
Deep learning-assisted pipeline for Virtual
Screening of ligand compound databases:

Application on inhibiting the entry of SARS-CoV-2
into human cells

Stelios Mylonas∗, Apostolos Axenopoulos∗, Sotiris Katsamakas†, Ioannis Gkekas‡, Kostas Stamatopoulos‡,
Spyros Petrakis‡, and Petros Daras∗

∗Information Technologies Institute, Centre for Research and Technology Hellas,Thessaloniki, Greece
†Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece

‡Institute of Applied Biosciences, Centre for Research and Technology Hellas,Thessaloniki, Greece

Emails: {smylonas,axenop,daras}@iti.gr, sotikats@eie.gr, {gkekasioannis,kostas.stamatopoulos,spetrak}@certh.gr

Abstract—Drug discovery involves extremely costly and time
consuming procedures and can be significantly benefited by com-
putational approaches, such as virtual screening (VS). Structure-
based VS relies on scoring functions which aim to evaluate the
binding of a candidate compound (ligand) on a protein target.
Over the last few years, the advancement of the deep learning
field has led to the development of novel scoring functions
based on convolutional neural networks (CNN), which have
achieved state-of-the-art results. In this paper, we present an
integrated end-to-end VS pipeline for application on real-world
drug discovery scenarios. It combines multiple conformations
of the ligand with a new CNN scoring function based on the
ResNet architecture, called ResNetVS, which incorporates also
the docking output score in its evaluation. After experiments on
the DUD-E dataset, it has shown notable performance, especially
in early enrichment, where it overcomes current benchmarks.
The proposed pipeline is finally applied on the emerging case of
COVID-19 pandemic, in a struggle to discover inhibitors for the
viral spike protein-ACE2 interaction.

Index Terms—virtual screening, deep learning, ResNetVS,
scoring function, covid-19

I. INTRODUCTION

Virtual screening (VS) is a computational technique used

to predict potentially bioactive chemical compounds (ligands)

that bind to a specific target, usually a protein receptor or

enzyme [1]. VS can substantially speed up the drug discovery

process and reduce its significant costs, by reducing the time

invested in expensive experimental assays and improving the

hit-rate of experimental verification. It consists of narrowing

down an initial large library of chemical compounds to a

considerably smaller final set of hit compounds, which are

then tested experimentally in vitro to confirm their biological

activity.

This work has been supported by the ATXN1-MED15 PPI project funded by
the Hellenic Foundation for Research and Innovation (HFRI) and the General
Secretariat for Research and Technology (GSRT), under grant agreement No
122.

Structure-based VS involves docking of candidate ligands

into the protein target followed by a scoring function which

estimates the likelihood that the ligand will bind to the

protein with high affinity [2]. Docking is the computational

task used to predict the position and orientation of a ligand

when it bounds to the protein receptor. Traditional VS ap-

proaches are based solely on the docking scoring functions,

which are usually physically inspired and aim to predict the

binding affinity values [3]–[5]. These techniques, although

interpretable, are inherently limited in their ability to capture

complex interactions due to the use of fixed functional forms.

With the employment of machine learning techniques, the

formation of generalised data-driven scoring functions was

enabled, providing more flexibility in the representation of the

underlying binding mechanisms [6], [7]. However, the use of

descriptors without any spatial arrangement between them can

lead to loss of the precise spatial relationships existed in the

raw structural data. Recent works tried to mitigate this issue

by adopting a graph-based representation [8], [9].

The increasing availability of large amount of data and

the advancement of the deep learning (DL) field in computer

vision inspired recently the development of novel structure-

based scoring schemes, which are based on 3D convolutional

neural networks (CNN) [10]–[13]. The VS task is treated in

this case as a binary classification problem, where the CNN is

trained to discriminate between ”binding” (active) and ”non-

binding” (decoy) complexes. Specifically, after discretizing the

protein-ligand complex into a 3D grid, it is imported to a 3D-

CNN which automatically extracts the most suitable features

required for the discrimination. While AtomNet [10] was the

first attempt to employ a shallow 3D-CNN for the VS task,

the effectiveness of the DL approach was mainly displayed

through an extensive study in [11], where the proposed CNN-

based scoring surpassed considerably both empirical and ML-

based scoring functions. The works of Bindscope [12] and

Imrie et al. [13] further improved the obtained results by
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Fig. 1. Flowchart of the proposed virtual screening pipeline.

employing deeper DenseNet architectures, while the latter one

achieved state-of-the-art performance by additionally creating

protein-family specific models.

In this work, we propose an integrated pipeline for ap-

plication on real-world VS tasks. More specifically, a novel

scoring scheme is introduced, called ResNetVS, which en-

hances the score directly computed by the docking algorithm

through combination with a 3D-CNN scoring function. In

order to increase the robustness of the proposed framework,

the results of multiple conformations for each ligand are

considered and fused appropriately. Experiments conducted in

benchmark dataset demonstrate the effectiveness of the pro-

posed approach. Moreover, in an attempt to contribute to the

endeavours against the COVID-19 pandemic, the framework

is currently being applied on a real-case scenario. Specifically,

a database of thousands of molecules is screened against the

viral spike protein-ACE2 interface which is responsible for the

entry of SARS-CoV-2 into human cells.

II. PROPOSED PIPELINE

A flowchart of our proposed VS pipeline is shown in Fig. 1.

Initially, a large library of possible hit compounds is selected

and is subjected by the experts to a succession of case-specific

filters, in order to reduce the number of ligands that will

proceed to docking.

One factor that has large impact on the docking performance

is the initial conformation of the ligand compounds, i.e.

their 3D structure. Since in most cases input compounds are

provided in two-dimensional (2D) format, the conversion into

their three-dimensional (3D) form is performed computation-

ally. This may introduce great ambiguity in the VS pipeline,

since an erroneously predicted structure can significantly mis-

lead the geometry-based docking procedure. To alleviate this

issue, multiple conformations of the ligands can be employed

[1]. A parallel scheme of multiple ligand conformations was

taken into account in [14], which proved more versatile and

robust in handling unknown compounds, and led to higher

screening performance compared to that of single conforma-

tions. In our pipeline, we adopt a similar approach with two

ligand conformations, generated with OpenBabel’s toolbox

[15] by employing the default genetic algorithm-based method

with MMFF94 energies scoring and the weighted rotor search

method for lowest energy conformer, respectively.

For the docking procedure, we used Smina [16], a fork

of AutoDock Vina [5], which implements an improved em-

pirical scoring function and minimization than its predeces-

sor. Although previous works have discovered new ligands

by performing docking screen [17]–[19], solely relying on

docking scoring functions can suffer from many weaknesses

[20], which can be overcome either by rescoring the obtained

docked poses [21] or by applying a consensus scheme of

multiple scoring functions [14].

Following the above rationales, we trained a deep learning-

based method for rescoring the docked poses generated by

Smina and integrated it, along with the Smina scores, into a

joined scoring function, called ResNetVS. Despite the proven

effectiveness of CNNs in improving the docking scores, we

propose here a joined scoring, in order to handle with possible

failures of the CNN model. More specifically, when employed

on real-world applications, CNN-based scoring may suffer

from poor generalization ability due to the inadequate size

or possible biases existed in its training set. Returned values

by the individual scoring methods are of different context

and range, since CNN returns probability values in the range

of [0,1], while Smina returns affinity values measured in

kcal/mol. For this reason the following sigmoid function is

applied on Smina affinities in order to obtain a score in range

[0,1]:

Smscore =
1

1 + e1.465∗(af+6)
. (1)

For affinity values of af = −6 kcal/mol, a moderate score

of 0.5 is obtained, while a larger affinity value of af = −8
kcal/mol receives a higher score of 0.95. The parameters of

the sigmoid were determined after inspecting the distribution

of affinity scores returned by Smina on our training set. The

joined score is finally obtained through:
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ResNetV Sscore = Smscore ∗ CNNscore. (2)

Multiplication operates here as an intersection operator, pro-

moting solutions with high scores in both single metrics.

A single score for each ligand should be extracted in the

next step, by combining the scores of the various poses of this

ligand. According to previous works, three different scoring

tactics (single-pose, multi-pose by considering the best pose,

multi-pose by averaging the top poses) were examined and

evaluated in our experimental study in Section III. Finally,

in order to mitigate the possible structural variability of the

different conformations, an intersection operator, notably the

minimum operator, is employed to fuse the different con-

formation results. Specifically, the final score of a candidate

compound is the minimum of the scores from the two different

conformations, forcing both 3D structures of the ligand to

achieve high scores. It can also imply the existence of possible

physicochemical properties that guide the binding of the ligand

on the receptor. The ligand compounds are finally sorted

according to the obtained multi-conformation score and the

most prominent solutions, usually a top-k%, are selected for

further examination.

For efficiency reasons, before proceeding to the in vitro
examination of the activity of the top hit compounds, a further

sampling is usually required. In order to obtain a representative

sample, a suitable criterion, like a shape-based one, should be

applied. Two molecules with a similar shape are likely to fit in

the same binding pocket and thereby exhibit similar biological

activity. Therefore, it is important to ensure structural diversity

by selecting compounds that are different from one another,

and this can be achieved by grouping the hit compounds

according to their shape using clustering. Hit compounds that

belong to different clusters can finally be selected for in vitro
experiments.

A. CNN rescoring

We follow here the approach described in [11], and adopted

also in [13], where a 3D CNN network is employed in

order to automatically extract relevant features from a protein-

ligand complex and assign to it a score of binding probability.

Specifically, a complex of a protein receptor with a ligand

docked pose is locally discretized into a, centered on the

ligand, 3D grid of 24 × 24 × 24 voxels with resolution 1 Å

and is, then, imported as input to the 3D CNN. Each voxel

holds in 28 channels (see Table I) the information for the

existence or not of the various heavy atom types, each of

them corresponding to either a protein (12) or ligand (16)

smina atom type [16]. Compared to the 34 channels initially

employed in both [11] and [13], we excluded those that

appear more rare in the training dataset. As a representation

scheme, we chose a simple boolean one which, despite its

simplicity, exhibited in [11] comparable results to a most

sophisticated Gaussian representation. In the boolean scheme,

a voxel’s channel is assigned a value of one, if it overlaps

with the atom sphere of an atom of the corresponding type.

TABLE I
SMINA ATOM TYPES EMPLOYED IN RESNETVS

Type Receptor Ligand
AliphaticCarbonXSHydrophobe � �

AliphaticCarbonXSNonHydrophobe � �
AromaticCarbonXSHydrophobe � �

AromaticCarbonXSNonHydrophobe � �
Nitrogen � �

NitrogenXSDonor � �
NitrogenXSDonorAcceptor � �

NitrogenXSAcceptor � �
OxygenXSDonorAcceptor � �

OxygenXSAcceptor � �
Sulfur � �

Phosphorus �
Fluorine �
Chlorine �
Bromine �
Iodine �

GenericMetal �

The only information embedded in this representation is the

spatial arrangement of the atoms, their atom types and their

distinction between protein or ligand.

The main difference of ResNetVS rescoring to the pre-

vious related CNN-based scoring schemes is the network

architecture employed. Contrary to the 3-layered CNN used

in [11] and to the DenseNet used in [13], we employ here a

deeper ResNet architecture [22] of 18 layers with the exact

structure being shown in the original work. Belonging to the

residual networks family, the main attribute of ResNet is the

existence of skip connections between adjacent layers, so as to

avoid the vanishing gradient problem. Although it has shown

considerable results in many computer vision problems, its

application in structural bioinformatics is still limited [23].

ResNetVS was implemented on Python using the Tensor-

flow framework. Regarding the training process, L2 regular-

ization was applied on the weights of all convolutional layers

(λ = 10−4), while batch normalization was applied with its

default parameters. All models were trained for 25 epochs,

with batch size of 32 samples, and were optimized by the

Adam optimizer [24] with a learning rate of 10−3.

B. Grouping of hit compounds

In the final step, the hit compounds are grouped into clusters

based on shape similarity, i.e. compounds of similar shape

should belong to the same cluster. This is achieved by utilizing

an intuitive molecular shape descriptor that was introduced

in [25]. The process for extracting this hand-crafted feature is

as follows: taking as input the 3D structure of the molecule,

the Solvent Excluded Surface (SES) is computed. Then, a

set of keypoints is uniformly sampled on the surface and an

Augmented Local Descriptor (ALD) is computed for each

local surface patch centered at the corresponding keypoint.

ALD describes the local shape of the patch as a 4-dimensional

joint histogram of different geometric features. Finally, for

each compound, a global descriptor of n = 1000 values is

generated from the partial ALDs using Bag-of-Words.
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In order to measure the similarity between two molecules,

the chi-square metric for histogram comparison is used.

Specifically, if x = {x1, x2, ..., xn} and y = {y1, y2, ..., yn}
are two descriptor vectors, the chi-square distance between

them is computed from:

dxy =
1

2

n∑

i=1

(xi − yi)
2

xi + yi
. (3)

These distances are then embedded in a hierarchical clustering

process, which finally forms the clusters of the hit compounds.

The number of clusters is controlled by a user-specified simi-

larity threshold that defines the maximum intracluster distance.

III. EXPERIMENTS ON BENCHMARK

In order to validate the performance of ResNetVS, we

conducted experiments on the benchmark dataset of DUD-E

(Database of Useful Decoys: Enhanced) [26]. DUD-E contains

102 protein targets with a group of active molecules for each

target (224 ligands on average) and decoys (50 decoys per

active ligand), leading to more than 20.000 active and one

million decoy molecules, respectively. The utilized docked

poses are those provided by [11]. Following [11] and [13],

the proposed scoring scheme was evaluated by 3-fold cross

validation. Specifically, the set of 102 proteins was separated

into three folds, based on a sequence-based clustering, which

ensured that similar proteins with high sequence identity are

retained in the same fold. This procedure prevents training

and testing on overly similar targets and resembles more to

the actual screening process of a novel target.
Due to the heavy imbalance between the active and decoy

molecules in DUD-E, we used undersampling on the decoys

set during training, by forcing the same number of positive

and negative examples at each epoch. Especially, at each

epoch a different set of negative examples is randomly chosen

from the decoys set. Data augmentation was also employed

by randomly rotating and translating (up to 3 Å) the input

structures.
For the evaluation of the method, two well-known metrics

were employed, the area under the curve (AUC) of the receiver

operating characteristic (ROC) curve, which plots the true

positive rate (TPR) against the false positive rate (FPR) and

the AUC of the precision recall curve (PRC). According to

[27], while the two metrics are correlated, AUC PRC is more

informative in cases of high class imbalance, as is the case of

virtual screening. Both previous metrics are global metrics,

measuring the overall performance of the method on the

whole set of ligand compounds. However, in practice, only a

percentage of the top scoring compounds are kept for further

experimental evaluation. For this reason, the enrichment factor

(EF) of the ROC curve may be a most relevant metric for

VS, since it evaluates the performance on the top ranked

compounds by measuring the ratio of TPR to FPR at low

FPR values (0.5%, 1%, 2%, 5%).
After aggregating the partial results of the three folds,

Table II holds the overall performance of ResNetVS on DUD-

E using different scoring schemes. i.e. the single-pose, the

TABLE II
PERFORMANCE OF RESNETVS ON DUD-E USING DIFFERENT SCORING

SCHEMES

Single-pose Multi-pose
(Best pose)

Multi-pose
(Avg of top 9)

CNN Joined CNN Joined CNN Joined
AUC ROC 0.873 0.875 0.896 0.897 0.908 0.908
AUC PRC 0.33 0.35 0.375 0.385 0.438 0.447
EF (0.5%) 58.63 62.81 66.19 68.36 79.39 81.78
EF (1%) 36.4 38.39 41.36 42.36 47.27 48.42
EF (2%) 22.14 22.97 25 25.75 27.79 28.32
EF (5%) 11.28 11.44 12.53 12.71 13.37 13.48

TABLE III
COMPARISON TO OTHER CNN-BASED SCORING METHODS

Smina Ragoza et
al. [11]

Imrie et al. [13] ResNetVS
DenseU DenseFS

AUC ROC 0.725 0.862 0.904 0.917 0.908
AUC PRC 0.1 0.263 0.368 0.443 0.447
EF (0.5%) 16.09 44.52 64.89 79.32 81.78
EF (1%) 11.37 30.65 40.92 47.99 48.42
EF (2%) 8.02 19.72 25.08 28.41 28.32
EF (5%) 5.25 10.6 12.7 13.74 13.48

multi-pose where only the best pose is considered and the

multi-pose where an average of the top poses is evaluated. In

the last case, and according to [13], we computed the average

on the top 9 poses. In compliance to previous findings in

[13], averaging the top ranked poses outperforms the other

two scoring schemes in all metrics. Regarding now the incor-

poration of Smina output into the joined scoring, we notice

a performance gain in early enrichment, which is increased

as the EF thresholds are getting smaller. As previously stated,

this is an important aspect in real-case VS scenarios, where

we are particularly interested in the performance on the top

compounds. Although in some metrics the additive contribu-

tion of the joined scoring is negligible, if we take into account

that it can computed without additive cost, its inclusion in the

final scoring scheme could be considered as a good practice.

Our highest scoring alternative is compared to Smina dock-

ing and to three competing 3D-CNN rescoring methods in

Table III. DenseFS is the finally proposed scheme by [13],

while DenseU corresponds to an intermediate model, without

the employment of protein family-specific models. Our first

remark is that all 3D-CNN methods outperform considerably

the single Smina output, confirming the need for pose rescor-

ing. Among the CNN rescoring methods, ResNetVS and Imrie

et al., that employ deeper network architectures and apply the

multi-pose average scoring, achieve higher results than [11].

Comparing now our proposed scoring to DenseU, we can see

that ResNetVS performs better by all metrics, especially in

early enrichment factors and in PRC. Although the comparison

to DenseFS is not totally fair, since it is enhanced with

family-specific models, we can see that ResNetVS achieves

comparable and in some cases higher accuracies (as in 0.5%

EF).
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IV. APPLICATION ON COVID-19

A. Problem description

In December 2019, coronavirus disease 2019 (COVID-19)

emerged in Wuhan, Hubei province of China. This disease is

caused by a new, highly pathogenic severe-acute-respiratory-

syndrome coronavirus 2 (SARS-CoV-2) [28]. Similar to other

coronaviruses, SARS-CoV-2 affects the lower respiratory tract,

gastrointestinal system, heart, central nervous system and kid-

ney [29], [30]. On the 30th of January 2020, the World Health

Organization (WHO) declared the SARS-CoV-2 epidemic a

public health emergency of international concern. More than

6.4 million confirmed patients were reported globally until

the 2nd of June 2020, resulting in more than 380.000 related

deaths.

The entry of SARS-CoV-2 into human cells is mediated

by its transmembrane homotrimeric spike (S) glycoprotein

(each monomer comprises an S1 and an S2 subunit) [31].

The virus interacts with the angiotensin-converting enzyme II

(ACE2) receptor of the host cells through the receptor-binding

domain (RBD) of its S1 subunit. Then, the S2 subunit fuses

the host and viral membranes, enabling the entry of SARS-

CoV-2 genome into human cells [32]. Inside the cell, the viral

genome is replicated and its coding proteins are produced,

the virion is assembled and the newly synthesized SARS-

CoV-2 particles are released, surrounded by the membrane of

the host cells [33]. Any of the above discrete steps can be

pharmacologically targeted to prevent infection or spread of

the virus.

Several in-silico-based approaches have been previously

utilized to identify potential drugs which would specifically

prevent from SARS-CoV-2 infection. Some research groups

target viral enzymes which are crucial for the life cycle of the

virus, such as its main protease [34], [35], some others target

the N-protein that binds to the viral RNA genome [36], while

others target the spike S1 subunit-ACE2 protein interaction,

either by using models [37], [38] or crystal structures [39] of

each protein or simulations of the interaction [40].

In this work, we focus on the interaction between the viral

spike protein S1 subunit and the human ACE2 enzyme and ap-

ply the proposed VS pipeline to computationally identify novel

inhibitors of this interaction. All previous relative studies have

performed virtual screening using drug-repurposing libraries to

identify clinically-approved molecules that would block this

interaction. Although drug repurposing is of first concern, due

to the avoidance of the time consuming clinical trial processes,

its efficiency is doubtful. These drugs have been designed on

specific substrates (targets) different than the one considered

here, hence finding a drug that could specifically target spike-

ACE2 interaction is unlikely. Indeed, no effective inhibitors for

the entry of SARS-CoV-2 into host cells have been reported to

date [41]. In our approach, we target the specified interaction

with a broader set of small molecule libraries provided from

ChemBridge Corporation [42].

Fig. 2. Crystal structure of the complex between the S1 subunit of SARS-
CoV-2 spike protein (red) and ACE2 human enzyme (blue).

B. Screening and preliminary results

The crystal structure of spike protein S1 subunit bound

to the extracellular domain of ACE2 receptor (PDB ID:

6M0J) [43] was solved by X-ray crystallography at a 2.45 Å

resolution and is displayed here in Fig. 2. From this complex,

we isolated the coronavirus’s spike protein part which have

been the target in our screening process. The protein structure

was accordingly protonated and charged with OpenBabel

before entering the docking procedure.

Commercially available libraries provided from Chem-

Bridge Corporation [42] of more than 1 million drug-like

molecules have been filtered accordingly based on their phar-

macokinetic (PK) properties to identify hit compounds able to

disrupt this interaction. Firstly, the libraries were filtered with

the help of OpenBabel [15] to clean all salt forms included

within in order to have a clear calculation of compounds

PK properties to the later stages. Following the cleaning of

our drug-like subset we utilized FAF-drugs4 [44] filtering

to eliminate pan-assay interfering compounds and unwanted

metabolite moieties and, afterwards, we applied the Eli Lilly

MedChem set of rules [45] along with PPI profiling [46]. The

remaining compound in our datasets after those filters were

applied is a median of 9.5% in total numbers.

The described screening process is in progress, since a

30% of the initial library has been processed so far, and

has resulted after filtering to 26000 candidate compounds.

The herein proposed pipeline was then employed to screen

the filtered compounds on the targeted S-protein. Docking

was constrained on the interaction site of the S-protein with

the ACE2, while 50 docked poses were generated for each

conformation of the ligands.

Regarding the ResNetVS rescoring, the applied CNN model

was trained on the whole DUD-E dataset, following the same
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Fig. 3. Histogram of the final ligand scores obtained by ResNetVS. The red
line corresponds to the selection threshold of the top-2% compounds.

principles as described in Section II-A. The histogram of

the obtained scores is shown in Fig. 3. As we can see, our

proposed scoring scheme assigned to the vast majority of the

ligands very low (near zero) scores, and only few of them were

distinguished. Ligands with score higher than 0.744 (red line)

were selected by the top-2% rule for further examination.

These 520 selected compounds were then grouped into 122

clusters according to their shape. The scores of the top-20

ranked compounds, along with their group assignment, are

indicatively presented in Table IV. Due to the incomplete

experimentation, we avoided to include the compound names

in our results. The separation of these compounds into clusters

is illustrated when inspecting the normalized shape distances

between them, which are shown in Fig. 4. Compound pairs

with smaller distances between them (blue color), and there-

fore most similarly-shaped, were assigned to the same group.

After completing the screening process on the entire com-

pound library, the created groups will be subject to a sec-

ondary filtering where possible interaction patterns between

the ligands and the ACE2 receptor will be investigated through

SMART search. As a last step, the final hit compounds will

be further validated in vitro. Specifically, they will be tested

whether they block the interaction between spike S1 subunit

and ACE2 receptor in a high-throughput cell-based assay, as

previously described in [47].

V. CONCLUSION

We have presented an end-to-end pipeline for performing

virtual screening on large ligand databases. The proposed

VS pipeline combines multiple ligand conformations with

ResNetVS, an improved CNN-based scoring function, which

incorporates the docking output score in its computation. The

fusion of multiple ligand conformations provide robustness

in cases of inaccurate ligand 3D structures, while the con-

sideration of the docking score into the ResNetVS alleviates

possible failures of the CNN scoring. After experimentation

TABLE IV
FINAL SCORES OF THE SO FAR TOP-20 RANKED COMPOUNDS AND THEIR

ASSIGNMENT TO GROUPS

Rank Score Group
1 0.972 1
2 0.951 2
3 0.931 3
4 0.924 4
5 0.918 5
6 0.916 6
7 0.915 6
8 0.905 4
9 0.901 7
10 0.900 8
11 0.899 9
12 0.897 5
13 0.896 10
14 0.895 6
15 0.895 11
16 0.894 9
17 0.893 3
18 0.893 9
19 0.891 12
20 0.889 11

Fig. 4. Heatmap of the normalized shape distances between the top-20 ranked
compounds

on the DUD-E database, ResNetVS achieved performance

comparable to the current state of the art and in the case of

early enrichment, even better. The pipeline is currently applied

on an effort to confront with the COVID-19 pandemic. Using

a combination of computational and experimental methods, we

expect to identify compounds which may inhibit the entry of

SARS-CoV-2 into human cells, by screening large compound

libraries against the interaction of the viral spike S-protein

with the human ACE2 enzyme.
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