Detailed analysis
of experimental results not only reveals good accuracy of the
proposed DPC method in large-scale prediction, but also gives
much insight into all methods under evaluation.

I. INTRODUCTION

One major step in recent genomic research is the advance
of high-throughput microarray technique, which allows ex-
pression levels of all genes in the genome to be measured at
particular time points. The resulting gene expression dynamics
are important, since they directly reveal the active components
within the cell over time, indicating gene regulatory relation-
ships on the transcriptional level. However, they also pose a
dimensionality problem in the subsequent data analysis, with
the number of genes far exceeding the number of samples/time
points [1]. The situation is quite the opposite to classical time
series analysis, thus objective technique is needed for learning
gene regulatory relationships from these data. Also, large
number of genes/variables poses a challenge to interaction
inference in a directed form, since there are twice as many
possibilities as there are in an undirected network.

Many methods have been proposed for studying the in-
terdependence/causality relationships between genes/variables.
The study should ultimately lead to the reconstruction of
gene regulatory networks and provide new insights into the
functioning of the regulatory system. One of the most popular
directed network inference methods, dynamic Bayesian net-
works (DBNs) [2], [3] has been applied in this area. DBNs are
graphical models trained to maximise the joint probability of a

(a) (b) (c)

Fig. 1. Possible inference results of relationships among three variables
(a) True/direct interactions, (b) indirect interaction inference, (c) bivariate
inference.

set of observed data and their conditional dependencies. DBNs
have been routinely applied to data, mainly long time series,
to provide information about system dynamics. However, a
major concern about DBNs is its inefficiency in large-scale
prediction, i.e., with the presence of many variables.

Recently, a directed network inference approach, namely
shrinkage vector autoregressive method (SVAR), was proposed
by Rhein et al. [4] to circumvent the small sample problem.
The basic procedure consists of first computing the shrinkage
estimates of covariance matrices to obtain regression coeffi-
cients for fitting autoregressive models. Then, instead of using
the regression coefficients directly, the corresponding partial
correlation coefficients are statistically tested. Significant co-
efficients are selected using False Discovery Rate (FDR) [5]
to be included into the reconstructed network.

Another recent advance in this area is the introduction of the
concept of Granger causality (GC) [6], a statistical technique
for causal inference well known in economics. Time series
A is said to Granger cause time series B, if the forecast
of B has incremental predictive power with the addition of
A. The predictive power can be measured by the variances
of residuals as a result of linear model fitting. Informally,
the method measures the influence of one time series on
another by checking if the prediction of the response can
be improved by incorporating the knowledge of a predictor.
Subsequently, for the application to gene expression data,
one of the first attempts is a simple bivariate model that
uses Granger causality to infer relationships between pairs of
variables without taking into account other variables [7]. For
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the purpose of our comparative experiments, we implemented
a multivariate model in R, since the bivariate model could lead
to false positive edges such as the ones in Fig. 1(c), compared
with the true network (Fig. 1(a)).

All above three methods infer directed networks. One undi-
rected but popular method, a shrinkage estimate method using
graphical Gaussian models (GGMs), is proposed by Schäfer
and Strimmer [8] to tackle the dimensionality problem. GGMs
are undirected models which describe conditional dependence
structure among variables. In essence, partial correlation is
used as the mathematical foundation for establishing direct
interactions among genes (Fig. 1(a)). When inferring the
relationship between two temporal signals/gene expressions,
the rest of the signals are also taken into account in the com-
putation of partial correlation to discriminate between direct
(Fig. 1(a)) and indirect (Fig. 1(b)) interactions. Significant
coefficients of partial correlation can then be selected using
FDR for the reconstruction of gene networks.

Although this method is fast and well suited for small
sample data analysis [9], the inferred interactions are undi-
rected. In an undirected network, the role that a gene plays
in the regulatory activities is unknown. Therefore, based on
partial correlation, we propose a directed approach specifically
targeted at small-sample gene expression data. It is then
compared with the existing directed inference methods as
described above, DBNs, SVAR, and Granger causality, to
demonstrate its effectiveness.

Although there are many comparative studies of interdepen-
dence inference techniques in the literature [10], [11], few of
them are conducted on microarray data sets. For example, in
a comparative study on inference algorithms for multivariate
time series interaction [10], GC is reported to perform well for
stationary times series data, but is sensitive to non-linearity.
The study was mainly based on neural data, which might be
of completely different nature from gene expression data.

In contrast, our study focuses on the small sample problem
in gene expression data analysis. This paper aims at illustrating
the application of multivariate time series analysis in the
reign of gene interaction inference. It also sheds light on the
question of to what extend the model assumptions of individual
algorithms influence the confidence of the inference outcome
for biological networks. Specifically, we discuss the statistical
properties of the transcriptional network and their impacts on
the performance of an algorithm in the comparative evaluation.

This paper is organised as follows. In the second section, we
present the technical details of the three existing algorithms to
be incorporated in the comparative analysis. Then in the third
section a directed partial correlation algorithm for directed
regulatory network inference is proposed. Experimental results
and discussions are presented in the fourth section. The
reported results indicate superior performance of the proposed
algorithm in terms of both accuracy and efficiency.

II. RELATED METHODS

In this section, we first present the autoregressive models,
since the three existing methods are based on them. Then, we

describe the technical details for three representative methods,
focusing on their abilities in analysing gene expression data.
Next, the proposed algorithm is formulated. These technical
details provide us strong foundation for the discussions later
on experimental results. Based on the interpretation of exper-
imental results, we hope to shed some light on the nature of
inference techniques, their advantages and inherent problems.

A. Existing multivariate time series inference methods

1) Vector autoregressive models (VAR): Suppose Y =
{yi|i = 1, 2, ..., n} is a multivariate stationary time series
consisting of n variables and t time points. A p-order vector
autoregressive VAR(p) model specifies that the value of the
ith variable at time point t, yi(t), is a linear combination of a
constant/mean value, the past of the multivariate time series,
and a noise component

Y (t) = B + A

p∑
u=1

Y (t− u) + ε(t). (1)

B is a constant matrix of size n × t. ε consists of vectors
of residuals {εi|i = 1...n}, each assumed to be zero mean
noise with covariance matrix Σi. A is the n × n coefficient
matrix representing the dynamic structure. When A is a
constant matrix, this model assumes homogeneity across time.
A special case of the p-order VAR process, the first-order
autoregressive model (VAR(1)), is often considered when
analysing microarray data for the sake of simplicity [3], [4]

Y (t) = B + AY (t− 1) + ε(t). (2)

2) Granger causality inference method (GC): We start with
Granger causality method (GC) in the multivariate case. Let
Y − symbolise the past state of Y , Y − = {Y (u)|u = 1, ..., t−
1}, and let y−i symbolise the past of variable yi. The Granger
causality measure of prediction power of one variable yi on
the other variable yj , i �= j, is defined by

gyi→yj = ln

(
σyj |Y −

σyj |Y
−

/i

)
. (3)

Symbol “|” denotes operation “condition on” and symbol “/”
denotes “without”. σyj |Y − is the variance of the residual ε(t)
in the VAR(1) model for yj conditioned on the past of all
variables Y −. It is compared to σyj |Y

−

/i
which is conditioned

on the past of all variables but yi, Y −/i . GC directly measures
the prediction power of yi for yj , as a result of the reduction
of prediction errors by incorporating yi into the VAR(1) model
for yj . In other words, if introducing yi significantly reduces
the variance of the prediction error of yj , then a variable
yi Granger causes the variable yj . Since it requires fitting
autoregressive model with all variables and their past states,
GC can only be applied to data satisfying: t > n(p + 1),
indicating its limited potential in gene expression analysis.
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3) Shrinkage VAR method (SVAR): Although the VAR
model has been widely used in economics and neuroscience, it
has its own limitations when small samples are encountered.
An effective shrinkage estimation procedure was developed
for learning the VAR models from small sample data [4]. The
idea is that a shrinkage estimate can replace the covariance
matrix for the joint matrix of both the present data and the
lagged data, which then leads to the computation for regression
coefficients. The covariance matrix would be otherwise ill-
conditioned, given the large number of variables (2 × n) and
short time series t, t� n.

Let Φ denote the joint matrix of the multivariate Y ’s
present state (Y + = {Y (u)|u = 2, ..., t}) and past state
(Y − = {Y (u)|u = 1, ..., t−1}), Φ = [Y +Y −]. Assuming that
the data has zero mean, an unbiased estimate of the covariance
matrix for Φ is

cov(Φ) =
1

t− 1
[Y +Y −]′[Y +Y −] (4)

=
1

t− 1

[
Y +′Y + Y +′Y −

Y −
′

Y + Y −
′

Y −

]
.

Note that this matrix contains the sub-matrices Y −
′

Y − and
Y −

′

Y +. Meanwhile, the ordinary least squares (OLS) estima-
tion [12] for the regression coefficient A in the VAR(1) model
(Eq.(2)) is:

Â(1) = (Y −
′

Y −)−1Y −
′

Y +. (5)

Therefore, the shrinkage estimation of cov(Φ) will lead to the
estimated coefficient matrix Â. Then the partial correlation
coefficients q can be computed from Â and the FDR is used to
select significant coefficients. With large number of variables,
this method gave good result in the comparative simulation
study using simulated autoregressive data in the original paper
[4].

4) Dynamic Bayesian networks inference method (DBNs):
DBNs implementations are usually designed for data with
hundreds or thousands of samples. The limitation of microar-
ray experimental costs prohibits most of the techniques from
exploring small sample gene expression data. In this paper, we
use the implementation of the R package G1DBN [3], which
is based on a trivariate AR(1) model:

Y (1) ∼ N (μ1, Σ1), (6)

Y (t) = B + AY (t− 1) + ε(t),

ε(t) ∼ N (0, σ),

with predefined μ1, Σ1, and σ. This method measures the
conditional dependence between two variables yi, yj by testing
the null hypothesis Hi,j,k

0 : “aij|k = 0” on every third variable
{yk|k �= i, j}. Then, a score is assigned to the potential
edge yi → yj corresponding to the maximum p-values from
the tests pmax(yi → yj). This means the algorithm has a
computational complexity of O(n3). The computation of this
method may be too heavy for data with more than a hundred
variables. Since the simulated data are generated following the
characteristic assumption of small sample, we hope to cast
light on this particular aspect.

(a) Coefficients in g1 (b) Coefficients in g2

Fig. 2. Partial correlation matrices before and after deleting yj . To predict
yj’s influence on yi, partial correlation coefficients are selected into group
testing and coloured dark green.

III. PROPOSED DIRECTED PARTIAL CORRELATION

INFERENCE METHOD (DPC)

The shrinkage estimate for partial correlation in [8] was for-
mulated specifically for the inference from small sample gene
expression data. Although partial correlation is undoubtedly
fast in computation and suitable for small sample problem,
it can only infer undirected networks. Another problem is,
variable time lag cannot be taken into account as in a VAR(1)
model. We introduce the notion of directed partial correlation
(DPC) for fast inference of directed gene networks. The idea is
similar to the idea behind Granger causality - a variable A has
causal influence on another variable B, if the removal/addition
of A has a large impact on the prediction of B. While GC
measures this impact by comparing the residuals before and
after adding A to the prediction of B, DPC measures it by
examining the correlation coefficients.

A. Zero-order directed partial correlation DPC(0)

Directed partial correlation aims to investigate the effect
of including a variable into the predictions of another gene,
i.e. the change of partial correlations among other genes. Let
QY of size n × n denote the partial correlation matrix for
Y . Each element q(i, j|Y ) in QY is the partial correlation
between yi and yj given Y , i = 1, ...n, j = 1, ..., n, i �= j,
i.e., the correlation between yi and yj after the linear effects
of the rest of variables are removed. This can be formulated
as q(i, j|Y ). Removal of linear effects from others means that
resulting partial correlation indicates the direct relationship
between two variables. Fig. 2(a) shows q(i, k|Y ), k �= i, j,
which denotes the partial correlation between yi and yk when
effects from all others, including yj , are removed.

However, relationship indicated by q(i, j|Y ) is undirected.
To investigate the influence yj has on yi, we propose the
following. If we delete the variable yj from Y , the partial
correlation between yi and another variable yk, k �= i, j is
denoted as q(i, k|Y/j) in the matrix QY/j

. As shown in Fig.
2(b), in the prediction of relationship between yi and any other
variable yk, k �= i, j, q(i, k|Y/j) no longer remove the effect
from yj , which means yj no longer take part in the prediction
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of yi. Consequently, there are two groups of statistics related to
the prediction of yi, each corresponding to coefficients before
and after the removal of yj . To be more specific, the first
group is the ith row in QY without the ith and jth element,
g1 = {q(i, j|Y ), j �= i}, shown in dark green in Fig. 2(a).
The second group corresponding to the dark green elements
in Fig. 2(b) is the ith row in QY/k

without the ith element,
g2 = {q(i, j|Y/k), j �= i, k}. Both groups have the length of
n− 2. The effect yj has on the prediction of yi is defined as:

e(0)
yj→yi

=t-test (g1, g2) (7)

=t-test
(
{q(i, k|Y )|k �= i, j}, {q(i, k|Y/j)|k �= i, j}

)
.

We use Student’s t-test on the two groups to see if there
exists an effect on the prediction of other variables with the
removal of variable yj . The null hypothesis is that there is no
significant difference between the two groups, before and after
the removal. Student’s-t test compare the sample means:

τ =
ḡ1 − ḡ2√

(n− 2)−1(σ2
g1 + σ2

g2)
, (8)

where σg1 stands for the standard deviation of g1, the denom-
inator of τ is the standard error of the difference between two
means, the degree of freedom for the test is 2n− 6.

In summary, we take advantage of the fact that in computing
partial correlation between two variables, all effects from
other variables need to be removed. In other words, yj takes
part in the predictions of yi with all other variables yk. We
measure yj’s influence on yi by comparing partial correlation
coefficients related to yi before and after the deletion of yj ,
since yj does not take part in the prediction of yi after the
deletion.

B. First-order directed partial correlation DPC(1)

A key feature of the proposed DPC method is that it can be
easily extended to include time lags. The correlation between
the variables measured as a function of time lag is of interest
because such a time lag may reflect a causal relationship. Let
Φ be the joint matrix of the present state and the past state
of data, Φ = [Y +Y −]. To compute the correlation matrix for
Φ, we note that the covariance matrix of Φ is ill-conditioned
for small sample data and therefore not suitable. We use the
shrinkage estimate method in Eq.4 to compute the partial
correlation matrix Q

(1)
Y for Φ:

Q
(1)
Y =

[
Q++ Q+−

Q−+ Q−−

]
. (9)

Hence each element in the sub-matrix Q++, q(1)(i, j) with i =
1...n, j = 1...n, stands for the partial correlation between yi

and yj , when the effects of the present states of other variables
and the past states of all variables are removed. If a variable
yj is deleted from the joint matrix Φ, the corresponding partial
correlation matrix Q

(1)
Y/j

has equivalent meaning as described
in the zero-order model, i.e. the effect of yj is not taken into

account in the prediction of the other variables. The first-order
directed partial correlation from yj to yi can be formulated as:

e(1)
yk→yi

(10)

=t-test
(
{q(1)(i, j|Y )|j �= i}, {q((1)i, k|Y/j)|k �= i, k}

)
.

Note that although the partial correlation matrix is of size
2n×2n, only the sub-matrix Q++ is used for computing e(1).
The probability of the directed interaction is indicated by the

Algorithm 1 First-order directed partial correlation (DPC(1))

Construct the joint matrix Φ = [Y +Y −], with Y + the
present state (Y + = {Y (u)|u ∈ 2...t}) and Y − the past
state (Y − = {Y (u)|u ∈ 1...t− 1});
Compute the partial correlation matrix Q

(1)
Y for the joint

matrix Φ;
for each variable yk in Y do

Compute the partial correlation matrix Q
(1)
Y/k

for the joint
matrix with yk removed Φ/k;
for each variable yi, i �= k do

Compute the influence of yk on yi, eki, according to
Eq.(1);

end for
end for
for each diagonal element eii in the directed partial corre-
lation score matrix do

Compute the partial correlation matrix Q
(1)
Y/i

for the joint

matrix with the lagged data y−i removed Φ/i−;
Compute the effect of y−i on yi according to Eq.(1).

end for

resultant p-values. Using FDR, adjusted p-values are selected
in accordance to confidence levels, for example, 2% of FDR
means accepting all tests with adjusted p-values < 0.02 as
significant.

Conceptually, DPC tests the effect of one variable on the
predictions of another by all the rest of variables at the same
time, hence is able to monitor the dynamic process within
reasonable computation time. It avoids linear model fitting,
thus is more efficient and less constrained by the sample size.

IV. EXPERIMENTS

Previously, SVAR and DBNs were experimentally proved
to be useful using simulated data from autoregressive models
[3], [4]. These methods are based on the autoregressive model
and their performance on other types of data is still not clear.
When the data satisfy the model assumption, we can expect
the corresponding technique to perform well. Therefore, an
important question pertains to which assumption best describes
gene expression data. In this section, we aimed at investigating
the following question: how well the inference methods can
meet the requirements of microarray data.

Since real expression data are generally noisy, they may not
be fully reflective of the gene relationships and the ground
truth is unknown, comparisons of performance are conducted
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TABLE I
SIMULATED SMALL SAMPLE DATA SETS CONFIGURATION FOR NETWORKS OF VARIOUS SIZES

Data set Network size Sub-network Sample Noise
selection size level

1 10 20 30 40 50 80 100 120 150 180 200 220 250 280 300 clustAdd 25 8%
2 10 20 30 40 50 80 100 120 150 180 200 220 250 280 300 clustAdd 25 5%
3 10 20 30 40 50 80 100 120 150 180 200 220 250 280 300 clustAdd 25 3%
4 10 20 30 40 50 80 100 120 150 180 200 220 250 280 300 clustAdd 15 6%
5 10 20 30 40 50 80 100 120 150 180 200 220 250 280 300 clustAdd 15 4%
6 10 20 30 40 50 80 100 120 150 180 200 220 250 280 300 clustAdd 15 2%

with synthetic data. SynTReN is well suited for testing module
network algorithms [13]. By using topologies generated based
on previously described source networks, SynTReN allows
good approximation of the statistical properties of real bio-
logical networks.

Four multivariate time series inference algorithms as de-
scribed above are evaluated in this experiment. Their ways
of inferring the final network vary and each requires fine
tuning for the parameters, which could be subjective for large-
scale experiments (in the synthetic data experiment altogether
142 data sets are used). To eliminate any subjective element
and enable a fair comparison, we decide to compare directly
on their preliminary output, the score matrices. For clarity,
the related symbols for each score matrix in the algorithms’
technical details are listed in Table II.

For the inferred score matrices, we compute their true
positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN) given a threshold. This procedure was
repeated 500 times for each test statistic and variance sce-
nario, to obtain Receiver Operator Characteristic (ROC) curves
[14], [15] for describing the dependence of true positive
rate/sensitivity TPR = TP/(TP + FN) and false positive
rate/specificity FPR = TN/(TN+FP ). ROC curves provide
a straightforward graphical representation of the performance
of the algorithms, hence are especially useful in statistically
principled comparisons. It avoids issues related to a chosen
threshold, by using all possible thresholds. As a summary
metric for ROC, the area under the ROC curve (AUC), as
its name indicates, can measure the average accuracy of the
prediction.

While AUC provides quantitative measurement on average
performance for a method, maximum F-score [16] evaluates
each method at its point of optimum. F-score is the harmonic
mean of precision (TP/(TP + FP )) and recall (TP/(TP +
FN)). As a composite measure, F-score challenges algorithms
with higher specificity and benefits algorithms with higher
sensitivity. Both of the metrics are used when appropriate in
the following experiment section. Apart from these metrics,
we also base our evaluation on the the consumed computation
time and the true positive rate at the point of 0.2 false positive
rate, since usually a low false positive rate is preferred.

SynTReN produces synthetic transcriptional regulatory net-
works and the corresponding simulated microarray data sets,
parameterized by the network topology, size of the net-
work/number of genes, levels of biological, experimental, and

input noise etc. Network topologies can be generated by
selecting sub-networks from previously described biological
networks or by using random graph models. The former
method is used here to offer better approximation. Two dif-
ferent strategies to select a connected subgraph are imple-
mented: neighbour addition (neighAdd) and cluster addition
(clusterAdd). It was suggested that sub-network selection by
cluster addition is preferable [17], since the resulting sub-
network preserves features of scale-free networks such as
having hubs. However, consider that during variable selection
process one may not include all neighbours of a hub gene,
sub-networks by neighbour addition may sometimes represent
a more realistic situation in gene network analysis. Hence we
use both strategies in simulated data generation.

After the topologies of the synthetic networks are sampled,
transition functions can be determined and enzyme kinetic
equations are selected for each gene and its regulators. Com-
bined with external conditions that trigger the network, the
expression levels of genes in each experiment are generated
according to the activities of their regulators. The final data
generated by SynTReN are quantiled to the range of [0, 1]
where 0 indicates no expression and 1 indicates maximal
expression. We normalize the data to the log2 ratio by selecting
one of the samples as the control.

We design three sets of experiments in order to assess the
methods’ performance in a coherent manner. In the first and
second experiment, data sets of small sample, varying network
sizes and data sets of large network, varing sample sizes are
generated. In the third experiment, sample size slightly larger
than network size/gene number are generated. However in the
first experiment, data sets are analysed by DPC, SVAR and
DBNs but not GC, since GC requires sample size larger than
network size (n < t).

The experiments are designed to give a thorough evaluation
of the proposed algorithm, to observe its performance in
different scenarios, to compare four algorithms in a coherent
manner. Specifically, we note that settings in the first exper-
iment are perhaps closest to realistic situation for microarray
data analysis, and therefore results from the first experiment
should receive careful consideration and interpretation.

A. Networks of various sizes and small sample size

In this experiment, we assess the influence of network size
on the performance of inference algorithms, by fixing the
sample size to a small number and vary the network size.
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Fig. 3. The AUC values for three network inference algorithms on different
data sets with noise level at about 5% on average (a) fixed sample size of 25,
network size/gene number 10 ∼ 300, (b) fixed sample size of 15, network
size/gene number 10 ∼ 300.

This means GC cannot be applied in this experiment, since
it requires long time series (t � n) to fit linear models.
First, E.coli sub-networks are selected by cluster addition as
the network topologies. We generate altogether 45 data sets
with 25 samples varied in network size from 10 nodes to 300
nodes, and 45 data sets with 15 samples varied in network
size from 10 nodes to 300 nodes. The configurations in the
network topology selection, sample size and network size are
provided in Table I. In this table, parameter noise level refers
to all the noise parameters in SynTReN: levels of biological,
experimental, and input noise. They are set to the same value.
The noise level is set relatively lower for the 15-sample data
sets than the 25-sample data sets.

For each algorithms, the resulting AUC values for data set
1, 2 and 3 are averaged and plotted in Fig. 3(a), so are the
inference results for data sets 4, 5, and 6 in Fig. 3(b). Because
of the computation costs of DBNs, we only compute results
for networks of size 10 ∼ 100 for the 25-sample data and size

10 ∼ 150 for the 15-sample data. The plots show the effect of
the amount of available gene expression data on the inference
results. Although SVAR and DBNs sometimes outperform
DPC with smaller networks/less variables, when faced with
increasing network size, their performance both drops rapidly
when there are only small amount of data available. However,
DPC’s overall performance dramatically improves from the
beginning, i.e. for smaller networks. Then it stays the same
regardless of the changes in network size.

Generally, the performance of most of the algorithms de-
grades as the number of genes increase. This conforms to
current theory. In contrast, DPC outperforms others only when
the network size is big enough. However, this is reasonable.
The two-sample test DPC based on is effective only when there
are big enough sample populations, which, in this scenario,
are equivalent to the number of genes/variables. In summary,
DPC shows superior performance in inferring large-scale gene
networks, although for small networks it is sometimes outper-
formed by SVAR and DBNs.

B. Networks of fixed size and various sample sizes

To assess the influence of sample size on the performance
of the inference algorithms, we generate data sets for a fixed
network size but of various sample sizes. Four E.coli sub-
networks selected by cluster addition of size 50, 50, 100, and
100 genes were chosen as the network topologies. For each
of the two 50-gene networks, we generate 12 gene expression
data sets with sample sizes varied from 60 to 1000. For each
of the two 100-gene networks, we generate 8 data sets with
sample sizes varied from 120 to 1000. Altogether 40 data
sets are generated and used as input for the four algorithms.
The resulting AUC values for the two 50-gene networks are
averaged and plotted in Fig. 4(a) and the same for the resulting
AUC values from two 100-gene networks plotted in Fig. 4(b).

All algorithms show different behaviours when faced with
increased amount of data. In Fig. 4(a), the performance of all
methods improve as the sample size grows at the beginning
(60∼180 samples), but then level off eventually. Compared
with the AUC values for DBNs and DPC, the AUC values for
SVAR and GC show larger variations. The best performer in
this case when the network size is 50 genes is DBNs, followed
by DPC(0).

However, this situation is reversed when the network size is
increased to 100 genes. Performance of DBNs drops sharply,
reflecting its sensitivity to the network size. Interestingly,
the performance of DPC improves dramatically compared
to that in the case of 50-genes. With bigger network/more
variables, one would expect a decent in the performance of
inference methods. DPC, in contrast, perform even better,
which conform to the conclusion and interpretation for DPC
in the first experiment.

With increasing number of samples, the improvement of
performance is not as dramatic as one would expect in the case
of 50-gene networks. A performance plateau was reached at
180 samples for most of the algorithms. However, the case
with 100-gene networks are quite different in that general
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Fig. 4. The AUC values for four network inference algorithms on different
data sets with noise level at 10% (a) fixed network size of 50 genes, sample
size 60 ∼ 1000, (b) fixed network size of 100 genes, sample size 120 ∼
1000.

performance only starts to improve when more than 300
samples are available. An exception is DPC, which show fairly
steady performance across all sample sizes.

From this experiment we can observe that expecting dra-
matic improvement in the performance of inference algorithms
by increasing sample size is unrealistic, especially for microar-
ray data whose samples are costly. Again DPC outperforms
other algorithms for larger networks.

C. Networks of typical sizes

In the third experiment, we investigate the situation when
the network size is selected to be slightly smaller than the
sample size. This is close to a scenario when a researcher
chooses the number of genes to be included in the network
according to the number of microarray samples available.
Four data set configurations with 50 genes×100 samples, 80
genes×100 samples, 100 genes×150 samples, 150 genes×180
samples are considered. Three data sets are generated for
each configuration. By assigning different random seeds to

(a) (b)

(c) (d)

Fig. 5. ROC curves for the comparisons of the four network inference
algorithms using their score matrics, (a) synthetic network of 50 genes and
100 samples, (b) synthetic network of 80 genes and 100 samples, (c) synthetic
network of 100 genes and 150 samples, (d) synthetic network of 150 genes
and 180 samples.

TABLE II
PERFORMANCE OF THE FOUR MULTIVARIATE TIME SERIES INFERENCE

ALGORITHMS ON GENE NETWORKS OF TYPICAL SIZES

Method DPC(1) DPC(0) SVAR GC DBNs
Score matrix e

(1)
e
(0) |r| g pmax

Data size Average AUC value
50 × 100 0.65 0.70 0.62 0.60 0.57
80 × 100 0.79 0.76 0.65 0.57 0.55
100 × 150 0.79 0.79 0.58 0.55 0.53
150 × 180 0.70 0.72 0.63 0.53 0.53

Data size Average true positive rate (false positive rate=0.2)
50 × 100 0.37 0.44 0.25 0.34 0.28
80 × 100 0.60 0.58 0.28 0.20 0.25
100 × 150 0.64 0.67 0.24 0.45 0.24
150 × 180 0.56 0.60 0.31 0.27 0.22

Data size F scores
50 × 100 0.11 0.14 0.06 0.15 0.07
80 × 100 0.18 0.22 0.05 0.18 0.05
100 × 150 0.20 0.23 0.05 0.20 0.04
150 × 180 0.18 0.21 0.05 0.09 0.03

Average time (min)
50 × 100 1.0 0.3 0.3 38.2 84.3
80 × 100 1.4 0.5 0.3 56.9 136.5
100 × 150 1.8 0.7 0.3 67.3 173.2
150 × 180 2.5 0.9 0.4 88.9 230.5

SynTReN to select random nodes as a starting point, all data
sets are guaranteed to relate to different network topologies.
The noise level for all the noise parameters (e.g. biological
noise and experiment noise) in SynTReN is set to 10%.

To evaluate the performance of the four algorithms, we first
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plot the resulting ROC curves in Fig. 5 individually for the
four scenarios. In each plot, for each algorithm, its results on
all three data sets are first plotted as the dotted curves, then
their boxplots are used as the summary curves.

It is easy to observe, for SVAR, GC and DBNs, a descent
in their performances as network expands. In contrast, DPC
shows robustness to network size in this case, when sample
size is reasonable in comparison to the network size.

Quantitative measurements of performance including AUC
values, true positive rates, F scores and average computation
time for each methods are provided in Table II, with best
results bolded. For clarity, score matrices are the symbols
corresponding to the technical details in the previous section.
The average performance are reported as a result of using three
data sets for each typical data size. AUC values are calculated
from Fig. 5, and the average true positive rates are given for
each algorithm when the false positive rate is 20%. Average
consumed time is for a PC (Intel Pentium 4 2.80GHz). From
this table, noticeable advantage to DPC can be seen in terms
of both accuracy and efficiency, although SVAR is the most
efficient.

V. CONCLUSIONS

This paper reviews some recent advances on multivariate
time series inference in the field of gene expression data
analysis and reports a new method, aiming at shedding light on
future research. We performed thorough experiments to inves-
tigate the properties of the proposed method and other methods
in comparison, although settings for the first experiment are
closer to realistic situation for microarray data.

Superior performance of the proposed directed partial cor-
relation (DPC) for large-scale network inference is observed
throughout the experiments. Its excellent property of robust-
ness to gene number/network size is made explicit in the
first experiment, while other methods in comparison show fast
descent in their performance. Moreover, there is no obvious
effect of the sample size on the performance of inference
algorithm, as it is shown in the second experiment. The
marginal influence on the inference results by increasing sam-
ples to a realistic limit indicates that, exploring fundamental
advancement in inference algorithms is perhaps the key to
success in this field.

Finally, we note that a major difference between SVAR
and DPC is, SVAR inspects the regression coefficients of
the full linear model, while DPC takes advantage of the
idea behind Granger causality and tests the effect on the
removal of individual variables. Unlike the method using
Granger causality, the computation cost for DPC is low and not
substantially affected by network size. Following the success
of DPC on synthetic data, we would like to test it on real
biological data and this will be our new line of investigation
in the near future.
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