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Abstract

Multiple approaches for reverse-engineering biological networks from time-series data have been 

proposed in the computational biology literature. These approaches can be classified by their 

underlying mathematical algorithms, such as Bayesian or algebraic techniques, as well as by their 

time paradigm, which includes next-state and co-temporal modeling. The types of biological 

relationships, such as parent-child or siblings, discovered by these algorithms are quite varied. It is 

important to understand the strengths and weaknesses of the various algorithms and time 

paradigms on actual experimental data. We assess how well the co-temporal implementations of 

three algorithms, continuous Bayesian, discrete Bayesian, and computational algebraic, can 1) 

identify two types of entity relationships, parent and sibling, between biological entities, 2) deal 

with experimental sparse time course data, and 3) handle experimental noise seen in replicate data 

sets. These algorithms are evaluated, using the shuffle index metric, for how well the resulting 

models match literature models in terms of siblings and parent relationships. Results indicate that 

all three co-temporal algorithms perform well, at a statistically significant level, at finding sibling 

relationships, but perform relatively poorly in finding parent relationships.
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I. INTRODUCTION

Analyzing experimental time series data to reconstruct networks of relationships among 

biological entities (genes or proteins, for example) is a challenging computational problem 

of immense importance [1, 2]. A number of algorithms for reverse engineering biological 

networks have been proposed, utilizing a variety of mathematical approaches such as 

relevance networks [3], graphical Gaussian models [4], Bayesian networks [5], and 

computational algebra [6]. For an overview of several approaches to the reverse engineering 

of biological networks see [7].

An important issue in modeling is the selection of a time paradigm. Broadly speaking, there 

are two choices for a time paradigm: next-state and co-temporal. Next-state models are 

commonly referenced as dynamic or Markov models. Next-state models consider data 

changes from one time point to the next, assuming that the underlying system can be 

modeled as a (typically first-order) Markov process. Next-state modeling approaches include 

the use of dynamic Bayesian networks [8] and state-space models [9]. Co-temporal models, 

on the other hand, represent mathematical relationships among the entities (genes/proteins) 

that exist at all time points. Modeling approaches that exploit conditional independence fall 

under this paradigm; this includes static Bayesian networks [5], pairwise associations (such 

as relevance networks [3]), or partial correlation (as in graphical Gaussian models [4]).

While both next-state and co-temporal approaches generate network graphs with vertices 

representing biological entities, the graphs resulting from these two time paradigms cannot 

be compared directly since their edges may represent different types of relationships. Next-

state models result in network graphs containing directed edges representing potential causal 

relationships between entities. Co-temporal models often result in network graphs 

containing undirected edges representing correlative or co-dependency relationships.

A fundamental difficulty is that for experimental time-series data-sets which frequently only 

include five to ten time points, the modeling problem tends to be heavily underdetermined; 

thus, many network models may be consistent with the available data [10]. However, it is 

essential to assess algorithms on real experimental data, as simulated data does not exhibit 

all the features of actual data.

In this contribution, we evaluate co-temporal approaches to modeling using computational 

algebra and two probabilistic algorithms, continuous Bayesian and discrete Bayesian, and 

report the results from modeling three experimentally collected time-series datasets (two of 

which have replicates). Because of the nature of co-temporal algorithms, we hypothesized 

that these algorithms should identify particular relationships; specifically we hypothesize 

that co-temporal algorithms should identify sibling relationships better than parent-child 

relationships. The discrete Bayesian algorithms have been widely described in the literature; 

Pe’er [5], for example, provides a primer on discrete Bayesian modeling. The computational 

algebra algorithm is a variant of one originally proposed by Laubenbacher and Stigler [6, 

11] that constructs polynomial equations that fit relationships among the biological entities. 

The continuous Bayesian modeling algorithm utilizes multivariate log-normal likelihood 

theory for the entities’ measurement over time (see, for example, [12, 13]). The resulting 
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models consist of an ordered list of edges. We compare the ordered list of edges to derived 

literature models using the shuffle index [14] to gain insight into how each algorithm 

performs within the co-temporal modeling paradigm on: 1) identifying different entity 

relationships; 2) dealing with sparse experimental data; and 3) handling experimental noise.

II. Co-Temporal Time Paradigm for Modeling

Consider a data matrix D=(dki), where dki represents the measurement of entity i at time 

point pk. Next-state methods produce functions g1, g2, …, gn such that dk+1,i, or its 

probabilistic expectation E(dk+1,i), equals gi(dk,1 dk,2… dk,n). Co-temporal modeling, on the 

other hand, produces functions f1, f2, …, fn such that dk,i or its probabilistic expectation 

E(dk,i) equals fi(dk,1 dk,2… dk,i−1, dk,i+1,…, dk,n). Note that the term dk,i is not a variable in 

the function fi. Co-temporal functions find invariants or associations in the data and predict 

the state of an entity at a given time point based on the values of other entities at that same 

time point. This function applies across all rows of the data matrix D.

The identification of co-temporal associations among the entities can be considered a 

generalization of clustering techniques. Discretizations of the data, as a first cut, identify 

similarly acting entities by giving them the same discretization. Two entities, corresponding 

to data columns i and j respectively, with the same discretization have the co-temporal 

function xt,i =xt,j. General co-temporal modeling, however, supports a broader class of 

functions. For example, inverse (xt,i =−xt,j) and multi-variable (xt,i =−xt,j + xt,k) functions are 

potential co-temporal functions among biological entities that would not be identified by 

standard clustering techniques.

III. Modeling Algorithms

Three different modeling algorithms are evaluated – discrete Bayesian (DB), continuous 

Bayesian (CB), and computational algebra (CA), all implemented within a co-temporal 

paradigm. A brief review of each algorithm is presented below.

Both Bayesian modeling algorithms employed in this paper are based on searching the space 

of Bayesian networks. Bayesian networks [15, 16] are directed acyclic graphs that represent 

a full joint distribution through factorization into conditional probability distributions. Nodes 

represent variables, and the presence/absence of edges specifies dependence and 

independence relationships between the variables. A Bayesian network associates a 

conditional probability function with each variable representing the probability of the 

variable taking on a particular value given the value of each of its parents in the graph. In the 

biological context, nodes correspond to biological entities of interest and edges represent 

hypothesized biological dependencies between such entities (such as transcription factor 

regulatory control).

Our continuous Bayesian method uses the original continuous data and employs a 

multivariate log-normal model. Taking the logs of the levels of the original data entities 

transforms the original right-skewed distributions to be more symmetric and converts 

multiplicative chance errors to additive ones [17]. An inverse function of the Bayesian 

Information Criterion (BIC) is used to estimate the posterior probability of a given directed 
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graph [18]. This results in a directed graph’s posterior probability being higher if it fits the 

data better (i.e., has higher maximum log likelihood), while it is lower if it is more complex 

(i.e., has more edges).

For any particular directed graph, its maximum log likelihood is the sum of the individual 

entities’ maximum log likelihoods. For an entity’s likelihood to be well-defined (with a non-

singular sample covariance matrix for the entity and its m parents), m must be less than or 

equal to T−2, where T is the number of measured time points [19]. Accordingly, the number 

of edges going into or out from any node is limited to T−2.

Metropolis-Hastings search [20] over the space of directed graphs is employed in order to 

estimate probabilities of edges and graphs. This process employs 5*2 = 10 separate runs of 

the algorithm, where five different starting directed graphs and two different acceptance 

burn-in criteria are used. For each run, at least 2.5 million burn-in replications and twenty-

five million regular replications are used. The list of its top two-hundred directed graphs and 

their proportional posterior probabilities are tabulated for each run, and an amalgamation of 

these ten lists is used as the basis for final posterior probability estimates for edges and 

graphs. The posterior probability estimate for a directed edge is the sum of the posterior 

probabilities for all directed graphs that contain the edge. The posterior probability estimate 

for an undirected edge is the sum of the posterior probability estimates for each of its two 

associated directed edges.

In discrete Bayesian networks, nodes in the underlying DAG represent discrete state random 

variables. The discrete, co-temporal Bayesian algorithm employed [21] implements 

Metropolis Hastings Markov Chain Monte Carlo (MCMC)-based search [20] over the space 

M of static Bayesian network structures [22]. Variations on standard MCMC structure search 

for discrete Bayesian networks can be found in [23–25]. MCMC over discrete Bayesian 

networks is implemented by a repeated process of proposing a one-edge change (addition, 

deletion, or reversal) to the current model, followed by acceptance or rejection of the change 

based on the relative likelihood and neighborhood sizes of the current and proposed models. 

Assuming MCMC convergence, sampling of accepted networks approaches the distribution 

over models P(model | data). Posterior probabilities of features (network model edges) are 

generated from counting edge occurrence over all sampled networks [5]. In this work, 

undirected edges are returned, with frequencies set as the sum of the corresponding directed 

edge frequencies.

The discrete Bayesian modeling and search parameters employed in this work are a single 

equal-width-bin ternary discretization, an empty initial network, a vertex fan-in limit of four, 

Bayesian Dirichlet equivalent (BDe) scoring, uniform priors over networks, MCMC burn-in 

of one million networks, and MCMC sampling of five million networks. Variables that 

discretize to the same vector are joined as a single combination node before graph search. In 

a post-processing step, these nodes are re-split into the original variables, adding edges from 

the resulting nodes to any nodes the combined node was connected to, and adding an 

additional edge, labeled with a probability of 1.0, between those variables that discretized to 

the same vector.
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An underlying assumption of statistically driven co-temporal modeling approaches, such as 

Bayesian networks, is that the data collected for training represents independent samples of 

associations between entities.

The computational algebra algorithm uses a combination of techniques from abstract algebra 

and game theory, but, similar to the Bayesian approaches, is strongly based on sampling and 

consensus. First, several discretizations of the data are chosen. In this implementation, the 

choices were mean under/over [26], chi-merge 2-bin and 3-bin [27], k-means 2-bin and 3-

bin [28], and k-medoids 2-bin and 3-bin [29]. For each discretization of the data, Lagrange 

interpolation polynomials are constructed. These polynomials are reduced using 

Buchberger’s algorithm [30] over a sampling of orderings of the entities (genes/proteins). 

Finally, the Deegan-Packel index of power [31] is used to construct a power matrix. The 

power matrices for all of the discretizations are summed together to get a consensus power 

matrix M. The row k and column i entry of M gives the power score of how entity (protein/

gene) i affects entity k. Finally, we set P=M+MT. The matrix P is symmetric. The entries in 

this consensus matrix are then ranked using a Z-score. P is used to identify which entities 

associate most strongly with each other [32, 33].

IV. Data Sets and Literature Models

The modeling algorithms were applied to the following experimental data sets: yeast cell 

cycle gene expression, dendritic cell (DC) maturation gene expression, and IGF-1 signaling. 

The data sets represent two experimental data types - gene expression from microarrays 

(yeast cell cycle and DC maturation) and protein modification from Western blots (IGF-1 

signaling) - and a range of time courses (minutes for the IGF-1 signaling data; hours for the 

yeast cell cycle data; and hours to a day for the DC maturation data). In addition, two of the 

experiments were performed as replicates - dye-swapped technical replicates in the case of 

the yeast cell cycle data and biological replicates in the case of the DC maturation data.

The yeast cell cycle data is gene expression data extracted as the signal log ratio from 

microarray experiments performed on yeast cells that were first synchronized by alpha factor 

[34, 35]. This data set consists of nine genes that are known to transcriptionally regulate 

progression of the cell cycle. We limit our modeling of the yeast cell cycle data sets from 

time t=10 minutes to t=120 minutes, as Pramila et al. report an issue in the response of the 

alpha synchronization of the yeast cells. The continuous Bayesian approach only models the 

first eight time points (t=10 to t=80). Since the computational algebra is exponential in the 

number of time points, the models were constructed by sampling one thousand collections of 

eight time points. The DC maturation data is microarray data collected following stimulation 

of cultured mouse bone marrow cells with poly(I:C) to represent viral stimulation [36]. It 

consists of 12 genes. Finally, the cell signaling data was collected from cultured 

chondrocytes following their stimulation with IGF-1 [37], using densitometry scans across 

the Western blots. This data set consisted of 11 protein sites (including isoforms/separate 

phophorylation sites) that undergo phosphorylation after stimulation.

For the three experimental time-series data sets, we have extracted what is known about the 

networks from the literature [34, 35, 37–39], several internet sites – KEGG at 
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www.genome.jp/kegg/ [40] and Science STKE, at stke.sciencemag.org/cm/ [41] – and one 

software package – Ingenuity ® at http://www.ingenuity.com [42]. The literature models, 

shown in Fig. 1, represent the “best guess” at correct models. It is important to note that not 

everything is known about these models (for example, the particular details of IGF-1 

signaling in chondrocytes or poly(I:C) induction of DC maturation are not understood), so 

the details of these models may not be perfectly correct. More details about how these 

models were extracted are described elsewhere [33].

V. Relationship Definitions

We assess how the co-temporal implementation of several types of algorithms can: 1) 

identify specific types of relationships between biological entities; 2) deal with the vagaries 

of sparse time course data; and 3) deal with experimental noise in replicate data sets. Of 

importance to accomplishing the first goal is to define the types of relationships between the 

entities in the models. In this work, we evaluate two types of relationships: parent-child and 

siblings. A parent-child relationship is one in which the parent directly affects the child 

entity in a time-ordered fashion. In biology, such relationships are illustrated by kinases 

which affect the phosphorylation of another protein, or transcriptional regulators with affect 

the transcription of specific genes. In Fig. 1, parent-child relationships are represented by 

black arrows. Siblings are those entities with a common parent. Biologically, two genes 

whose expression is activated by a common regulator are siblings. Likewise, two proteins 

phosphorylated by the same parent protein are siblings. In Fig. 1, siblings are represented by 

nodes of a common color. For the IGF-1 signaling network, the gray nodes represent 

multiple phosphorylation sites on the same protein which in this analysis are not identified 

as siblings since their sibling relationship is unknown. The green nodes corresponding to 

Shc p46, Shc 52 and Shc p66 represent isoforms of the same protein; they are not considered 

siblings in this analysis since they have no parents in this data set.

VI. Model Evaluation

Each of the modeling algorithms produce an ordered list of edges with associated scores. For 

the Bayesian approaches, these scores are edge probabilities. In the computational algebra 

approach, the scores are Z-scores representing strength of association from the matrix P 

described in Section III. While a common approach for model validation is to demonstrate 

links between high scoring edges (above a particular threshold) and the biological literature 

– examples include [3, 9, 44] - an approach using the shuffle index is used in this work to 

help mitigate the effects of chance matches and arbitrary threshold selection. As illustrated 

by the Birthday Paradox [45], matches between the top ranked edges and literature models 

may occur at random more often than expected; therefore, it is essential to evaluate the 

complete rank ordering of all edges.

The perfect output of a modeling algorithm would be an ordered list of edges in which the 

edges in the literature model are all ranked higher than the edges not in the literature model. 

When edges not in the literature model are ranked higher by an algorithm than those that are 

in the literature model, an inversion exists. The shuffle index scores the ordered lists 

produced by the modeling algorithm versus the literature model by determining the 
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probability of generating by a random process an ordered list with the same or fewer 

inversions. The shuffle index [14] is equivalent to the p-value of a one-sided Wilcoxon rank 

sum test [46].

It is possible for two or more edges to score the same in a given model. To score such lists, 

we consider such edges to be on the same row in the ordered lists. Specifically, consider the 

case where there are two edges E1 and E2 with the same score and E1 is in the literature 

model and E2 is not. Without the tie, the edge list {E1, E2} would correspond to the shuffle 

YN with no inversions, while the edge list {E2, E1} would correspond to the shuffle NY that 

has a single inversion. Under our scoring methods, the edge list that has a tie, E1/E2, has a 

0.5 inversion. Such cases occur in the output of our modeling algorithms; thus, ordered lists 

with fractional inversions are in the Supplementary Information. Since the shuffle index is 

only defined for integer inversions, if the number of inversions is X.5, with X an integer, we 

return the average of the shuffle index scores for X and X+1 inversions, respectively.

VII. Results

The goal of this work was two-fold: to test our hypothesis that co-temporal modeling should 

identify sibling relationships better than parent-child relationships and to understand the 

strengths and weaknesses of the co-temporal implementation of various algorithms on actual 

experimental data. Specifically, we asked how well the algorithms 1) identify two types of 

entity relationships, parent and sibling, between biological entities, 2) deal with 

experimental sparse time course data, and 3) handle experimental noise seen in replicate data 

sets. All fifteen (five data sets by three algorithms) ordered edge lists generated in this work 

are provided in the Supplementary Information. The shuffle index scores of these lists are 

computed in three ways and reported in Table 1. Shuffle index scores are computed relative 

to the sibling relationships indicated by the literature models, relative to the parent-child 

relationships in the literature models, and relative to the combination of parent-child and 

sibling relationships in the literature models.

In interpreting the scores in the table, it is important to note that the literature models should 

not be considered to be the absolutely correct model of the system. The literature models 

incorporate information that is known about the systems generally but there may be edges 

and associations among the entities that are not represented in the literature models. Hence, 

small differences in the numbers in the table, such as the difference in the numbers given for 

the IGF-1 signaling in chondrocytes dataset between the discrete Bayesian (0.0101) and the 

computational algebra algorithms (0.0136), should not be considered significant.

First, we ask whether the co-temporal algorithms identify parent-child or sibling 

relationships better. Since the shuffle index scores are equivalent to the p-values of the one-

sided Wilcoxon rank sum test, the scores less than or equal to 0.05 can be described as 

statistically significant and the scores less than or equal to 0.01 are strongly statistically 

significant. The results indicate that in none of the data sets modeled by these co-temporal 

algorithms are the parent-child relationships modeled at a level of correctness of statistical 

significance, while in eleven of the fifteen cases siblings are correctly returned at statistically 

significant levels with four of those eleven indicating strong statistical significance (Table 1). 
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When looking at correctness of both parents and siblings, only one case indicates a 

statistically significant model - computational algebra modeling of the IGF-1 

phosphorylation signaling network. These results support our contention that co-temporal 

approaches should identify sibling relationships, and not parent-child relationships.

Next, we asked how well the three algorithms performed on sparse time course experimental 

data. The data in Table 1 indicate that two of the four lowest sibling scores are observed 

when modeling the yeast cell cycle datasets. These data sets have approximately four times 

the number of time points as the DC maturation and IGF-1 signaling data sets. These results 

support an initial intuitive hypothesis that increases in the number of available time points 

improve the performance of these co-temporal algorithms. The questions of whether there is 

an upper-bound optimal number of time points for learning and whether such an upper 

bound number of time points is feasible to be collected was not addressed directly by this 

work. However, it is also observed that only four of the fifteen models produced by the 

algorithms are not statistically significant, indicating that all three co-temporal algorithms 

appear to perform well on sparse experimental data.

Finally, we ask how well the algorithms handle experimental “noise”. To partially address 

this question, we compared results between replicate data sets. Three models are non-

significant, with respect to identifying sibling relationships: discrete Bayesian (DB) on yeast 

cell cycle replicate 1; computational algebra (CA) on yeast cell cycle replicate 1; and 

discrete Bayesian on dendritic cell maturation replicate 2 (Table 1). These results suggest 

that any one data set might produce incorrect results. It is essential to perform modeling on 

replicate data sets. These data also suggest that discrete Baysian methods may be more 

susceptible to sparse, noisy experimental data than continuous Bayesian or computational 

algebra algorithms. However, more modeling of experimental data sets is essential before 

drawing firm conclusions regarding algorithm performance on noisy experimental data.

VIII. DISCUSSION

On these five data sets, the co-temporal modeling algorithms identify siblings better than 

parents; none of the three algorithms identify parents well. The shuffle index scores for 

parent-child relationships are generally above 0.50 which indicates that creating lists of 

parent-child relationships by random means is as good or better than list generation by these 

algorithms. On the other hand, all three co-temporal algorithms generally had scores below 

0.02 in identifying sibling relationships present in the literature models. Some of these 

scores were as low as 0.0003. Recall that if an ordered list L has a score of 0.02 then that 

means there is only a one in fifty chance of randomly developing a list as good or better than 

L. Thus, accurate interpretation of network models requires an understanding of what types 

of relationships a computational approach might identify. A modeling algorithm that 

performs well in finding parent-child relationships should generate network models that 

visually look similar to those in Figure 1. Algorithms that perform well in finding siblings 

would generate network models that primarily consisted of edges between nodes colored the 

same in Fig. 1. Examples of models produced by the current algorithms are shown in Fig. 2. 

While the networks that are shown in Fig. 2 are conservative, only highlighting the edges 

with the most support according to the modeling algorithms, they lend support to the 
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observation that co-temporal algorithms perform better at finding siblings. For the 

computational algebra and discrete Bayesian approaches, there are as many or more correct 

sibling edges in the models in Fig. 2 than there are correct parent-child edges.

There are four exceptions to the relatively good sibling scores in Table 1. Interestingly, each 

technique did poorly on at least one data set. The scores of the discrete Bayesian and 

computational algebra algorithms on the yeast cell cycle replicate 1, the scores of the 

discrete Bayesian algorithm on the DC maturation replicate 1 and the scores of the 

continuous Bayesian algorithm on the IGF-1 are all substantially higher than the other 

scores. In fact, since the remaining scores were all below 0.05 each of these was statistically 

significant.

The high shuffle index scores from the discrete Bayesian technique stood out from the 

scores of the other two techniques. One potential explanation is that the discrete Bayesian 

algorithm is a standard implementation that uses only a single discretization. The difficulty 

and importance of selecting discretizations appropriately has been addressed in the literature 

[47–49]. Different discretizations of the same data can lead to significantly different models. 

Hence, if the single discretization does not adequately reflect the different states of the 

biological entities, the resulting computational models may not be similar to the literature 

model. On the other hand, the computational algebra algorithm uses game theory to 

construct a consensus ordered list over multiple discretizations.

We modified the discrete Bayesian modeling algorithm to develop consensus models over 

multiple discretizations. The scores were 0.4042, 0.903, 0.7322, 0.5 and 0.2708, 

respectively, for identifying the sibling relationship. These results are worse than those 

shown in Table 1 for the Discrete Bayesian approach employing a single 3-bin 

discretization. Previous work by Yu et al. [50] provides evidence suggesting that discrete 

Bayesian network learning results in significant imprecision in returned results when only a 

binary discretization is used, even when there is significant number of training examples to 

learn from. Imprecise 2-bin results could be magnified in our consensus discretization 

approach, where four of the seven discretizations used are 2-bin discretizations. We plan to 

evaluate the results returned from learning on each different discretization to see if such a 

bias is evident, as understanding the sensitivity of these algorithms with respect to 

discretizations is an important topic.

This work highlights the importance of understanding the choice of a modeling time 

paradigm and how that choice affects the types of biological relationships that can be 

effectively identified. One cannot necessarily expect the results of a network to appear 

similar to those typically drawn by biologists (such as those shown in Fig. 1). Co-temporal 

approaches, including static Bayesian, relevance networks, and graphical Gaussian models, 

appear to identify sibling relationships better than parent-child relationships. Given that 

siblings are defined as common targets of the same parent, it is not unreasonable that they 

would have stronger instantaneous relationships, particularly if they are truly co-regulated by 

their parent(s). This notion fits well with our observed results. Because of their use of only 

instantaneous relationships, it can be argued that co-temporal modeling algorithms do not 

utilize some information that exists in time series data sets. In particular, by using only 
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instantaneous information, a co-temporal approach will have difficulty in finding statistical 

support for cause-effect relationships that are separated in time with respect to the time 

points observed and which do not require the cause and effect variables to have a long-term 

persistence in state. Arguably, there are parent-child relationships in biological systems that 

fit this scenario and thus can be missed by co-temporal modeling approaches. In this work, 

the relationships discovered by co-temporal modeling algorithms when applied to time-

series data are reported. The results of next-state approaches applied to these same datasets 

are not presented. A judgment of the relative quality of models arising from co-temporal and 

from next-state approaches is not intended in this work, but rather solely a report on the 

properties of results obtained from co-temporal modeling algorithms. A topic for future 

research could be to examine relationships between co-regulated modules rather than 

individual entities [51]. For discrete algorithms, our observations indicate that 

implementation of multiple, rather than singular discretizations, is also important. Finally, 

these results suggest that merging models across algorithms or across replicate data sets to 

build on the idea of consensus modeling could be a productive approach to identifying 

biological networks from sparse experimental data.

Elucidating the mechanisms underlying systems-level cellular activity remains one of the 

most important open problems in cellular biology today. This work evaluated the 

applicability of co-temporal modeling to the problem of reverse engineering networks from 

real-world (sparse and noisy) time series datasets, with a primary intent of gaining insight 

into the ability of co-temporal algorithms to detect parent-child and sibling relationships. 

Our results suggest that the primary application of co-temporal algorithms should be in 

detecting sibling relationships, as statistically significant results for siblings were returned 

by multiple co-temporal approaches across a range of datasets. The new insights gained 

from this work should be useful in informing both the future choice of modeling algorithms 

and the future interpretation of modeling results.
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Fig. 1. 
Literature models of the three data sets utilized in this work (in clock-wise order, from top 

left): yeast cell cycle, DC maturation, and IGF-1 signaling. Black arrows represent parent 

child relationships; gray arrows represent ancestor relationships; common colored nodes 

represent sibling relationships. Figures were created using Cytoscape [43].

Allen et al. Page 14

Proc IEEE Int Symp Bioinformatics Bioeng. Author manuscript; available in PMC 2016 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Models produced by the three co-temporal algorithms on the yeast second replicate data set. 

Models in clock-wise order from the top left are from the computational algebra, continuous 

Bayesian, and discrete Bayesian algorithms. For the algebraic approach, edges with Z-scores 

above 1.5 are darkened. For the Bayesian approaches, edges with a probability above 90% 

are darkened. For the edges above these thresholds, the thickness and darkness of the line 

indicate higher scores.
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Table 1

Shuffle index scores, representing the probability of getting the respective literature ordered list through 

random generation, for the different co-temporal methods on the five datasets of interest indicate that the best 

scores occur for correctly finding siblings and show a relationship with the number of available observations.

Method Data Set Sibling Parents Sibling +
Parents

CB Y Rep 1 0.0126 0.9983 0.8684

DB Y Rep 1 0.3204 0.7691 0.6424

CA Y Rep 1 0.1647 0.9918 0.9116

CB Y Rep 2 0.0107 0.7738 0.1036

DB Y Rep 2 0.0008 0.8869 0.0775

CA Y Rep 2 0.0003 0.9883 0.3132

CB DC Rep 1 0.0031 0.9971 *

DB DC Rep 1 0.3368 0.6679 *

CA DC Rep 1 0.0141 0.9863 *

CB DC Rep 2 0.0090 0.9913 *

DB DC Rep 2 0.0311 0.9698 *

CA DC Rep 2 0.0167 0.9839 *

CB IGF-1 0.1831 0.2993 0.1284

DB IGF-1 0.0101 0.9711 0.6998

CA IGF-1 0.0136 0.1598 0.0075
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