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Abstract—Often groups of genes in regulatory networks, also
called modules, work collaboratively on similar functions. Math-
ematically, the modules in a regulatory network has often been
thought as a group of genes that interact with each other
significantly more than the rest of the network. Finding such
modules is one of the fundamental problems in understanding
gene regulation. In this paper, we develop a new approach
to identify modules of genes with similar functions in biologi-
cal regulatory networks (BRNs). Unlike existing methods, our
method recognizes that there are different types of interactions
(activation, inhibition), these interactions have directions and
they take place only if the activity levels of the activating (or
inhibiting) genes are above certain thresholds. Furthermore, it
also considers that as a result of these interactions, the activity
levels of the genes change over time even in the absence of
external perturbations. Here we addresses both the dynamic
behavior of gene activity levels and the different interaction types
by an incremental algorithm that is scalable to the organism wide
BRNs with many dynamic steps. Our experimental results suggest
that our method can identify biologically meaningful modules
that are missed by traditional approaches.

I. INTRODUCTION

The distribution of interactions between genes in regulatory
and signaling networks (i.e., Biological Regulatory Networks
(BRNs)), is not random. They form statistically significant
connected subnetworks corresponding to various biological
functions. Such groups of genes are also called modules.
Recent studies have shown that biological networks exhibit
modularity [1]–[6]. In these networks, the interactions and
the entities of a module collectively describe how a certain
biological function is performed for an organism.

Numerous methods have been proposed to identify modules
for different types of biological networks such as metabolic
networks [1], [7], protein-protein interaction networks [2]–
[4] and BRNs [5], [6]. These methods, however, have two
important drawbacks when they are applied to BRNs. We first
elaborate on these two drawbacks. We then discuss how we
address these problems.

1) Ignoring interaction types and directions: Existing
methods often consider a biological network as an undirected
graph, where each molecule maps to a node and each inter-
action between a pair of molecules maps to an edge. In the
resulting network all the edges are undirected and assumed
to be of the same type. We call the networks constructed in
this manner as simplified networks in the rest of this paper.
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Fig. 1. A portion of the human coagulation cascade network from KEGG
Pathway Database [8]. Pointed arrow heads represent positive regulation (ac-
tivation) and arrow heads with bars represent negative regulation (inhibition).
The two divisions show the two modules found after simplifying the network
as in existing methods.

This modeling strategy causes loss of biological context for
BRNs where interactions have directions and different types
(activation/inhibition).

Figure 1 shows an example of how this simplification
degrades the accuracy of module identification. Consider the
tissue factor pathway inhibitor (TFPI). It inhibits four different
coagulation factors, namely F3, F5, F7 and F10. Therefore,
it acts as an anticoagulant when it is active. Indeed, it is
annotated as a lipoprotein-associated coagulation inhibitor [8].
However, when these inhibitions are reduced to undirected
edges as in Diao et al. [6], TFPI is grouped with most of
the coagulation factors which act as coagulation activators. In
other words, this simplification deteriorates the identification
of correct functional decomposition of the BRN.

2) Ignoring activity level changes of genes over time: The
second weakness of existing methods is they ignore that the
activity levels of the genes of a BRN can change over time due
to interactions between genes. Existing methods often work
for only static snapshots of BRNs. Consider the example in
Figure 1. Here, if THBD is active at the current state, it will
activate PROC in the next state which in turn will inhibit F2,
F5 and F8. These state changes create different snapshots of
the BRN. The traditional approach to deal with such dynamic
networks is to identify the modules from scratch for each
snapshot [9]–[15]. However, coping with network snapshots
independently may lead to substantial variation in obtained



modules in consecutive states, resulting in inconsistent modu-
lar structures. Several recent methods point out the importance
of tracking the evolution of the modular structure through
dynamic steps in other contexts [16]–[18]. Furthermore, incre-
mentally updating modular structure is computationally more
efficient than dealing with each snapshot separately.

In this paper, we design an algorithm that considers both the
interaction types and the directions. It also allows incremental
update of modules when the underlying BRN changes its state
in time. This incremental strategy allows us to keep track of
the evolution of individual modules and improves the running
time. Below is the formal statement of the problem that we
address in this work:

Problem definition: Given a BRN and an initial network state
S0 that consists of the states of each gene (active or inactive),
identify the sequence of module structures C0, C1, · · · , Ct

dynamically when the state of the network changes as S0,
S1, · · · , St over time where Ci is the partitioning of the genes
of the input BRN into modules according to state Si.

Our contributions: We develop a novel method to find the
dynamic modules of a BRN when the state of the BRN can
change over time. Our approach differs from the existing ones
from the very beginning (i.e., the modeling phase). Instead of
finding modules of the simplified network (i.e., ignoring edge
types and directions ), we first create a new network, named
functional network from the underlying BRN for the each
different state. The nodes of a functional network are the genes
in the original BRN. The edges between two nodes represent
the functional similarity of these genes at the corresponding
state of the BRN. Starting from an initial state S0 we use
a state transition function to compute the next states of the
BRN and at each state we update the functional network
by considering the state changes of the genes. We observe
that the functional networks at two consecutive states often
show high similarity. Following this observation, we develop
an incremental algorithm that computes the modules of the
BRN at a new state using its modules in the previous state
and the changes in the functional network. To further reduce
the computational cost, we develop a compact representation
of the network in which the module information is embedded
and the modular structure is preserved.

In summary, our technical contributions are:
• We introduce the concept of functional network that

represents the functional similarities between genes at a
given state of a BRN.

• We propose an algorithm that incrementally identifies the
modular structure of the dynamic networks such as BRNs.

• We build a compact representation of the modular struc-
ture of the BRNs. This allows our method to scale for
large network sizes with many dynamic steps.

The organization of the rest of this paper is as follows:
Section II describes how we address the issues of existing
methods and detailed theoretical analysis of our algorithm. The
experimental results are illustrated in Section III. Section IV
briefly concludes the paper.

II. METHODS

This section discusses the algorithm we develop for iden-
tifying dynamic modules of BRNs. Briefly, this section is
organized as follows. Section II-A discusses the simulation
of the dynamic behavior of BRNs by using a state transition
model. Section II-B describes how we construct functional
networks from original BRNs for a given state of the network.
Section II-C presents our algorithm that incrementally updates
the modular structure of a BRN using functional networks at
different time steps.

A. State Transitions

The dynamic behavior of BRNs stems from the alterations
in gene activity levels. These alterations are determined by the
states of interacting genes. We denote the state of the ith gene
at time t as Xi(t) where Xi(t) = 1 means that the ith gene
is “active” (high activity level) and Xi(t) = 0 means that it is
“inactive” (low activity level). We denote the state of a BRN
with n genes at time t using a vector with n entries as xt=
[X1(t), · · · , Xi(t), · · · , Xn(t)].

The state of the genes can change over time due to internal
regulations. Let Ai and Ii be the set of activators and inhibitors
of the ith gene respectively. An activator (or inhibitor) is active
when its state is 1. The following equation computes the next
state of the ith gene from the activity values of the genes at
state xt.

Xi(t + 1) =


0 if [

∑
j∈Ai

Xj(t)−
∑

j∈Ii
Xj(t)] < 0

1 if [
∑

j∈Ai
Xj(t)−

∑
j∈Ii

Xj(t)] > 0
Xi(t) if [

∑
j∈Ai

Xj(t)−
∑

j∈Ii
Xj(t)] = 0

B. Construction of Functional Networks

Recall that we define the modules as the set of genes that
collectively serve for a certain biological function. To find
such modules, the first question to be addressed is: How can
we model the functional similarity between two genes? Here
we build a biologically and statistically sound approach. We
say that two genes have similar functions at a given state of
the BRN if their impacts on the state of that BRN are similar.

For a given state of a BRN with n genes, we construct
an undirected and weighted graph. We call this graph the
functional network. Each node of this network corresponds
to a gene in the BRN. The weight of an edge shows the
functional similarity of the two genes connected by that edge.
We build this functional network as follows. We first calculate
the impact of each gene on the given state. We represent the
impact of each gene by an n× 1 vector. Then, for each gene
pair, we calculate the similarity of their impact vectors. We
elaborate on each of these steps next.

Calculation of Impact Vectors: We denote the impact of the
ith gene on the network at time t with an n×1 vector Impi(t)
named the impact vector. We compute this vector as follows.
Let xt= [X1(t), · · · , Xn(t)] denote the state of a given BRN
at time t. Also, let yt= [X1(t), · · · , Xi−1(t), 1−Xi(t), · · · ,
Xn(t)] denote the state obtained by flipping only the state of
the ith gene. We compute the next states of both xt and yt by



applying our state transition rule and represent them by xt+1

and yt+1 respectively. The state of the ith gene at time t can
be equal to 0 or 1. Then we compute the impact vector of the
ith gene as follows:

Impi(t) = (−1)Xi(t)(yt+1 − xt+1)

Intuitively, we are computing the difference between two
state vectors at t + 1 when ith gene is active and when it is
inhibited at time t. The jth entry of Impi(t) is 1 if both gene
i and j had the same form of state changes (i.e., 0 → 1 or
1 → 0). This entry is 0 when flipping the state of ith gene
does not effect the state of jth gene. If i and j had reverse
state changes the jth entry of Impi(t) is -1. Thus, the impact
vector shows the set of genes that have activity level changes
by altering only the ith gene and how their activity levels
change. For instance, let xt+1 = [0, 0, 1, 1] and yt+1 = [1,
1, 0, 1] for the first gene of a hypothetical network with four
genes, then Imp1(t) = (−1)0 [1, 1, -1, 0]. This shows that
the second gene is activated and the third gene is inhibited by
the activation of the first gene. The fourth entry of Imp1(t) is
zero meaning that the first gene has no state changing effect
on the fourth gene at time t. Biologically, non-zero entries
of Impi(t) shows the genes whose states are sensitive to the
activity level of the ith gene at time t.

Calculation of Impact Similarities: Having constructed the
impact vectors for each gene in the network for a specific
state, now we describe how we use these vectors to calculate
the similarities between the functions of genes (i.e., the edge
weights in functional network). For this purpose, we calculate
the statistical significance of the similarity of their impact
vectors as follows. Consider genes i and j at time t. Let a and
b denote the numbers of nonzero entries of n×1 impact vectors
Impi(t) and Impj(t), respectively. Let c denote the number of
nonzero entries at the same positions of these two vectors with
the same value. If both impact vectors have an equal value at
position k, it means that both gene i and gene j can alter the
state of the gene k in the same direction at the current state.
We compute the impact similarity as the minus log probability
of the number of such commonly affected genes. Formally, let
K be the random variable that denotes the number of common
nonzero entries in Impi(t) and Impj(t) assuming the nonzero
entries are uniformly distributed in these vectors. Without loss
of generality, we assume a ≥ b. Then, we calculate the impact
similarity of genes i and j at time t as:

Sim(i, j) = − log[Pr(K ≥ c)]

where Pr(K ≥ c) denotes the probability that the number of
common nonzero entries is greater than or equal to observed

value (i.e., c) and calculated as Pr(K ≥ c) =
∑b

x=c
(n−a

b−x)(a
x)

(n
b)

.

Formal Definition of Functional Network: We conclude
this section by formally defining the functional network.
Given a BRN and its initial state S0, the functional network
of that BRN at state St is the undirected weighted graph
Gt = (V,Et), where each gene of the BRN corresponds to a

node in V and Et is the set of edges in Gt. We compute the
state St from S0 by using the given state transition function.
Then, we calculate the edge weight between the ith and jth
nodes (i.e., Sim(i, j)) as their impact similarity at state St.

C. Identification of Dynamic Modules

As the state of a BRN changes from one state to the next,
its functional network often changes slightly. In this section,
we develop an algorithm that exploits this observation. It
computes the modular structure of the BRN at its new state
from the modules of its old state instead of recomputing it
from scratch. To develop our incremental algorithm, we first
build a compact representation of the modular structure.

Compact Representation of a Network: Let G = (V , E) be
the functional network of a BRN at a certain state together
with the impact similarity function w : E → R as explained
in Section II-B. Let C = {C1, C2, . . . , Ck} be the modular
structure of G, where Ci represents the ith module in G,⋃k

i=1 Ci = V , and Ci ∩ Cj = ∅,∀i 6= j. We construct a
new network with an equivalent modular structure to G but
contains significantly smaller number of nodes and edges. We
use this network in place of G to reduce the running time of
module identification as G changes over time.
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Fig. 2. A hypothetical network with
two modules (a) before compacting (b)
after compacting. The module bound-
aries are shown dashed ovals. For sim-
plicity, the weight of all the edges in (a)
are one.

We build the
compact representation
G′ = (V ′, E′) of
G = (V,E) as follows. Let
us define the function Φ
over a module Ci as Φ(Ci)
=
∑

u,v∈Ci
w(u, v). For

each module Ci in G, if Ci

contains only one node, we
create one node xi in G′. If
Ci contains more than one
node, we create two nodes
xi, yi in G′ and an edge
between them with an edge
weight equal to 1

2Φ(Ci).
For each pair of modules
(Ci, Cj) in G, we insert four edges (one for each pair of nodes
in opposing modules) (xi, xj), (xi, yj), (yi, xj), (yi, yj), each
has an edge weight equal to one fourth of the sum of the
edge weights between Ci and Cj . Figure 2 illustrates this
construction on a simple example.

Here we show that this construction embeds the mod-
ule information of G and preserves the modular structure.
First let us recall the well-known modularity score (Q) of
Newman et al. [19]. Given a modular decomposition C =
{C1, C2, . . . , Ck}

Q(C) =
∑

i

[
Φ(Ci)

2m
−
(

vol(Ci)
2m

)2
]

where m is the total weight of all edges in the network and
vol(Ci) is total weight of all edges that are incident to at
least one node in Ci. We prove that the modular structure is



preserved in compact representation in Theorem 1 by using the
lemmas below. We omit the proofs of lemmas due to space
limitation.

Lemma 1: (CONSERVATION OF MODULARITY SCORE) Let
G = (V , E) a network and C be its modular structure. Then,
the compact representation G′ = (V ′, E′) has the modular
structure C′ such that Q(C′) = Q(C).

Lemma 2: (CONSERVATION OF MODULE MEMBERSHIP)
Let G′ = (V ′, E′) be the compact representation of the
network G. Also, let xi and yi, xi, yi ∈ V ′, be the two
nodes constructed to represent the module Ci of G while
compressing G to G′. Then, for any modular decomposition
C′′ of G′ in which xi, yi belong to two different modules there
exists a modular structure of G′ with modularity score greater
than Q(C′′) in which xi, yi belong to the same module.

Theorem 1: (CONSERVATION OF MODULAR STRUCTURE)
Given a functional network G = (V , E) and its optimal modu-
lar structure C = {C1, C2, . . . , Ck} (i.e., Q(C) is maximum),
let G′ = (V ′, E′) be the compact representation of G and
C′ = {C ′1, C ′2, . . . , C ′k} be its modular structure computed as
described in this section. Then, Q(C′) is maximum over all
possible modular decompositions and there is a one-to-one
correspondence between C and C′.

Proof: Lemma 1 states that Q(C) = Q(C′). Here we
first show that there exists no other modular decomposition
C′′= {C ′′1 , C ′′2 , . . . , C ′′t } of G′ such that C′′ 6= C′ and Q(C′′)
> Q(C′). Since C′′ 6= C′, there exists at least two nodes xi, yi

such that xi, yi ∈ C ′i but xi ∈ C ′′a and yi ∈ C ′′b where
C ′′a 6= C ′′b . By Lemma 2 we know that there exists another
modular decomposition in which xi, yi belong to same module
and the modularity score is greater than Q(C′′). Applying
this argument iteratively we get Q(C′) is maximum over all
possible modular decompositions. Also, again by Lemma 2
each C ′i = {xi, yi} and corresponds to the original module Ci

of G. Hence, there exists a one-to-one correspondence between
C and C′.

Incremental Identification of Dynamic Modular Structure:
Here we describe our algorithm that identifies the modules

of BRNs at each state incrementally (i.e., without recomputing
them from scratch) by utilizing the compact representation we
devised. Formally, let S0 be the initial state of a given BRN
and Gt = (V , Et) denote the functional network of this BRN at
state St where wt :Et →R is a non-negative weight function.
Also, let Ct = {Ct

1, Ct
2, . . . , Ct

k} be the modular structure of
Gt, ∀t ≥ 0. The Algorithm 1 computes Ct+1 using Ct and
Gt⊕Gt+1 where ⊕ is the symmetric difference symbol. At
a high level, our method identifies the modules of dynamic
BRNs by employing an external algorithm (A) to calculate
the modular structure of compact representation at each state.
To do this, we use the well-known CNM algorithm [20] as A.

We give a description of our incremental method in Al-
gorithm 1. First, we compute the initial modular structure C0
and its compact representation C0c from the functional network
G0 at state S0. After that, till the network reaches a steady
state [21] or it visits a user defined number of states, for each

Algorithm 1 Incremental Algorithm for Identifying Dynamic
Modules of a BRN

1: Compute the functional network G0 using S0

2: Find the modular structure C0 of G0 using Algorithm A
3: Compute the compact modular structure C0

c of G0

4: for each state St−1, t > 0 do
5: Initialize Ct

c of Gt to Ct−1
c

6: Use state transition function to compute St

7: Let ∆E = {(u, v)|(u, v) ∈
(
Et−1 ⊕ Et

)
}

8: for all e ∈ ∆E do
9: Update edge weights between modules of Ct

c

10: end for
11: Let ∆V = {u|∃v, (u, v) ∈

(
Et−1 ⊕ Et

)
}

12: for all v ∈ ∆V do
13: Extract v from its module and remove its edges
14: Create a new singleton module that only contains v
15: Calculate the edge weights between modules of Ct

c

and the new module
16: end for
17: Find the modular structure Ct

c = {Ct
c,1, C

t
c,2, . . . , C

t
c,m}

of Gt
c using Algorithm A

18: Refine the modular structure as stated in Lemma 2
19: Decompress Ct

c to get Ct

20: end for

state St we apply the following three main steps:
(1) Combine changes in comparison to the previous state and
previous modular structure to update the compact representa-
tion of Gt (Algorithm 1, lines 5-16);
(2) Apply algorithm A on the compact representation to obtain
its modular structure;
(3) Refine the obtained modular structure on the compact
representation and decompress it to get the actual modular
structure of the network.

In step (1), we update the compact representation as follows.
Consider the set of nodes ∆V that are incident to updated
edges. The nodes of the set ∆V are subject to changing their
memberships. To allow these nodes to leave their previous
modules and join new ones as the network state changes, we
move all nodes in ∆V out of their modules and treat each node
as a singleton module. In other words, for each node u ∈ ∆V ,
we create a new node xu as a new singleton module in the
compact representation. For each new node xu, if u is adjacent
to any module Ci, we create two new edges (xu, xi) and
(xu, yi) to connect this singleton module to Ci accordingly
and assign the edge weights as half of the sum of edge weights
between these two communities. For any Ci containing u, we
also adjust the weight of edge (xi, yi) by subtracting the sum
of edge weights from u to other nodes in Ci to reflect the
removal of u from Ci.

After incorporating the changes into the compact represen-
tation, in step (2), we run algorithm A again on the new
compact representation to obtain its modules. Note that the
modular structure obtained at this step is in compact form. This
allows us to reduce the running time of this step compared to



uncompressed network.
In step (3), we further refine this modular structure based

on Lemma 2 as follows. If xi and yi are assigned to different
modules, we either move xi to the module containing yi or
move yi to the module containing xi depending on which one
increases the modularity more. This refinement makes sure that
xi, yi are always assigned to the same module and doing so
will increase the modularity value as we stated in Lemma 2.
Finally, we decompress the compact modules to obtain the
actual modules of the BRN at current state.

Our incremental method described in this section has im-
portant advantages over the traditional methods which assume
that BRNs are static networks and calculate modular structure
depending on this assumption such as [2] and [6]. Firstly,
we introduce the concept of functional network that takes
into account both the different interaction types and their
directions. Functional networks also allow us to simulate
the dynamic behavior of the BRN through state transitions.
Secondly, the incremental calculation of modular structures
at different states makes it possible to track the evolution of
modules (i.e., membership changes, creation of new modules).
Tracking the module evolution is difficult when computing
modular structure independently at each state. Also, the com-
pact representation we use improves the running time of
our algorithm by only considering the symmetric difference
of consecutive states. For very large networks or networks
with many dynamic steps compact representation scales the
problem such that it can be handled efficiently by modularity
identification algorithms.

III. RESULTS

In this section, we evaluate the accuracy and the perfor-
mance of our method on real BRNs. We first compare the
biological relevance of our results with the ones of existing
methods that use simplified networks (i.e., the edge directions
and types are ignored) [2], [6]. We use CNM method [20]
both as the module identification method for these simplified
networks and as the external algorithm that we employ to
find the modular structure of compact versions of functional
networks that we generate. The goal in this experimental setup
is to see the merits of building functional networks without
doing any simplification as traditional methods.

In the second set of experiments (Section III-B) we compare
the effect of compressing the networks on the modularity score
and the running time when network has a number of dynamic
steps. For this purpose we apply CNM method on the network
of each dynamic step individually and we compare it with the
results we gather when we use CNM as our external algorithm
to find the modular structures incrementally. It is important to
note that the aim of this experiment is not to compare whether
our algorithm or CNM is better. Instead, we analyze the effect
of network compression in dynamic module identification.

Datasets: We use all the regulatory and signaling networks
available in the KEGG pathway database for H. Sapiens [8].
There are totally 2103 genes and 9188 interactions in KEGG

for H. Sapiens. We use gene expression data of breast cancer
patients from the literature and compile four different datasets
containing totally 722 patients [22]–[25]. We use these gene
expression values to define the initial state of the network for
each patient.

Environment: We run all the experiments on a desktop
computer running Ubuntu 8.04 with one Intel Pentium 4, 3.20
GHz processor and 2 GB of RAM. We implement all the
algorithms in Java.

A. Qualitative evaluation

Here we evaluate the significance of the functional networks
that we devised. We first discuss the results on a specific real
example in detail. We then present the most frequently ob-
served modules by our method for human regulatory network
by using the gene expression data of 722 breast cancer patients.

Coagulation cascade network: A case study. Recall that in
Figure 1, we have shown that the existing methods may fail to
identify the biologically significant modules. Here, we revisit
the same network (human coagulation cascade) and evaluate
whether our functional network can overcome this drawback
on a real example.
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Fig. 3. Two functional networks induced from
human coagulation cascade at two consecutive
time steps.

Figure 3 illustrates
two modular
structures that our
method identifies
for two consecutive
time steps of human
coagulation cascade.
Figure 3(a) shows
that our method
perfectly separates
the genes into two
modules that serve
for coagulation and
anti-coagulation
functions. The
anti-coagulation
module has eight
members. Alpha-
2-macroglobulin
(A2M) is a protease
inhibitor and it
inhibits thrombin
which results in an
adverse effect on
clotting. PROC encodes protein C, a vitamin K-dependent
plasma glycoprotein that is a key component of the
anticoagulant system. PROS1 has an anticoagulant effect too,
as it is a cofactor of activated protein C. THBD activates
PROC by binding to thrombin which results in degradation of
the activated forms of coagulation factors F5 and F8. TFPI
gene encodes a protease inhibitor that inhibits the activated
coagulation factors of F10 and F7 in an autoregulatory
loop. The other three genes of the anti-coagulation module



are the three members of SERPIN family and they act as
an inhibitor of thrombin through different mechanisms in
different conditions.

The coagulation module consists of coagulation factors with
names starting with F. The coagulation starts by F7 coming
in contact with tissue-factor and forming an active complex
that activates F9 and F10. F10 and its cofactor F5 forms a
complex that activates prothrombin to thrombin which in turn
activates other components of coagulation cascade (F8, F9,
F11, etc.). Figure 3(a) shows that these coagulation factors
are grouped together as a module and hence we call this
the coagulation module. Thus, we observe that by utilizing
functional networks our algorithm can separate the genes of
a BRN into biologically meaningful modules.

Our algorithm can update the modules incrementally as the
state of the BRN changes. Figure 3 shows how the functional
networks and the modules of the human coagulation cascade
network evolve. The modules of the functional network change
as the states of the genes change. In the first state (Figure 3(a)),
the activity level of F10 is low. In this case, the tissue factor
pathway inhibitor (TFPI) can suppress the activating effect of
F3 on F10. Keeping the activity level of a coagulation factor
low, TFPI has functional similarity to the other anticoagulants
such as PROC, PROS1 and SERPINs in this snapshot. How-
ever, in the next state (Figure 3(b)) F10 becomes highly active
and TFPI’s inhibiting effect on F10 decreases. In this case,
TFPI can not show anticoagulant effect, hence, it is no longer
a member of anti-coagulation module. This change results
in restructuring of the modules and our algorithm is able to
identify the new modular structure reflecting the changes.

Evaluation on the entire human regulatory network: We
apply our method to human regulatory network extracted from
KEGG [8] and we use published gene expression data of
722 different breast cancer patients [22]–[25] to determine the
initial states of the genes for each patient. While traditional
methods assume that each patient has the same snapshot of
the regulatory network, we consider gene expression data to
construct patient specific functional networks. Considering the
variations in gene expression levels of different patients, our
method allows us to identify the most frequent modules that
are observed in a set of breast cancer patients.

We define the support of a module as the percentage of
patients whose functional network created from initial gene
expression values contains that module. In Table I, we list the
top 20 modules with largest support. For the existing methods
that use simplified networks, the topology of entire network
is independent of the expression levels of the genes. As a
result, the modules are exactly same for all patients and there is
only one simplified network. Here we measure the precision of
these methods as follows. For each significant module X from
our method, we first find the module Y from the simplified
network that contains X if there is any. Let |X| and |Y | be
the number of genes in X and Y . We measure the precision
for X as 100×|X|/|Y |%. Thus, 100% means that CNM could
identify the same module and 50% means that it identifies the

TABLE I
TOP 20 MODULES FOUND BY OUR METHOD WITH THE HIGHEST SUPPORT
FROM THE 722 PATIENTS. MODULES IN BOLD ARE MISSED ENTIRELY BY

EXISTING METHODS THAT USE SIMPLIFIED NETWORKS.

( %) (%) Precision
Rank Support Genes of the module with simplified

networks [2], [6]
1 100.0 ELK4, FOS, SRF 8.6
2 97.1 SMAD2, SMAD3, SMAD4 75.0

SMAD1, SMAD5, SMAD9
3 93.8 NGF, NTF3, NTF4 100.0

NTRK1, NTRK2, BDNF
4 92.7 IL24, IL20, IL22RA1 60.0
5 92.7 MAP2K3, MAP2K6 2.9
6 92.4 FRAP1, RPS6KB1 50.0

RPS6KB2, RPS6
7 91.0 CHUK, IKBKB, IKBKG 5.7

NFKBIA, NFKBIB, NFKBIE
8 90.6 CAMK4, CREBBP, EP300 5.7
9 88.6 NFKB1, RELA, BCL2 2.9

10 87.0 ADCY3, GNAL, PRKG1 2.5
11 86.8 TNF, TNFRSF1A, TRADD 2.9

PRKAA1, PRKAA2, PRKAG2
12 86.7 PRKAG3, PRKAB1, PRKAB2 42.1

PRKAG1, SLC2A4
13 86.1 PARD3, IGSF5, F11R 4.2

JAM2, JAM3
14 85.9 JAK2, STAT3, POMC 0.0
15 85.7 WASF2, BAIAP2, ARPC5 0.0

ARPC1B, ARPC2, ARPC5L
16 85.2 FIGF, VEGFC, FLT4 3.4
17 85.0 CHEK2, ATM 7.5
18 83.9 RHOA, DIAPH1, PFN3 0.0

PFN4, PFN1, PFN2
19 83.4 ADCY3, GNAL, PRKG2 2.5
20 83.1 RASGRP1, SOS1, SOS2 3.4

module X inside a module that is twice the size of X . 0%
implies that CNM does not group the genes of X in the same
module.

Next, we discuss the biological relevance of several of these
modules. The first module in Table I contains three genes from
the MAPK signaling pathway. FOS takes part in several other
networks as well whereas the other two genes play role only
in MAPK pathway according to the KEGG database. In this
pathway ELK4 can form a ternary nucleoprotein complex with
the serum response factor (SRF) and SRF accessory protein 1
(SAP1) to activate FOS. As a result these genes collectively
serve for cellular proliferation/differentiation. Proliferation is
a well-conserved biological function among multicellular or-
ganisms [26]. The genes listed in the second module in
Table I are all from the SMAD family. They jointly appear
in the TGF-beta signaling pathway though several of them
take part in other pathways as well. On this pathway they
collectively serve a critical role in a number of activities
including cell growth, apoptosis, morphogenesis, development
and immune responses [27]. The genes in the third module
appear in the Neurotrophin signaling pathway. Studies have
shown that the expression levels of these genes correlate
significantly for patients that have damaged hippocampus as
well as for healthy patients [28]. Our algorithm identifies
JAK3, STAT3 and POMC together as another module with
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Fig. 4. Average modularity value for each patient over all dynamic steps.
CNM Algorithm denotes using CNM on functional networks from scratch at
each step. Our Approach denotes using compact representation on functional
networks and incrementally updating modular structure.

high support. The genes in this module affect hypothalamo-
pituitary-adrenal axis among a number of other functions.
JAK3 increases the activity of STAT3 through phosphorylation.
STAT3 then indirectly activates POMC. However, simplified
network approach fails to group these three genes together
suggesting that their functional similarity is not significant.

The results of our qualitative evaluation has two important
implications:
(i) Functional networks are useful in decomposing BRNs into
modules that contain functionally similar genes.
(ii) Using gene expression data to create patient-specific
networks allows identification of significant modules that are
missed when simplified network approach is used.

B. Quantitative evaluation

In this section, we evaluate the performance of our method
quantitatively. We want to see the effect of using compact
representation on the quality of the modular structure and
the running time of the method. We start with experimenting
on whether our algorithm sacrifices modularity value Q as
it uses a compact representation of the modular structure.
Figure 4 plots the average modularity for each patient over all
dynamic steps. The modularity of our method is close to that
of CNM with negligible difference. The difference is below
3%. Hence, the loss of modularity score due to compression
is not significant.

We further use the normalized mutual information
(NMI) [29], an information-theoretical approach, to measure
the similarity between the modular structures found by directly
applying CNM algorithm on functional networks and first
compressing these networks and then applying CNM. NMI
takes a value in the range [0, 1]. A large NMI value implies
that the two modular structures are similar. The results show
that the NMI value is very close to 1 (mean NMI is 0.95),
confirming the high similarity of two modular structures. It
is important to note that the significant difference between
modular structures in two different columns of Table I is due
to the comparison of two different network types (functional
network vs simplified network). Here the inputs are the func-
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Fig. 5. Average Normalized Mutual Information (NMI) of using CNM
algorithm on original networks and on their compact representations as we
do in our method.
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Fig. 6. Cumulative running time for increasing number of patients. For
legends see Figure 4.

tional networks and their compact forms. As Figure 5 suggests,
the membership of the genes in modules in this case are highly
similar. Therefore, the figures 4 and 5 together imply that for
very large networks with many dynamic steps, where running
time is an issue, using compact representation is a practical
option.

Next, we measure the running time of CNM method when
it is applied to each dynamic step from scratch and when it is
combined with our compact representation to incrementally
find dynamic modules by only considering the differences
between two steps. Figure 6 shows the cumulative running
time of each method as we compute the modular structures
for 300 consecutive states for each patient. We see that using
CNM on compressed network as in our method is significantly
advantageous over using it from scratch at each step on the
original network. The total running time of the latter approach
for all patients is more than 1.5 hours while our approach
requires only a few minutes.

The gain in running time is due to the reduction in size
of compact representation compared to the original network.
In our experiments, the size of the compact graph (number of
vertices + number of edges) is on the average 10 times smaller
than the original networks (Results omitted). Therefore, our



incremental method with compression uses significantly less
space as well as running time. These results imply that the
improvement of running time and space utilization by using
our method is reasonably large without a significant change
in identified modular structure.

IV. CONCLUSIONS

In this paper, we proposed a new approach to identify
dynamic modules in BRNs. Unlike existing methods, we
considered the types and directions of interactions between
genes. We created a new network to represent the functional
similarities of genes at a given state. In this functional net-
work an edge between two genes represents the similarity of
their impacts on the network state. Using this network, our
algorithm identifies the modules more accurately compared to
traditional methods. Additionally, our algorithm captures the
dynamic behavior of BRNs as the activity levels of the genes
change over time due to their interactions with each other.
It incrementally updates the current modular structure to find
the modular structure in the next state rather than computing
it from scratch. We also benefited from the fact that the
difference between two consecutive states is often very small
by keeping a compact representation of the network through
dynamic steps. Our experiments suggested that our method
can efficiently find biologically meaningful modules that are
missed by traditional approaches. Additionally, the running
times showed that our approach is significantly more scalable
for large size applications compared to previous approaches.
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