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Abstract—The accurate analysis of biological networks, en-
abled by the precise capture of their individual components,
can reveal important underlying biological principles. Efficient
image processing techniques are required to precisely identify
and quantify the networks from complex images. In this paper,
we present a novel approach for a weighted and undirected
graph-based network reconstruction and quantification from 2D
images using an adaptive rectangular mesh refinement approach.
The proposed approach is able to efficiently identify the orga-
nizational principles of the network, capturing the underlying
network structure, and computing relevant network topological
properties. We validate the proposed approach by comparing it
with the state-of-the-art method.

I. INTRODUCTION

BIOIMAGE informatics is a sub-field of bioinformatics
and computational biology that focuses on management,

processing, and quantification of biological structures in the
images. Particularly, biological networks widely studied by the
bioimage informatics community [1], [2]. However, information
of the content and complexity of biological networks in images
vary significantly between different network subcategories, such
as, the very high density of links in 2D leaf vein networks
[3]. Therefore, there is an increasing need to develop an image
processing approach in conjunction with biologists, combining
the collaborative knowledge of biology, computer science,
mathematics, and other related disciplines in order to provide
the most effective ways for quantification of complex biological
networks. Such an approach can also be applied to other types
of networks, such as neural networks or transportation systems
[4].

In this paper, we propose a quantitative and biologically
driven image processing approach able to quantify complex
biological networks, by first multiscale reconstructing the
network as an undirected graph, with nodes and weighted edges,
and then quantifying the network’s topological properties.

II. RELATED WORK

A. Direct network reconstruction

A direct reconstruction of biological networks relies on
image segmentation techniques. For example, in [5], vein
networks were analysed using thresholding-based segmentation
followed by multiple restoration algorithms. Then, the skeleton
for the segmented image is computed, followed by some
correction steps. Finally, the image skeleton is scanned to

obtain the network topology. In [2], a contrast invariant
curvilinear network-like features enhancement step followed
by the watershed-based network segmentation algorithm is
proposed to enhance, extract and quantify the fungal, leaf
vein and vascular networks. Moreover, in order to precisely
determine the network’s topological properties, a mathematical
graph-based representation of the network is also introduced.
Most recently, a novel and generic platform called Network
Extraction From Images (NEFI) has been developed by [1].
The platform provides a wide range of image pre-processing
and segmentation techniques for network reconstruction and
graph-based representation.

B. Indirect network reconstruction

Alternatively to the direct network reconstruction approaches,
an indirect network reconstruction approach called the img2net
was proposed by [4], [6]. The img2net reconstructs a network
from 2D/3D image using a two-step procedure as shown in
Figure 1. First, a uniform 2D/3D grid defined by [dx, dy]
spacing (or [dx, dy, dz] in 3D) is generated over the network
image. Then, a weighted graph is reconstructed, representing
the positions of grid junctions as nodes and the grid edges as
edges. The graph edge weights are determined by convolving
the image with a set of 2D/3D Gaussian kernels. Importantly,
the img2net approach is implemented using the NetworkX
Python library [7] which is firmly based on graph theory
concept. This therefore allows for a quick and direct use of a
wide range of very sophisticated quantitative measurements of
the reconstructed graph representation of the analysed network.

C. Mutliscale indirect network reconstruction

Since curvilinear network-like structures observed in the
biological images can appear in different sizes, a multiscale
reconstruction and quantification of the networks needs to be
considered. A lack of such a multiscale concept is a main
drawback of the img2net approach as the img2net is based on
a regular uniform grid construction procedure. Fortunately, this
drawback can be addressed by an introduction of an adaptive
grid concept into the img2net approach.

One of the most common adaptive grid concepts is a
structured Adaptive Mesh Refinement (AMR) [8]. The AMR
is extensively used in the simulations of scientific phenomena
exhibiting large variations in scales [9], by using spatial
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Figure 1: The img2net approach workflow [6]. (a) 2D cytoskeletal network im-
age. (b) The uniform grid construction (parameters: gridtype = rectangular,
nullmodel = edges, dx = 2.5 pixels, dy = 22 pixels and dz = 1 pixel),
and edge weights estimation. (c) The resulting network’s representation by
weighted and undirected graph, where the weights of edges are colour-coded
from blue (low value) to red (high value).

partitioning methods to dynamically adjust the resolution of
the computational mesh/grid to features in the solution or
computational domain [10].

1) Quadtree:
A quadtree is a well-known tree-based data structure used
in the adaptive grid concepts, where every internal node has
four points and every node represents a quadrant(square or
rectangle) [10]–[14]. Recursive quadtree partitioning captures
the features in a computational problem domain by setting
the minimum and maximum resolution of the computational
grid. The recursive approach of quadrant partitioning halts at
certain points, based on specified stop conditions related to the
problem domain or if the number of these points is less than
a specified size constraint [15].

As an example, Figure 2 illustrates the hierarchy of a sample
quadtree and how the labels could be used to access the data.
The dashed lines show how the nodes are accessed directly
without using parent-child relation.

2) Spatial hashing:
Accordingly to [16], [17], it is known that a standard pointer
quadtree data structure leads to random memory access during
nodes traversal. Therefore, to increase the accessibility and
compactness of a quadtree data structure, pointers in index
manipulation is replaced by spatial hashing technique. In such
case, the quadtree data is re-organised according to a one-
dimensional ordering in memory. In particular, Lefebvre [18]
proposed a direct access method to any node in quadtree,
by storing the index data using a small offset table at each
level and encouraging each hash function to reach the minimal
perfect hash function. Further work by Lewiner [17] introduced
pointer-less quadtree providing faster performance with less

(a) (b)

Figure 2: The quadtree concept. (a) An example of a quadtree. (b) The
structure of the tree (top-down) and labeling approach used to identify the
position of the subdivided box [16].

memory consumption. This concept is shown in Figure 3.

(a) (b)

Figure 3: Pointer-less quadtree data structure representation proposed by [17].
(a) Morton Key coding that is used in blocks traversal. (b) The hierarchy
of blocks that illustrates block positions (hash table (3-last bits of key: k &
0̄111)).

3) Post-refinement constrains:
Instead of using a user-defined thresholding in top-down
quadtree refinement [19] or using ground truth images to test
the quality of quadtree decomposition [20], we automated the
quadtree-based grid construction based on image content by
utilizing it to have an automated thresholding selection. A wide
range of image features, including: intensity, contrast, colour,
and texture can be used in refining a quadtree’s quadrants. In
this work, we have done a post-refinement process based on a
global (Otsu [21]) or a local (Niblack [22] and Sauvola [23])
image intensity thresholding.

III. METHODS

In this study, we propose a novel approach for capturing
complex biological networks from 2D images. We use an Adap-
tive Mesh Refinement (AMR) concept in order to achieve an
efficient multiscale network reconstruction and quantification.
Algorithm 1 summarizes all steps of the proposed approach.

A. Pointerless-quadtree-based adaptive grid construction

1) Quadtree:
To generate the quadtree-based grid, we use a pointerless
quadtree concept originally proposed by [16] which uses
the hashing method proposed by [17] and shown in Figure



3 to store the quadtree nodes instead of using parent-child
relation in nodes traversals in pointer quadtree. By using Depth-
First Search (DFS) ordering in nodes traversals a pointerless
quadtree provides slightly optimization in memory utilisation
with shorter traversals.

Each quadrant qd in the quadtree-based grid at depth d, is
defined by a corresponding set of coordinates:

qd = [xd, yd, xd + ∆xd , y
d + ∆yd ] (1)

where
∆xd =

w

2d
, ∆yd =

h

2d
(2)

where w × h is a grid size. At every recursive quadrant
partitioning step, each quadrant qd at depth d is recursively
subdivided into its four sub-quadrants:

qd+1
[m,n] =

{
qd+1
[0,0], q

d+1
[0,1], q

d+1
[1,0], q

d+1
[1,1]

}
(3)

defined by a following set of coordinates:

qd+1
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∆xd

2
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∆yd

2
]

qd+1
[0,1] = [xd +

∆xd

2
, yd, xd + ∆xd , y

d +
∆yd

2
]

qd+1
[1,0] = [xd, yd +

∆yd

2
, xd +

∆xd

2
, yd + ∆yd ]

qd+1
[1,1] = [xd +

∆xd

2
, yd +

∆xd

2
, xd + ∆xd , y

d + ∆yd ]

(4)

All qd[m,n] sub-quadrants are ordered using Morton code, as
shown in Figure 3(a).

2) Spatial hashing:
This work applies the same hashing principle as in [16], [24],
and [17]. We store the depth and the quadrant coordinates for
each node using a hashing method, where the d is the level
(depth) of the subdivision and C is a tuple, which defines the
subdivision labeling of a certain image block, where C can be
calculated recursively as follows:

C = 2 ∗ [md, nd] + [md+1, nd+1] (5)

where [md, nd] and [md+1, nd+1] are a tuples refers to subdi-
vision labelling of quadrants qd and qd+1 in a grid Q.

3) Partitioning:
Let us consider a 2D grey-scale image I(x, y) with a size of
w × h. In order to build a quadtree on an image I the non-
uniformity constraints have to be satisfied and, therefore, the
minimum image block size smin is a user-input with smin ≥ 2
because the minimum region of image that can partitioned is
4 pixels. In addition, the 2D quadtree-based grid generation
procedure is controlled by a maximum grid partitioning depth
dmax which can be calculated according to [25] as follows:

dmax = log(
min(w, h)

smin
) +

3

2
(6)

The considered quadrants in the final adaptive grid have
to satisfy a weighted multi-level threshold T . In the first
step, we construct the quadtree to calculate the weighted

multi-level threshold where each region of the image de-
fined by a grid’s quadrant qd, can be denoted as I(qd).
A threshold value tdqi is calculated as a minimum thresh-
olding value for all four sub-quadrants qd+1

[m,n] as follows:

tdqi = min
{
T (I(qd+1))

}
= min

{
T (I(qd+1

[0,0])), T (I(qd+1
[0,1])), T (I(qd+1

[1,0])), T (I(qd+1
[1,1]))

}
(7)

For every depth d, the average depth thresholding is calculated
tdavg in the following:

tdavg =

∑2d

i=1 t
d
qi

2d
(8)

From Equation 8, a weighted multi-level threshold is calculated
using the global threshold t = T (I) as follows:

tdavg =
tdavg + t

2
(9)

In order perform a quadtree refinement, we assume that
the grid’s quadrant can be considered only if the following
thresholding condition is satisfied:

td ≥
tdavg

2

t
(10)

The condition in Equation 10 is inferred from the relation
between dividing the current quadrant’s thresholding td by
the average thresholding tdavg compared with the average
thresholding tdavg divided by the global thresholding of an
image I as follows:

td

tdavg
≥

tdavg
t

(11)

To test the proposed quadrant partitioning procedure, Otsu
(global), Sauvola’s and Niblack’s (local) image thresholding
approaches were used. For each thresholding method, mean
and standard deviation of image intensity are calculated within
image region I(qd) defined by a corresponding quadrant qd.

4) Graph edge weights:
For each edge of the quadrant in the last depth qdmax , the
edge weight is defined by the convolution of an image I , at
the edge position, with a Gaussian kernel of a size correlated
with the last depth of quadrant partitioning process based on
using the optimal sigma size in [26] for our target image . This
procedure is illustrated in Figure 4.

B. Network graph-based analysis

After building the adaptive grid-based graph representation
of the network, we analyse the network properties in a way
similar to [6]; see Table IV for more details.

IV. RESULTS

A. AG-img2net vs. img2net approach

In order to clearly show the effectiveness of the adaptive
grid concept (AG-img2net), we have chosen different types of
networks in order to reconstruct and quantify their topology,
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Figure 4: Reconstruction of the network using a quadtree concept. (a) 2D grey-
scale cytoskeletal image. (b) The constructed adaptive grid using a quadrant
partitioning procedure based on Otsu’s thresholding method (smin = 4
pixels and k = 1). (c) The resulted network’s representation of weighted and
undirected graph, where the weights of graph’s edges are colour-coded from
blue (low value) to red (high value).

including synthetic networks and real networks such as
cytoskeleton in plant cells used in img2net [4], [6] and keratin
in skin cells.

1) Refined/unrefined AG-img2net vs. img2net - synthetic
image: Figure 5(a) shows a placed grid on a synthetic network
image with 2500 grid junctions and 4900 edges using the
unconditional version of our approach and the img2net [6]
approach, therefore they have similar resulting network graphs
illustrated in Figure 5(b). Table I illustrates a comparison
between properties of the reconstructed networks, where
the standard deviation of node degree, degree assortativity,
algebraic connectivity and the average path length are almost
the same for all tests. The test on the same image using a
conditional version of our approach shows that the underlying
network can be captured accurately with fewer networks entities
(838 grid junctions and 3339 edges) as shown in Figure 5(c),
and 5(d). The difference between value of the reconstructed
network’s properties refers to a slight fractional difference in
the values of grid’s positions between img2net and AG-img2net.

2) Unrefined AG-img2net vs. img2net - cytoskeleton image:
The AG-img2net (with no refining) and img2net were applied
to the same cytoskeleton image used in [6] and in Figure 1.
And then, a few major topology measurements of the network
were compared, including standard deviation of node degree,
degree assortativity and algebraic connectivity of the network,
see Table I,

Algorithm 1: 2D quadtree-based grid generation algorithm
Input: I , smin

Output: Q
1: [w, h]← size(I)

2: dmax ← log(min(w,h)
smin

) + 3
2

3: d← 0
4: ∆xd ← w

2d

5: ∆yd ← h
2d

6: xd ← 0
7: yd ← 0
8: qd ← [xd, yd, xd + ∆xd , y

d + ∆yd ]

9: Q←
{
qd, d

}
10: tdavg ← 0

11: while (min(∆xd ,∆yd) > smin) ∧ (d ≤ dmax) do

12: qd+1
[m,n] ← split(qd)

13: Q←
{
Q,
{
qd+1
[m,n], d + 1

}}
14: if d < dmax then
15: td ← min

{
T (I(qd+1

[m,n]))
}

16: tdavg ← tdavg + td

17: end if
18: d← d + 1
19: ∆xd+1 ← w

2d+1

20: ∆yd+1 ← h
2d+1

21: end while
22: for i = 0 to dmax do
23: if i 6= dmax then
24: t← tiavg
25: else
26: t← ti−1

avg

27: end if
28: if t(qi) < tiavg

2

T (I) then
29: Q←

{
Q, delete qd

}
30: end if
31: end for
32: return Q

B. Refining the quadtree-based grid in AG-img2net - using the
traditional thresholding vs. multi-level thresholding

Figure 6 shows refining the quadtree-based grid in AG-
img2net using the traditional thresholding and our multi-level
thresholding.

V. VALIDATION

In order to validate our approach, we test it from two
perspectives: the relevancy of measured network properties
to it’s biological behaviour and performance of the approach.

A. Validating the biological relevancy of measured properties

First, we test whether the AG-img2net identifies biologi-
cally meaningful properties by analysing cytoskeleton images
analysed before by img2net and presented in [4], [6]. To do
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Figure 5: Comparison between AG-img2net and img2net approach using a
synthetic network. (a) Grid construction using AG-img2net (smin = 2 pixels,
no refining) or img2net (dx = 2 pixels, dy = 2 pixels and dz = 1 pixel).
(b) Reconstructed weighted graph representation of the underlying network
using both approaches. (c) Grid construction using AG-img2net (smin = 2
pixels, with refining based on Sauvola’s thresholding: k = 2 and smin = 2).
(d) Reconstructed weighted graph representation of the underlying network
using AG-img2net.

Table I: Comparison between AG-img2net (with no refining) and img2net
applied to the image in Figure 1.

Measurements
Image samples

Cytoskeleton Synthetic

img2net AG-
img2net img2net AG-img2net

Sandard devi-
ation of nodes
degree

0.00384 0.00384 0.0177 0.0177

Degree assor-
tativity 0.778 0.778 0.78317 0.78317

Average path
length 5555.6 5560.9 4.00E+39 4.00E+39

Algerbric con-
nectivity 0.000051 0.000051 0 0

this, we have followed the same validation procedure as in [6]
by comparing 18 samples of cell cytoskeleton, including cells
treated with Latrunculin B and untreated ones; the obtained
results are presented in Figure 7. Based on the obtained results
we can conclude that the cytoskeleton networks of treated
cells shows a lower average node degree and deviation of the
degree distribution (independent two-sample t-test for both (
0.001 < 0.05)). Skewness of degree distribution is higher in
treated samples than the control samples (independent two-
sample t-test for both ( 0.0001 < 0.05)). A comparison of the
degree assortativity of treated and untreated networks using our
analysis approach AG-img2net shows a statistical reduction

(a) (b)
Figure 6: Comparison between the traditional thresholding and our multi-
level thresholding in refining the quadtree-based grid. (a) A grid constructed
by quadtree-based grid partitioning (smin = 2 pixels) then refined using
the traditional Otsu thresholding. (b) A grid constructed by quadtree-based
grid partitioning (smin = 2 pixels) then refined using a multi-level Otsu
thresholding (our approach) (k = 1).

for cytoskeleton treated with Latrunculin B (independent two-
sample t-test = 0.05). Both findings agree with the results
using img2net approach [4], [6] (independent two-sample t-
test = 0.04 < 0.05, independent two-sample t-test = 0.01 <
0.05), respectively. Moreover, the treated networks show a
significant reduction in average path lengths (APL) using AG-
img2net and img2net approach (independent two-sample t-
test = 0.001 < 0.05, independent two-sample t-test = 0.02
< 0.05), respectively. Skewness of the shortest path lengths
increased in treated samples compared to the control ones using
our approach (independent two-sample t-test = 0.01 < 0.05),
while it is an insignificant property using img2net approach
(independent two-sample t-test = 0.9 > 0.05). In addition the
radius and diameter of the network of treated cytoskeleton
expanded in treated samples (independent two-sample t-test for
both ( 0.001 < 0.05)). Algebraic connectivity of cytoskeleton
images steeply declined after chemical treating (independent
two-sample t-test for both (0.04 < 0.05)). Furthermore, current-
flow betweenness centrality was higher in treated samples than
untreated ones in AG-img2net (independent two-sample t-test
= 0.009 < 0.05) while it is an insignificant property in img2net
approach (independent two-sample t-test = 0.1 > 0.05).

B. Robustness and performance

Robustness of the AG-img2net approach for quantitative
representation of a wide range on biological networks is
shown in Table II. Moreover, computing time comparison,
for corresponding image examples from Table II, using AG-
img2net and img2net approaches is shown in Table III.

VI. CONCLUSION

In this paper, we introduced an efficient multiscale network
reconstruction and quantification approach using an adaptive
grid concept. First, we proposed to use an adaptive grid
approach based on pointerless quadtrees, allocating network
nodes more precisely than regular grids and requiring fewer
grid components. Second, an automatic quadtree partitioning
based on a global and local thresholding has been proposed
for capturing the network bundles accurately. This approach
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(a) Average nodes degree.
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(b) Standard deviation of
the degree distribution.
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(c) Skewness of
degree distribution.
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(d) Degree assortativity.
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(e) Average path length.
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(f) Skewness of the
shortest path lengths.
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(g) Minimum graph eccentricity.
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(h) Longest short path.
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(i) Algebraic connectivity.

0 1 2

C
on

tr
ol

Tr
ea

te
d

C
on

tr
ol

Tr
ea

te
d

A
G

-i
m

gn
et

im
g2

ne
t

(j) Current-flow
betweenness centrality.

Figure 7: Comparison between the properties of treated and untreated cytoskeleton networks measured using AG-img2net and img2net [4], [6]. img2net: in the
top two boxplots of each measured property plot; AG-img2net: in the bottom two boxplots of each measured property plot. (a) Average nodes degree. (b)
Standard deviation of nodes distances. (c) Skewness of degree distribution. (d) Assorativity. (e) Average path length. (f) Skewness of the shortest path lengths.
(g) Minimum graph eccentricity (radius). (h) Longest short path (diameter). (i) Algebraic connectivity. (j) Skewness of betweenness centrality of nodes.

achieves significant results and speed-up over other state-of-
the-art approaches.

VII. FUTURE WORK

In order to further advance the current achievements of this
study, a few future directions to follow are:

• The system should be able to capture time series in 2D
and 3D images.

• The validation of this system and its results should be
carried out on a greater variety of biological networks.

• In addition, a parallel approach needs to be developed in
order to improve performance.

VIII. IMPLEMENTATION

We implemented a pointer-less quadtree partitioning based on
[16], [24] and performed the graph analysis based on img2net
[4], [6] and the Networkx Python library [28], using the same
graph properties in img2net (as described in Table IV). We
used the following packages to implement our work: Python
2.7.3, SciPy, NumPy, nested_dict 1.61, Cython and NetworkX.
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Table III: Comparison in performance between our network analysis system AG-img2net and img2net [6].

Approach Image samples Size
[pixels]

Nodes Edges Time of
constructing grid

[s]

Time of analysing
network [s]

Total time
[s]

img2net
Cytoskeleton in plant cells [6] 50 ×390 729 1716 31.3 18 49.3

Microtubules in cells [27] 109×97 1152 2236 42.2 36.8 49
Cytoskeletal in skin cells 97×174 1568 3055 87.15 80.3 167.45

Vein leaf network 322×188 3600 7075 392.9 488.4 881.3

AG-img2net
Cytoskeleton in plant cells [6] 50 ×390 784 1406 4.4 17.9 22.3

Microtubules in cells [27] 109×97 1654 3160 14.4 75.3 89.7
Cytoskeletal in skin cells 97×174 2328 4474 26.6 160 186.6

Vein leaf network 322×188 2873 5616 68.8 275.9 344.7

Table IV: Overview of NetworkX graph measurements used to measure network topological properties.

Measurement Description
Mean[degree] Defined as the average node degree. Node degree refers to the number of links attached to a node. Often used as a measure

of connectedness of networks, especially the frequency distribution of node degrees.
Median[degree] The middle number of sorted node degrees. If the mean is equal to the median and the mode, then the distribution is

uni-modal.
Sd[degree] The measure used to quantify the amount of variation of a set of node degrees. The standard deviation of the degree

distribution [29] is used to distinguish the spatial heterogeneity of the distribution of actin structures. In our case, the
node degree reflects the intensity of underlying cytoskeleton, thus it is used to quantify the spatial heterogeneity of the
distribution of intensities in the underlying cytoskeleton images [6].

Skewness[degree] A measure of symmetry [29] or, to be more precise, a measure used to capture the asymmetry of the probability distribution
of node degrees about its mean. If the mean is equal to the median and the distribution has a zero skewness, this distribution
is symmetric.

Clustering coefficient A measure of the degree to which nodes in a graph tend to cluster together [15].
Degree assortativity A measure of the correlation of degrees of neighbouring nodes, reflecting how similar the connections are in the graph

with respect to the node degree [30].
Mean[distance] The average value of the shortest path lengths between all nodes in a weighted graph, quantifying the overall transport

efficiency of the network. If the network has smaller average shortest paths, meaning a similar physical extent, it has a
more efficient transport system [31].

Sd[distance] The measure used to quantify the amount of variation of the shortest path lengths between each two nodes in a weighted
graph.

Skewness[distance] The measure used to capture the asymmetry of the shortest path lengths between every two nodes in a weighted graph.
Radius Defined as minimum graph eccentricity of any graph vertex in a graph, where the eccentricity ecc(v) of v in graph G is

the greatest distance from v to any other node [32].
Diameter Defined as the longest short path, or it’s the greatest distance between any pair of vertices in the graph. [33].

Effective resistance Defined as a function of the Laplacian eigenvalues of the graph, calculated as a sum of the effective resistances over all
pairs of vertices. More informally, the effective resistance between two vertices of a network, assuming that a network is
seen as an electrical circuit, can be calculated by the well-known series and parallel manipulations [34].

Algebraic connectivity Defined as the second smallest eigenvalue of the Laplacian matrix [31]. This reflects the level of connectivity of the graph.
Therefore, it could be defined as the minimum collection of weights of edges that necessarily needs to be removed to
disconnect the network [6].

Mean[betweenness] The fraction of all shortest paths connecting a pair of vertices that pass through a given vertex, averaged over all nodes. Or
it could be defined as the average of the random-walk betweenness centrality [32].

Sd[betweenness] A measure to describe how the central the nodes are in a graph. A high mean betweenness centrality means the nodes
clustered together and it gives low mean betweenness when the graph is a spread out [29].

Skewness[betweenness] It is known as current-flow betweenness centrality used to capture the asymmetry of probability distribution of nodes
centrality about its mean [6].

Angle i The sum of the edge weights when there is a contribution of an imaginary rod placed on the image to the weight of edges
with i degree where i = 0, 45, 60, 90, 120, 135 [6].

Angle ratio 00 − 90 The ratio between edge weight for angle 0 and angle 90 [6].
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