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Abstract - Metagenomics is the study of environmental samples. 
Because few tools exist for metagenomic analysis, a natural step 
has been to utilize the popular homology tool, BLAST, to search 
for sequence similarity between DNA reads and an administered 
database. Most biologists use this method today without knowing 
BLAST’s accuracy, especially when a particular taxonomic class 
is under-represented in the database. The aim of this paper is to 
benchmark the performance of BLAST for taxonomic 
classification of metagenomic datasets in a supervised setting; 
meaning that the database contains microbes of the same class as 
the ‘unknown’ query DNA reads. We examine well- and under-
represented genera and phyla in order to study their effect on the 
accuracy of BLAST. We investigate the degradation in BLAST 
accuracy when genome coverage is reduced in the training 
database as well as the performance when errors are introduced 
into the query DNA reads. We conclude that on fine-resolution 
classes, such as genera, the accuracy of BLAST does not degrade 
very much with under-representation, but in a highly variant 
class, such as phyla, performance degrades significantly when 
whole genomes are used in the training database. BLAST 
accuracy at the genus level is affected greater than phyla when 
coverage in the training database is reduced or when 1% 
sequence error is introduced into the query DNA reads. Our 
analysis includes five-fold cross validation to substantiate our 
findings. 
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I. INTRODUCTION 
The relatively new field of metagenomics has been rapidly 

expanding over the past several years [1, 2]. This field focuses 
on DNA obtained from an environmental sample rather than 
from pure cultures in a laboratory. This markedly substantial 
difference from conventional microbial genomics poses a 
unique set of problems that are now gaining attention. Instead 
of asking the question “How does one organism work?” we are 
now interested in “Who is here in this sample and what are they 
doing?”. Since greater than 99% of microbes cannot be 
cultivated in isolation [3], metagenomics is a necessity if we 
wish to understand the microbial diversity of our planet. 

Examples of metagenomic applications include human 
health, soil fertility and forensics. The National Institute of 
Health has created an initiative called The Human Microbiome 
Project to examine microbes associated with health in several 
areas of the human body [2]. For example it is hypothesized 
that the human gastrointestinal tract contains microbes that 

outnumber human cells 10 to 1 [2]. Many of these microbes are 
believed to be involved with the digestive process. Most of 
these microbes cannot be isolated in the laboratory. Therefore 
they cannot be cultured for abundance so that their DNA can be 
extracted and amplified for genomic analysis. Instead we turn 
to metagenomics where we obtain the DNA of the 
environmental sample, extract and amplify the DNA, sequence 
the samples, assemble the samples and finally attempt to 
annotate the sequences. Annotation is certainly an elusive task 
since we do not know which microbes are in the sample to 
begin with. So we turn to sequence alignment tools such as 
BLAST [4, 5] which aid us in answering a fundamental 
question in metagenomics, namely “Who is here?”. Before we 
can fully trust the results of BLAST for taxonomic 
classification, we seek to benchmark how database 
representation affects its performance. 

II. BACKGROUND ON TAXONOMY 
Answering the question “Who is here?” is an issue of 

taxonomy. Taxonomy refers to the science of naming and 
classifying organisms. The National Center for Biotechnology 
Information (NCBI) maintains a taxonomy database, which is 
considered a well-respected source by the scientific community 
for taxonomic information [4]. The standard hierarchy of the 
taxonomy used in this paper is Phyla, Order, Family, Genus, 
Species, and Strains as recommended by the NCBI.  As of 
September 2009 there are over 339,500 taxa represented in the 
database. Of these taxa 968 are completely sequenced genomes 
of microbial organisms. Clearly, this is only a small fraction of 
the microbes inhabiting our planet today, however, the 
databases are expanding rapidly and as the field of 
metagenomics becomes more pervasive we shall see substantial 
increases in the number of taxa maintained in these databases. 

When an organism’s DNA or metagenomic sample has 
been sequenced it is a natural step to compare this new 
sequence to existing, annotated sequences in the databases for 
similarity [6, 7]. BLAST (Basic Local Alignment Search Tool) 
is both a web based and standalone tool developed by the 
NCBI for comparing sequence similarity between two 
nucleotide or protein sequences [5]. The most popular way 
researchers use the tool is to input a sequence as a query 
against the public sequence databases, which include NCBI 
Taxonomy (http://www.ncbi.nlm.nih.gov/Taxonomy/). BLAST 
returns sequences that are similar to the input query. BLAST 
will attempt to align the query with the sequences in the 
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databases and then issue a statistical report to provide a level of 
confidence in the alignment. BLAST is actively maintained by 
the NCBI and can be found here 
(http://blast.ncbi.nlm.nih.gov/Blast.cgi).  

The first alignment in the report returned by BLAST is 
supposedly the sequence in the database with the greatest 
similarity to the query sequence. When the query sequence is 
small (e.g. < 500bp), BLAST tends to produce multiple 
ambiguous top-hits. It has been found that the closest BLAST 
hit is often not the nearest neighbor [8]. Generally speaking, 
microbiologists rely on the BLAST results without question [9, 
10, 11]. Researchers have now begun to analyze and compare 
the performance of BLAST for metagenomic datasets. The 
findings are indicating that classifying genome sequence 
fragments based on the best BLAST hit only yield reliable 
results if there are close relatives represented in database for 
comparison [12, 13].    

III. METHODS 
A total of 635 distinct microbial strains downloaded in 

2008 from the NCBI GenBank database were considered for 
our experiments. We have found that each of the 635 strains in 
our database can be classified to one of 19 different phyla and 
272 different genera. In order to partition the database for our 
experiments we decided to focus on two well represented and 
two under-represented classes each for the levels of phyla and 
genus. Thus two separate experiments were performed: one for 
the level of phyla and the other for genus. Table 1 shows the 
composition of each class for each experiment. 

The two well-represented classes were chosen to be the two 
classes at each level that contained the greatest amount of 
microbial strains. For example, the phyla class Proteobacteria 
contained 315 strains out of the 635 strains in the overall 
database. The two under-represented classes were chosen 
arbitrarily so that they each contain no more than 20 strains. 
Many classes in the database contained only 1 strain; however 
the five-fold cross validation statistical measure necessarily 
requires that we have a minimum of 5 strains. We chose under-
represented classes containing 10 to 17 strains as shown in 
Table 1.  

The five-fold cross validation experiments proceeded as the 
following for phyla using 500bp DNA reads which we herein 

refer to as query fragments. The identical procedure was 
followed for genus thus yielding a total of twelve separate 
experiments. Six experiments were dedicated to varying the 
coverage in the BLAST training database. The second set of six 
experiments focused on introducing error into the query 
fragments. The distribution of the classes for the experiments 
can be found in Table 1.  

We randomly partitioned the strains from each class into 
five groups as necessitated by five-fold cross validation. The 
first group from each class was combined to create a set of 
query strains. To simulate a metagenomics dataset obtained 
using the next generation of 454 pyrosequencing technology 
[14], each query strain’s genome was randomly sampled 
extracting 100 fragments each 500bp in length. Each fragment 
was annotated with its membership class so that we could 
determine if BLAST correctly matched the fragment. These 
sampled fragments were used as queries for BLAST sequence 
alignment. The whole-genomes of the remaining strains were 
used to construct the BLAST training database in which 
BLAST would attempt to align against the query sequences. 
For example, in the phyla experiment, 93x100 (20%) query 
fragments were BLAST against a database of 370 (80%) 
whole-genomes comprised of the remaining strains belonging 
to the 4 phyla. The percent accuracy is calculated as the 
number of query fragments correctly identified by BLAST over 
the total number of query fragments. This procedure was 
repeated a total of five repetitions so that each strain was in the 
query test set once. The results from the five partitions were 
averaged and the standard deviation was calculated. A survey 
of cross validation methods can be found from these sources 
[15, 16, 17]. 

A. Varying the Training Database Coverage 
The varying database coverage experiments tested 

BLAST’s resiliency in accuracy when the coverage per 
genome in the database was reduced. We randomly sampled 
each whole-genome 100x taking contigs 50Kbp (10Kbp) in 
length to construct the training database. The experiment 
proceeded identically as described above upon which we 
compared the results of whole-genome, 5Mbp and 1Mbp 
coverage in the training database.  

TABLE I.   

Phyla 
Total Strains – 463 Database (80%) – 370 Query (20%) – 93 

Well-Represented Under-Represented 
Class # Of Strains # Queries Sampled Class # Of Strains # Queries Sampled 

Proteobacteria (well1) 315 (68%) 63 Crenarchaeota (under1) 15 (3%) 3 
Fermicutes (well2) 116 (25%) 23 Tenericutes (under2) 17 (4%) 4 

Genus 
Total Strains – 64 Database (80%) – 51 Query (20%) – 13 

Well-Represented Under-Represented 
Class # Of Strains # Queries Sampled Class # Of Strains # Queries Sampled 

Steptococcus (well1) 26 (40%) 5 Yersinia (under1) 10 (16%) 2 
Staphylococcus (well2) 18 (28%) 4 Synechococcus (under2) 10 (16%) 2 

The class composition for the phyla and genus five-fold cross validation experiments are provided below. A total of 463 strains were included in the phyla 
experiment. We chose to use two phyla having well-representation and two having under-representation in the database. For example, Proteobacteria (well) 
accounted for 315 (68%) of the 463 strains included in the experiment. These strains were partitioned into five groups each containing 63 strains. The remaining 
three classes were partitioned in the same manner ensuring that approximately 20% of the strains belonging to the class were in each group. The first group from 
all four classes was combined and BLAST against the remaining four groups. This procedure was repeated five times so that each group was used for query 
once. An identical procedure was used at for the genus experiment.  
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B. Varying Error in the Query Sequence 
The query sequence error model experiments were 

developed to quantify BLAST’s accuracy in classifying 
fragments at both the genus and phyla levels when errors have 
been introduced in the query fragments. It has been shown that 
Roche pyrosequencing has a per-base accuracy of 96%, 
however, this figure depends on a number of factors [18]. To 
simulate sequencing error we randomly changed 1% (10%) of 
the bases in each 500bp fragment to a randomly chosen 
nucleotide. The rest of the experiment proceeded identically as 
described above. We compare the results of 0%, 1% and 10% 
sequencing error.  

BLAST may potentially return multiple ambiguous hits 
meaning that all of the top scores returned have the same 
statistical expect value (e-value). In these instances all of the 
aligned sequences must be from the true taxonomic class 
otherwise the BLAST result was marked incorrect for the 
corresponding query sequence. Additionally, BLAST may not 
return a report for a query sequence that it has determined to be 
a low-complexity region. In these few instances we marked the 
query as incorrect. While this filter may be turned off we’ve 
found that BLAST consumes significantly more resources; 
therefore we’ve chosen to leave it in the default setting. 
Corresponding, we chose to use all BLAST default settings 
including an e-value cutoff of 10. 

IV. RESULTS 

A. Varying Database Coverage Experiments 
First, we aim to show how full and partial training data 

effects BLAST's ability to classify fragments into their 
taxonomy. This is important because for every complete 
microbial genome project in GenBank, there are two projects: 
"in-progress", or those having incomplete coverage of the 
actual genome. Therefore, we show how using 100 random 
50kbp (5 Mbp total genomic data) and 10kbp contigs (1 Mbp 
genomic data) compares to having the full-genome for training. 

The results of the five-fold cross-validation experiments 

with well/under representation for assessing training database 
coverage are summarized in Table 2. BLAST accuracy was 
evaluated for classification both at the genus and phyla levels. 
The coverage of each genome included in the training 
databases was varied from whole-genomes to genomes 
consisting of 100 random samples each 50Kbp (10Kbp) in 
length. Therefore we performed three separate experiments at 
each level.   

Each experiment had four classes; two classes that were 
well represented by strains in the dataset and two classes that 
were under-represented. The percent accuracy is the number of 
strain fragments that BLAST matched with the correct class 
over the total number of fragments. The average score reported 
is the average of all five repetitions of the five-fold cross 
validation experiment. The standard deviation is calculated in a 
similar manner. Individual scores for each repetition, for all 
experiments are provided in the appendix.  

In addition to the percent accuracy of BLAST across all 
strains for each experiment, Table 2 lists the accuracy of 
BLAST on the four individual classes as well as the accuracy 
on the combined well and under-represented classes. Each of 
these combined groups contains two classes.  

All seven different scores for percent accuracy are plotted 
against the six experiments shown in Figure 1. Phyla generally 
had lower accuracy than genus for all experiments with the 
exception when there was 1Mbp coverage in the training 
database.  Figure 1 clearly shows that the percent accuracy of 
all strains for each experiment is highly dependent on the 
BLAST’s ability to correctly identify the fragments belonging 
to strains having membership in the under-represented classes. 
For example, the genus level accuracy using whole genome 
training scored similarly across all classes while under-
represented phyla classes using whole-genome training scored 
nearly 40% less than the phyla well-represented classes. This 
disparity results in an overall score for phyla 10% less than that 
of genus for the whole genome experiments.   

As the genome coverage in the training database is reduced 
we see from Figure 1 that the average percent accuracy also 

 
Figure 1.  This bar graph illustrates the data provided in Table 2. All four classes in the full genus experiment exhibited similar percent accuracy scores. 
However, this percent accuracy degrades when BLAST is trained on partial genomes. This trend is also evident in the phyla experiments. There is also a 
greater difference in percent accuracy between the well- and under-represented classes in the phyla experiments than the genus experiments. We’ve found that 
this is due in part to the genus level having less diversity than the phyla level. The percent accuracy decreased 34% (genus) and 22% (phyla) when partial 
genomes of 1 Mbp were included in the training database as opposed to whole genomes.  

Figure 2.   
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decreases.  The genus level was most significantly affected 
decreasing coverage from whole genome to 1Mbp of each 
genome. The percent accuracy decreased 34% while the 
decrease was 22% for phyla. The genus under-represented 
classes experienced nearly a 50% decrease in accuracy while 
the phyla under-represented classes had an approximately 30% 
reduction in accuracy.  

B. Query Sequence Error Model Experiments 
In this experiment, we aim to show how error in a DNA 

sequence affects BLAST's ability to taxonomically classify the 
fragment. Error can be viewed as coming from the DNA 
sequencing method [19, 20], or divergence in sequence due to 
mutation. In either scenario, BLAST should be robust to error 
in the sequence, and we will investigate this effect. 

The results of the five-fold cross validation experiments 
with well/under representation assessing BLAST’s 
performance on query sequences with error is summarized in 
Table 3. BLAST accuracy was evaluated for classification both 
at the genus and phyla levels. In contrast to the prior 
experiments the coverage of each genome included in the 

training databases remained the same using whole-genomes. 
They query-error experiments differ from the training database 
experiments because error is introduced into the query 
fragments while the training database size is constant: while the 
converse is true in the former. Three separate experiments were 
performed at both the genus and phyla levels. The first used 
unaltered query fragments. The second and third experiments 
used fragments each having 1% and 10% randomly changed 
base pairs, respectively.    

The introduction of 1% error into the query fragments 
resulted in a nearly 1% decrease in average percent accuracy 
across all classes for phyla. This difference was much higher 
for the genus experiments with the under-represented classes 
suffering a loss of nearly 10% accuracy. However, when the 
error introduced in the query fragments was raised to 10% the 
difference in accuracy for genus was negligible compared to 
the 1% error experiment. Phyla accuracy continued to decrease 
in a near linear fashion moving from 0% to 10% error in the 
query fragments. On average this decrease was about 5% 
across of the classes for phyla. 

TABLE II.   

Percentages All Well Well 1 Well 2 Under Under 1 Under 2 
AVG 95.87 96.60 95.65 97.87 94.15 96.90 91.40 Whole Genome Genus 
STD 2.10 3.10 4.91 3.03 3.57 4.56 8.51 
AVG 83.18 90.48 90.43 90.78 67.10 68.80 65.40 5Mbp Genus 
STD 3.49 4.16 5.09 4.08 3.06 1.20 6.22 
AVG 61.83 70.52 72.95 67.57 42.70 40.40 45.00 1Mbp Genus 
STD 1.76 1.96 3.97 4.21 2.06 2.51 3.66 
AVG 87.21 90.06 92.67 83.01 48.74 36.80 59.38 Whole Genome Phyla 
STD 2.29 2.30 0.79 7.80 9.64 16.43 14.52 
AVG 76.76 80.00 85.31 65.64 33.11 16.67 47.80 5 Mbp Phyla 
STD 1.44 1.56 1.15 7.16 6.88 5.17 10.85 
AVG 65.70 69.21 76.86 48.48 18.38 8.74 26.98 1 Mbp Phyla 
STD 0.71 0.87 1.24 4.66 3.10 2.59 5.24 

The percent accuracy scores of BLAST for the genus and phyla experiments are provided below. BLAST was marked correct if it matched the query 
fragment to the correct class and incorrect otherwise. It was also marked incorrect if it provided multiple ambiguous hits whereupon these hits belonged to 
two or more different classes. The percent accuracy for each five-fold cross validation repetition is the number of correct matches over the total number of 
query fragments. The percent accuracy scores over all five repetitions were average and are provided below along with the standard deviation of scores. 
The whole genome caption indicates that the database was comprised of whole genomes representing each class. 5Mbp (1Mbp) indicates the database was 
comprised of partial genomes 5Mbp (1Mbp) in length representing each class.  

 

 
Figure 2.  This bar graph illustrates the data provided in Table 3. The average percent accuracy for all strains in the genus experiments decreases 6% when 
10% sequence error is introduced in the query fragments. The average percent accuracy for all strains in the phyla experiments decreases 4% when 10% 
sequence error is introduced in the query fragments. Under-represented classes experience larger decreases in percent accuracy than well-represented 
classes. Both under-represented classes in the genus and phyla experiments experienced a decrease of approximately 12% with the introduction of 10% 
sequence error. 
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V. DISCUSSION  
Previously, we have conducted an experiment to measure 

BLAST’s accuracy of taxonomic classification at the levels of 
genus and phyla consisting of four classes; two that are well 
represented and two that are under-represented using whole 
genomes in the training database [18]. Our findings indicate 
that BLAST is able to classify much better than chance, 
however, BLAST assigns misclassified queries by chance.  
Overall, the greater the representation in the database, the 
greater the accuracy of BLAST is on taxonomic classification. 
This is especially true for phyla, which we believe to have 
more diversity than genus based on the findings in this 
reference [21]. Therefore, it is no surprise that the decrease in 
BLAST accuracy is greater for under-represented classes than 
those that are well represented in the training database. 

It is clear from these experiments that the accuracy of 
BLAST is highly dependent on the composition of the training 
database. The whole genome phyla experiment confirmed that 
the well-represented classes have nearly 40% higher accuracy 
than the under-represented classes. Still BLAST is performing 
much better than chance on all classes. For phyla (whole-
genome) we see that Proteobacteria (well) scored 92.67%. 
With a database composition of 252/370 we confirm that this 
score is much higher than chance, which would be about 68%. 
This can also be verified for under-represented classes. For 
instance BLAST scored 59.38% for Tenericutes (under). Given 
its database composition we expect a percent accuracy of 
14/370 or 3.7% by chance.  

As the coverage in the database was reduced the average 
percent accuracy scores decreased for all classes for both the 
genus and phyla experiments. Furthermore, the disparity in 
accuracy between the well and under-represented classes 
increased with the database reduction from whole-genome to 
5Mbp down to 1Mbp. This was apparent in both the phyla and 
genus experiments. Still BLAST was capable of scoring better 
than chance with even with 1Mbp coverage in the database. 
Phyla Crenarchaeota (under 1) suffered the greatest decrease in 
accuracy scoring at 8%, yet this was still higher than its chance 
of 12/370 or 3.2%. 

Upon further examination of the database’s composition we 
observe the ratio of well to under-represented strains in the 
phyla database is nearly 14:1. Incidentally, by chance, if we 

rolled a die we would expect BLAST to classify a strain to a 
well-represented class 14/15 or 93.3% percent of the time. 
While we found through our experiments that BLAST is able 
to classify much better than chance, the allocation of BLAST 
misclassifications follows a different trend. For example, in the 
phyla experiments when BLAST misclassified a fragment 
approximately 95% (nearly chance) of the fragments were 
assigned to a well-represented class.  

These trends are also reflected in the genus experiments. 
For example for genus (whole-genome) we find that 
Streptococcus (well) scored 96.6%. By chance we would 
observe 21/51 or 41.1% accuracy. For Yersinia (under) BLAST 
scored 91.4% while a score by chance would be 8/51 or 15.6%. 
The genus database composition is about 2.2:1 predicting that 
BLAST would classify a strain to a well-represented class 
about 69% of the time by chance. This is reflected in the 
allocation of BLAST misclassifications where about 76% of 
the BLAST misclassified fragments went to a well-represented 
class. 

The sequence error model experiments have shown that 
errors in the query fragments affect classification at the genus 
level greater than at phyla. Additionally, the affect was greater 
on the under-represented classes. The decreases in average 
percent accuracy at the genus level were incremental between 
1% and 10% error while a substantial decrease of 10% for 
under-represented classes was observed between the 
introduction of 0% and 1% error. 

The much greater decrease in accuracy at the genus level 
with partial-training data or query sequence error can be 
explained by sequence divergence. It is well known that 16S 
rRNA has 3% divergence at the species level and goes up to 
6% at the genus level [21]. Extending this finding we expect a 
greater divergence at the phyla level. Therefore we find that the 
finer the taxonomic resolution, the more susceptible to error the 
taxonomy will be. 

VI. CONCLUSION  
Twelve five-fold cross validation experiments were 

examined in this study spanning the taxonomic levels of genus 
and phyla. We showed how whole and partial training data 
effects BLAST's ability to classify fragments into their 
taxonomy. Additionally, we showed how error in a DNA 
sequence affects BLAST's ability to taxonomically classify the 

TABLE III.   

Percentages All Well Well1 Well2 Under Under1 Under2 
AVG 95.87 96.60 95.65 97.87 94.15 96.90 91.40 Genus 0% Error 
STD 2.10 3.10 4.91 3.03 3.57 4.56 8.51 
AVG 91.17 94.07 95.29 92.65 84.55 87.60 81.50 Genus 1% Error 
STD 8.48 4.38 5.41 10.60 19.97 20.73 21.05 
AVG 89.37 92.62 93.63 91.65 81.90 87.30 76.50 Genus 10% Error 
STD 7.99 4.69 6.41 10.89 20.14 21.23 21.63 
AVG 87.21 90.06 92.67 83.01 48.74 36.80 59.38 Phyla 0% Error 
STD 2.29 2.30 0.79 7.80 9.64 16.43 14.52 
AVG 86.93 89.84 92.57 82.46 47.64 35.20 58.83 Phyla 1% Error 
STD 2.28 2.31 0.71 8.03 9.76 15.94 15.08 
AVG 83.74 87.24 90.70 77.89 36.54 20.93 50.42 Phyla 10% Error 
STD 2.54 2.58 0.76 8.72 9.33 10.83 18.73 

The results of the sequence error model five-fold cross validation experiments are provided below. To simulate sequencing error we randomly changed 1% (10%) 
of the 500bp in each of the query fragments. The first score column is the percent accuracy of BLAST for all four classes while the four columns to the right, 
labeled with the phyla’s abbreviated name, refer to the individual scores for each class considered in this experiment. The results show that accuracy at the genus 
level was more susceptible to sequencing error than phyla. However, while there was approximately 10% decrease in accuracy for the under-represented genus 
class with 1% sequencing error, the decreases were marginal between 1% and 10% error. Phyla’s decrease in accuracy appears to have a near linear response to the 
introduction of sequencing error.  
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fragment. Maximizing the coverage in the training database 
and reducing the amount of error in the query fragments 
increases the reliability of BLAST, however, there is always 
the potential for missing data in the training database and error 
in the query fragments so it’s important to understand how 
BLAST is affected by these deficiencies.   

Figure 1 intuitively indicates that genome coverage in the 
database affects BLAST’s ability to correctly classify 
fragments at both the genus and phyla levels. When coverage is 
1Mbp per genome BLAST is still able to correctly classify 
fragments better than chance, if only marginal, but generally 
greater by tens of percentage points. Table 4 highlights the 
decrease in accuracy when the training database coverage is 
reduced from whole genome sequences. 

The results of the sequencing error study as described by 
Figure 2 show that BLAST accuracy decreases at the genus 
level by several percent with the introduction of 1% error. 
Classification at the phyla level is also affected by sequencing 
error, but not as great as the decrease exhibited by genus with 
1% error. Further introduction of error appears to have minimal 
affect on genus, however, classification accuracy at the phyla 
level continues to decreases with a near linear trend. Table 5 
highlights the decrease in accuracy observed when error is 
increased in the query sequence fragment from 0%. 

Our study has shown that if a class is under-represented in 
the training database and only contains uncompleted genome 
projects, meaning lots of partial-training data, then BLAST 
performance may be severely limited. Users of BLAST should 
be aware of faulty classifications if they suspect they are 
querying taxa that have only a few examples in the training 
database. Overarching, our findings show that the higher up the 
phylogenetic tree we classify fragments into; the more robust 
they are to both partial training-data and test-data error, with 
genus-level accuracy more susceptible to both than phyla-level 
accuracy.  
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TABLE IV.   

Table 4  Genus Phyla 
 Partial Genome 
 Training Size 5Mbp 1Mbp 5Mbp 1Mbp 

All -12.69 -34.04 -10.45 -21.51 
Well -6.12 -26.08 -10.06 -15.81 

Under -28.1 -51.45 -15.63 -30.36 

TABLE V.   

 Table 5 Genus Phyla 
Query Error % 1% 10% 1% 10% 

All -4.7 -6.5 -0.28 -3.47 
Well -2.53 -3.98 -0.22 -2.82 

Under -9.6 -12.25 -1.1 -12.2 

Percent Change in Accuracy for Partial Training (Relative to whole-genome 
case) [Table 4]. Percent Change in Accuracy for Query-Sequence Error 
Model (Relative to 0% error case) [Table 5]. The column All includes the 
performance across all four classes in each experiment. The Well and Under 
columns each include their two respective classes in each experiment. 
BLAST decreases in accuracy both for the levels of genus and phyla when 
the coverage in the training database is reduced or with the introduction of 
error in the query sequence fragment. Overall, BLAST accuracy at the genus 
level is more susceptible to reductions in coverage in the training database 
or introduction of error in the query sequence than at the phyla level. 
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