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Abstract

We present an effective deep multiview learning framework to identify population structure using 

multimodal imaging data. Our approach is based on canonical correlation analysis (CCA). We 

propose to use deep generalized CCA (DGCCA) to learn a shared latent representation of non-

linearly mapped and maximally correlated components from multiple imaging modalities with 

reduced dimensionality. In our empirical study, this representation is shown to effectively capture 

more variance in original data than conventional generalized CCA (GCCA) which applies only 

linear transformation to the multi-view data. Furthermore, subsequent cluster analysis on the new 

feature set learned from DGCCA is able to identify a promising population structure in an 

Alzheimer’s disease (AD) cohort. Genetic association analyses of the clustering results 

demonstrate that the shared representation learned from DGCCA yields a population structure 

with a stronger genetic basis than several competing feature learning methods.
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I. INTRODUCTION

Cluster analysis is a popular machine learning approach used in identifying population 

structure, and is often applied on brain imaging and genetic data. Clusters can help identify 

groups of individuals with similar imaging or genetic characteristics [1], and sometimes 

coupled with feature learning (feature reduction) methods given a large number of imaging 
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features [2]. Multimodal imaging, compared to single imaging modality, are more likely to 

capture partial but complementary information of population structures from different 

perspectives [3]. However, many studies typically employed traditional clustering methods 

on the original features directly. These methods have limited capabilities in automatically 

learning effective features for the clustering task, in comparison with modern deep learning 

methods.

To bridge this gap, we propose an effective deep multiview learning framework, and 

demonstrate its power via applying it to the multimodal imaging data in an Alzheimer’s 

disease (AD) cohort for identifying imaging-driven population structure. Our framework is 

based on an extended version of canonical correlation analysis (CCA), named as deep 
generalized CCA (DGCCA) [4]. CCA is a popular technique to identify linear relationships 

between two multivariate datasets [5]. Traditional CCA models have two limitations: 1) it 

cannot be applied to data with more than two modalities, and 2) it cannot capture nonlinear 

relationships between data modalities.

To overcome the first limitation, CCA can be extended to generalized CCA (GCCA) [6], 

designed to learn a representation that is able to explain many views of the data, and is a 

promising strategy to capture meaningful variation shared by multiple imaging modalities. 

To overcome the second limitation, GCCA can be extended to DGCCA [4], which non-

linearly maps the feature space of each imaging modality to a common latent space. To 

demonstrate the power of DGCCA for effective feature representation learning, we perform 

an empirical study using the imaging and genetics data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) [7]. DGCCA and several competing feature learning 

methods, coupled with cluster analysis, are applied to the ADNI multimodal imaging data to 

identify population structure. Genetic association analyses are subsequently performed on 

the learned feature representations to evaluate genetic basis for the learned imaging-driven 

structures. The shared representation learned from DGCCA yields a population structure 

with a stronger genetic basis than studied competing methods.

II. MATERIALS

To demonstrate the power of DGCCA in learning effective feature representation from 

multimodal imaging data for detecting population structure, we apply it to the imaging and 

genetic data in an AD study. This study was approved by institutional review boards of all 

participating institutions and written informed consent was obtained from all participants or 

authorized representatives.

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) [7]. The ADNI was launched 

in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, 

MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomograph (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early AD. For up-to-date information, see www.adni-

info.org.
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A. Study Participants

In this work, we analyzed 805 non-Hispanic Caucasian subjects with complete baseline 

measurements of three studied imaging modalities, genotyping data and visit-matched 

diagnostic information. Specifically, there are 274 controls (i.e., 196 healthy controls (HC) 

and 78 normal controls with significant memory concern (SMC)) and 531 cases (i.e., 235 

patients with early mild cognitive impairment (EMCI), 162 patients with late mild cognitive 

impairment (LMCI), and 134 AD patients). Shown in Table I are their characteristics.

B. Imaging Data

We focus on analyzing three imaging modalities in ADNI: structural MRI [8] (sMRI, 

measuring brain morphometry, VBM), amyloid-PET [9] (measuring amyloid burden, AV45), 

and FDG-PET [10] (measuring glucose metabolism). The multi-modality imaging data were 

aligned to each participant’s same visit. The sMRI scans were processed with voxel-based 

morphometry (VBM) using the Statistical Parametric Mapping (SPM) software tool [11]. 

Generally, all scans were aligned to a T1-weighted template image, segmented into gray 

matter (GM), white matter (WM) and cerebrospinal fluid (CSF) maps, normalized to the 

standard Montreal Neurological Institute (MNI) space as 2×2×2 mm3 voxels, and were 

smoothed with an 8mm FWHM kernel. The FDG-PET and AV45-PET scans were also 

registered into the same MNI space by SPM. The MarsBaR ROI toolbox [12] was used to 

group voxels into 116 regions-of-interest (ROIs). ROI-level measures were calculated by 

averaging all the voxel-level measures within each ROI. As mentioned above, participants in 

this work included 805 non-Hispanic Caucasian subjects with complete baseline ROI-level 

measurements of three modalities and visit-matched diagnostic information; see Table I for 

their characteristics.

C. Genetic Data

The ADNI genotyping data, acquired on multiple Illumina platforms, have been quality 

controlled, imputed and combined using the same procedure as described in Yao et al. [13]. 

To avoid population stratification effect, our analysis was performed on only non-Hispanic 

Caucasian participants. There were a total of 805 non-Hispanic Caucasian participants 

(Table I) with all imaging, genetic and diagnostic data available. A list of 19 AD candidate 

SNPs (Table III) discovered by a large-scale meta-analytic genome-wide association study 

(GWAS) [14] was included in the genetic association analysis.

III. MULTIVIEW LEARNING MODELS

Multiview learning refers to the method that learns a single model from multimodal data. In 

this study, we adopt this approach by learning a latent representation from three brain 

imaging modalities, VBM, AV45 and FDG. Given limited data and rich feature space, 

multiview learning can reduce the dimensionality of the data, and learn a shared latent 

representation [15]. The learned latent representation is expected to capture valuable 

information fused from all the input views, and has great potential to catch the intrinsic 

population structure in the studied sample.
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A. Genalized CCA (GCCA)

The GCCA is an extended version of CCA to handle more than two views of data [6]. Given 

M views of data Xi ∈ RN×pi, where Xi is the i-th view of the data, N is the number of data 

points, and pi is the number of features in view i. The goal of GCCA is to learn a shared 

representation or embedding from all views by optimizing the objective function in Eq. 1.

minimize
Ui ∈ Rpi × k

i = 1
M , G ∈ RN × k

∑
i = 1

M
G − XiUi F

2 s . t . GTG = Ik (1)

where G denotes the embedding space, and contains the top k eigenvectors of 

∑i = 1
I Xi Xi

TXi
−1Xi

T  as its columns, which we use as the share latent features. Ui denotes 

projection matrix for the i-th view.

B. Deep GCCA (DGCCA)

The DGCCA applies a deep neural network to learn nonlinear projection from each view to 

a new representation, and these new representations are then analyzed together via a GCCA 

model. Fig. 1 shows a schematic design of the DGCCA model [4]. Specifically, DGCCA is 

defined as follows:

minimize
Ui ∈ Rpi × k

i = 1
M , G ∈ RN × k

∑
i = 1

M
G − OiUi F

2 s . t . GTG = Ik (2)

where Oi, denotes the output of the final layer in the network for the i-th imaging modality.

IV. EXPERIMENTAL SETUP

A. Experimental Design

We design six experiments to compare six different feature representations for identifying an 

image-driven population structure. These representations include the direct concatenation of 

all multimodal imaging features, two latent feature spaces extracted from GCCA, and three 

latent feature spaces extracted from DGCCA. Fig. 2 shows the overall flowchart of these 

experiments, which include two major components. The first component is to learn six 

different feature representations. The second component is to perform clustering on each 

feature representation to identify a population structure, and then compare the genetic bases 

of six resulting population structures together with the original case control structure.

Table II summarizes the feature representations learned from six experiments, which were 

used for cluster analysis. Details for these feature representations extracted from six 

experiments are outlined below:

• In Experiment 1 (Exp 1), we concatenate features from all three imaging 

modalities in the order of VBM, AV45 and FDG. Each modality contains 116 

ROI-based features. Thus the total number of features is 348.
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• In Experiment 2 (Exp 2), we extract the learned projection matrices for each 

imaging modality from GCCA Ui, and apply them on the original feature set Xi 

to get XiUi, to obtain new feature set for each modality. After that, we 

concatenate them together across three imaging modalities. For each modality, 

we keep the first 30 components (see Fig. 3 for the variance captured by these 

components in our experiments). Thus, the resulting representation contains 90 

features.

• In Experiment 3 (Exp 3), we use the shared feature representation G learned 

directly from GCCA. Similarly to Exp 2, we keep first 30 components to form 

the new representation.

• In Experiment 4 (Exp 4), we extract the learned projection matrices for each 

imaging modality from DGCCA Ui, and apply them on the respective output 

representation from neural network Oi to get OiUi. After that, we concatenate 

them together across three imaging modalities. For each modality, we keep the 

first 20 components (see Fig. 3 for the variance captured by these components). 

Thus the resulting representation contains 60 features.

• Experiment 5 (Exp 5) is similar to Exp 4, with the exception that we select top 

latent features based on correlation matrices in Fig. 4. This experiment was 

designed based on the observation that the first few DGCCA components capture 

not only most of the data variance, (Fig. 3) but also most of the correlations 

between modalities (Fig. 4). Specifically, in our experiments, we chose the first 

two, eight, eight components for VBM, FDG and AV45 respectively. Thus, this 

representation consists of 18 features in total.

• In Experiment 6 (Exp 6), we use the shared feature representation G learned 

directly from DGCCA. Similarly to Exp 4, we keep first 20 components to form 

the new representation.

Note the difference between Exp 2 vs. Exp 3, and Exp 4 vs. Exp 6, of using concatenation of 

XiUi and G. The objective of GCCA and DGCCA is to directly learn a shared latent space G 
along with projection matrices Ui. Using XiUi allows us to understand the how each 

modality contributes to the final shared latent space. Concatenation of XiUi serves as a 

comparison with Exp 1 to see if applying GCCA and DGCCA projection matrices on each 

single modality imaging data can convey as much information as using the full original 

features space.

B. Clustering and Genetic Association

Clustering along with genetic association can help identify population structures with novel 

genetic basis. For each experiment, we applied hierarchical agglomerative clustering [16] to 

all the subjects using the corresponding feature representation, where the Ward’s method 

was used to minimize the variance when merging clusters. We chose a cluster number of 2, 

similar to case/control group. We evaluated the clusters by plotting confusion matrices to 

check for distribution of cases and controls for each cluster. Genetic association is performed 

by conducting Pearson’s Chi-squared test on genetic data versus clustered data, and the 

assigned case and control. The goal is to identify genetic markers that are associated with 

Feng et al. Page 5

Proc IEEE Int Symp Bioinformatics Bioeng. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



case-control status or the cluster membership identified in each of Exps. 1-6. We used the 

Benjamini–Hochberg procedure to control the False Discovery Rate (FDR) at α = 0.05 [17].

C. Implementation of GCCA and DGCCA

For both GCCA and DGCCA, we applied stratified split on the imaging data 80/20 into 

training and test set. For GCCA, we used implementation of weighted GCCA in Benton et 

al. [18], which included added regularization for each view for stabilization. Our DGCCA 

extends this GCCA implementation to apply non-linear transformations using neural 

networks. The network for each view is composed of 2 hidden linear layers of 64 nodes with 

ReLU activation, and trained with Adam optimizer with a learning rate of 0.0008 and weight 

decay of 0.01. The network outputs have the same dimensions as the inputs with 116 

features. Additional regularization was applied using dropout and early stopping. We tuned 

the model using training loss and evaluated resulting G and Ui by plotting correlation 

matrices between pairs of modalities.

V. RESULTS

A. Comparison of GCCA and DGCCA

Table II records the number of features in data extracted for each of the six experiments. 

Note that the number of latent features k here is different for DGCCA k = 20 and GCCA k = 

30, since we speculate that DGCCA would learn fewer maximally correlated components 

given the nonlinear transformations applied to the data. But we discovered that DGCCA 

learns maximally correlated components from input views in fewer components compared to 

GCCA and even 20 components became enough. Therefore, Exp 5 was added where a 

subset of latent features Udgccai′  learned from DGCCA was selected based on diagonal values 

in correlation matrices (see last three columns in Fig. 4).

We compared the performances of GCCA and DGCCA by plotting correlation matrices in 

the new latent feature space between pairs of imaging modalities (see Fig. 4). Since GCCA 

and DGCCA maximize correlation between more than two modalities by extracting the top 

k latent space features (eigenvectors), we evaluate GCCA and DGCCA results by looking at 

the diagonal values on the correlation matrices. We can see that DGCCA learns much fewer 

maximally correlated components compared to GCCA, and the chosen k = 20, so for Exp 5, 

we chose the first 2 components for VBM and the first 8 components for FDG and AV45. In 

addition, DGCCA results show a discrepancy of the maximally correlated components for 

AV45 and FDG pair compared to the other two pairs, which require future work to be done 

investigating these differences using CCA, Deep CCA methods [19].

Further comparison between GCCA and DGCCA is done by plotting variance explained by 

each feature in original feature space (p = 348), seen in Fig. 3. We can see that nonlinear 

transformation through neural network can capture more variance in the original data with 

fewer components.
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B. Clustering and Genetic Association Analysis

For each of the six experiments, the transformed data is clustered using agglomerative 

clustering, then confusion matrices are plotted again assigned case and control (HC/SMC vs. 

EMCI/LMCI/AD), see Fig. 5. We can see that in Exp 3 and Exp 6, using learned shared 

representation G from GCCA and DGCCA representation have low true negative rate but the 

highest true positive rate. Out of the six experiment, Exp 6 clustered data yield a significant 

result (p = 1.23e-14,OR = 4.653,95%CI : 3.008, 7.195) in addition to Exp 1 which uses the 

full feature set, indicating a relatively high level alignment between the data-driven clusters 

with case control groups.

From the genetic association analyses, p-value after FDR correction from the Pearson’s Chi-

squared test are recorded in Table III. Our analyses from original case control, Exp 1 and 

Exp 6 yielded statistically significant results. All three tests produced significant results for 

ApoE, the best known genetic risk factor for AD [20]. In addition, clustered results from 

Exp 6, using learned shared representation from DGCCA, yielded significant results for SNP 

rs4147929 from ABCA7 gene (χ2 = 11.777, FDR-corrected p < 0.05). There has been 

compelling evidence suggesting that ABCA7 is a risk gene for both early and late-onset AD 

[21]. In Exp 6, our DGCCA method learned the promising feature representation leading to 

the discovery of a new population structure with a novel genetic basis (i.e., an ABCA7 

SNP), which was not detected by the standard case-control status.

VI. CONCLUSION

We have proposed a multi-view representation learning framework using deep generalized 

CCA (DGCCA), and applied it to multi-modal brain imaging data (VBM, FDG, AV45) for 

identifying population structure. DGCCA is able to capture original data in much fewer 

maximally correlated components compared to generalized CCA (GCCA) by applying non-

linear transformation to each view. Furthermore, we have shown that the learned shared 

representation, coupled with cluster analysis, can be utilized to identify promising 

population structure with a stronger genetic basis. In the future, we plan to explore the use of 

our method to identify not only population structure, but also disease subtypes with novel 

imaging and genetic characteristics.
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Figure 1. 
DGCCA architecture. The DGCCA applies a deep neural network to learn non-linear 

projection from each view to a new representation, and these new representations are then 

analyzed together via a GCCA model.
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Figure 2. 
Flowchart of our experiments, which include two major components. The first component is 

to learn six different feature representations. The second component is to perform clustering 

on each feature representation to identify a population structure, and then compare the 

genetic bases of six resulting population structures together with the original case control 

structure. Experiment 1 (Exp 1), we focused on original data space (i.e., concatenation of 

VBM, AV45 and FDG) to explain the population structure. Then, in Experiments 2-6 (Exp 2 

- Exp 6), we used different latent spaces (i.e., XiUi and G for GCCA, and OiUi and G for 

DGCCA) learned from GCCA or DGCCA to better explain the population structure. XiUi 

(and OiUi), obtained by applying the learned projection matrices to the original data views, 

are compared with G, the shared latent feature representation from multiview learning 

methods.
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Figure 3. 
Variance explained against number of features. It is evident that non-linear transformation 

through neural network implemented in DGCCA can capture more variance in the original 

data with fewer components than the linear projection implemented in GCCA.
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Figure 4. 
Correlation matrices between pairs of imaging modalities are plotted for extracted GCCA 

and DGCCA components in the new latent feature spaces. The first row shows the training 

performances and the second row shows the testing performances. The first three columns 

show the GCCA results for three pairwise comparisons. The last three colummns show the 

DGCCA results for three pairwise comparisons. While the first 30 cannonical components 

identified by GCCA show the strong correlation between imaging modalities, DGCCA 

identifies much fewer components (e.g., 2 for VBM, around 8 for AV45 or FDG in the 

testing results) that are correlated between imaging modalities.
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Figure 5. 
Clusters discovered in each experiment vs. case control status.
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Table I

PARTICIPANT CHARACTERISTICS IN OUR EXPERIMENTS. THERE ARE TOTALLY 805 PARTICIPANTS, WHERE HC AND SMC 

PARTICIPANTS ARE GROUPED AS CONTROLS (N=274), AND EMCI, LMCI AND AD PARTICIPANTS ARE GROUPED AS CASES 

(N=531).

Diagnosis Control Case P

Number 274 531 -

Gender(M/F) 125/149 282/249 5.25E-02

Age(mean±sd) 74.84±6.35 72.99±8.05 9.81E-04

Education(mean±sd) 16.44±2.72 15.99±2.73 2.71E-02

P-values were computed using one-way T-test (except for gender using χ2 test). The bold text denoted p < 0.05.
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Table II

COMPARISON OF FEATURES USED IN CLUSTER ANALYSIS

Experiments Features used for Clustering # Features

Exp 1 [X1, X2, X3] 348

Exp 2 [X1Ugcca1, X2Ugcca2, X3Ugcca3] 90

Exp 3 Ggcca 30

Exp 4 [O1Udgcca1, O2Udgcca2, O3Udgcca3] 60

Exp 5 [O1Udgcca1′ , O2Udgcca2′ , O3Udgcca3′ ] 18

Exp 6 Gdgcca 20
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Table III

FDR-CORRECTED p-VALUE FROM CHI-SQUARED TEST IN GENETIC ASSOCIATION ANALYSIS. NO RESULTS FROM EXP 2 - EXP 5 

ARE SIGNIFICANT AND THUS NOT SHOWN HERE.

SNP Gene Case Control Exp 1 Exp 6

rs6656401 CR1 6.89e-01 1.11e-01 2.04e-01

rs6733839 BIN1 8.16e-01 6.62e-01 7.68e-01

rs35349669 INPP5D 9.53e-01 9.44e-01 8.68e-01

rs190982 MEF2C 9.53e-01 6.79e-01 9.89e-01

rs10948363 CD2AP 9.53e-01 8.99e-01 8.64e-01

rs2718058 NME8 9.53e-01 6.79e-01 8.68e-01

rs1476679 ZCWPW1 9.53e-01 6.71e-01 8.68e-01

rs11771145 EPHA1 9.53e-01 9.70e-01 4.97e-01

rs28834970 PTK2B 9.53e-01 6.62e-01 8.68e-01

rs9331896 CLU 9.53e-01 5.97e-01 3.29e-01

rs10838725 CELF1 8.16e-01 8.69e-01 9.89e-01

rs983392 MS4A6A 6.89e-01 5.97e-01 8.68e-01

rs10792832 PICALM 9.53e-01 5.97e-01 1.56e-01

rs17125944 FERMT2 8.16e-01 5.97e-01 2.78e-01

rs10498633 SLC24A4 9.52e-01 8.69e-01 9.89e-01

rs4147929 ABCA7 7.88e-01 2.18e-01 2.63e-02

rs429358 APOE 1.55e-08 3.17e-20 9.27e-20

rs3865444 CD33 9.53e-01 5.97e-01 8.68e-01

rs7274581 CASS4 9.53e-01 5.97e-01 9.89e-01
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