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Abstract—With the increase in the use of deep learning for
computer-aided diagnosis in medical images, the criticism of the
black-box nature of the deep learning models is also on the
rise. The medical community needs interpretable models for both
due diligence and advancing the understanding of disease and
treatment mechanisms. In histology, in particular, while there
is rich detail available at the cellular level and that of spatial
relationships between cells, it is difficult to modify convolutional
neural networks to point out the relevant visual features. We
adopt an approach to model histology tissue as a graph of nuclei
and develop a graph convolutional network framework based on
attention mechanism and node occlusion for disease diagnosis.
The proposed method highlights the relative contribution of
each cell nucleus in the whole-slide image. Our visualization
of such networks trained to distinguish between invasive and
in-situ breast cancers, and Gleason 3 and 4 prostate cancers
generate interpretable visual maps that correspond well with our
understanding of the structures that are important to experts for
their diagnosis.

Index Terms—Medical image processing, deep learning,
graph convolutional neural networks, visualization, classification,
computer-aided diagnosis.

I. INTRODUCTION

Just like with natural images, deep convolutional neural
networks (CNNs) have shown impressive results for the clas-
sification of various diseases in medical images [1[], [2], [3].
CNNs have also been used on histopathology images for tasks
such as screening pre-cancerous lesions and localizing tumors
[4], as well as predicting mutations [5]], survival [[6], and cancer
recurrence [7][8][9].

Though CNN based algorithms on histopathology images
have produced promising results, these algorithms lack inter-
pretability. Localization and visualization algorithms in CNNs
such as guided-backpropagation [10]], grad-CAM [L1], and
other CAM-related techniques fail to produce informative
visualization for histopathology images. For instance, these
techniques do not highlight cell nuclei responsible for the
diagnosis and relevant features of the tumor microenvironment
to further our understanding of disease and treatment mecha-
nisms. Also, often CNNs are not able to highlight the relevant
portions of the macro environment of the tumor due to large
sizes (giga-pixels) of the whole-slide images.

Morphological features of nuclei and the spatial relation-
ships between them decide the diagnosis of histopathology
slide. Representing histopathology images in the form of
graphs can help capture the interaction between nuclei and the
spatial arrangement of the relative positions with each other.
Nuclei are represented as nodes of a graph and the distance

between the nuclei can be described as edges between nodes
of a graph[12]. This representation of histopathology images
as graphs can be fed to graph convolutional networks (GCN5s)
to learn the characteristics of tissue at the macro-environment
level.

Taking the idea of using GCNs on graphs extracted from
histology images further in this work, we propose to use an
attention-based architecture and an occlusion-based visualiza-
tion technique to highlight informative nuclei and inter-nuclear
relationships. Our visualization results for classification of
disease states in breast and prostate cancer datasets agree sat-
isfactorily with the pathologists’ observations of the relevance
of various inter-nuclear relationships. Our technique paves the
way for visualization of previously unknown features relevant
for more important problems such as prognosis and prediction
of treatment response.

II. RELATED WORK

Before the emergence of deep learning, processing of
histopathology images as graphs was explored in various
ways. Weyn et al.[13] represents a histopathology image as
a minimum spanning tree for the diagnosis of mesotheliomas.
They use k-nearest neighbor for the classification of minimum
spanning trees. Similarly, Cigdem et al. [14] form a graph
from a histopathology image by considering the cluster of
nuclei as a node that is connected using binary edges between
nodes. A multi-layer perceptron is used for the detection of
inflammation in brain biopsy. Cell-graphs [15] uses nuclei
as nodes and heuristic features as node and vertex features
to perform classification on breast cancer and brain biopsy
datasets.

Though the above mentioned methods form graphs from
histopathology images, they use classical machine learning
approaches such as support vector machine (SVM),k-nearest
neighbors (kNN), etc. Recent developments in deep learning
for graphs have enabled the use of GCNs on graphs derived
from histopathology images. Kipf et al. [16] exhibits impres-
sive results for node classification on various graph datasets
such as Citeseer, Cora, Pubmed and NELL. They used spectral
graph convolution to operate on homogeneous graphs. Other
lines of work in GCNs operate in the spectral domain, which
enables these algorithms to analyze heterogeneous graphs
as well. Such et al. [17] introduced a graph convolutional
algorithm in spatial domain. This method achieves excellent
performance on various graph datasets. CGC-Net[18] uses a
variant of GraphSage[19] for identification of grade of prostate
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Fig. 1. Proposed graph convolutional neural network with an attention layer.

cancer slide represented as a graph. Recently, GCNs have
been applied to graphs of nuclei in histopathology images with
classification accuracy that is at par with CNNs [12].

A large portion of the medical community is skeptical
about deep learning deployment in histopathology due to
the lack of transparency in its working. Some attempts have
been made to make deep learning more explainable. For in-
stance, attention-based multiple instance learning [20] frames
classification of histopathology images as weakly supervised
problem and assigns weights to patches of a large image.
This method produces an attention map for histopathology
images to highlight patches important for the classification
of the overall slide, but it cannot be scaled to giga-pixel
images because of its substantial computation requirements.
Visualization in the form of clustering and heatmaps was
presented in [S]], but insightful interpretations beyond the
highlighting of the tumor regions cannot be derived through
these visualizations. Not only does interpretable visualization
in general for histopathology images remains an open problem,
to our knowledge, visualization for histopathology images
through graph representation has also not been explored yet.

III. DATASETS AND METHODOLOGY

In this section, we describe the datasets and methodology
used.

A. Datasets

In order to test the ability of the proposed method to high-
light interpretable features automatically, we used two datasets
for which we knew the features that were expected to be
seen by the pathologists. The first dataset is from ICIAR2018
Grand Challenge on Breast Cancer Histology images (BACH)
[21] and it comprises of 400 histopathology images of breast
cancer. Each image of this dataset is of the size of 2048 x
1536 pixels. The original BACH dataset contains four classes,
viz. normal, benign, in-situ and invasive. We trained a GCN to
perform the binary classification task between invasive and in-
situ classes because these two differ in the spatial arrangement

of nuclei even though the nuclei themselves share similar
morphologies. We used PyTorch package for our simulations.

Gleason grade classification and visualization tasks were
also performed on a prostate cancer dataset [22]. This dataset
consists of a total of 1506 images for various prostate cancer
tumor grades. Experiments were carried out for binary clas-
sification between Gleason grade 343 (primary+secondary)
versus Gleason grade 4+4 or 4+35.

B. Graph construction from Hematoxylin and eosin stain
(H&E) stained images

We have used a UNet [23]] based model for detecting the
nuclei. Edge features are based on the inter-nucleus distance.
We measure the distance between two nuclei as

dist(i,j) = \/(xi —x5)% 4 (yi — y5)?

, where (x;,y;) are the co-ordinates of nucleus n;. We form
an edge between two nodes i and j, A; ; if their inter-nuclei
distance is less than 100 pixels and assign the following weight
to the resultant edge in the adjacency matrix (A):

_ dist(i, j)
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C. Robust spatial filtering (RSF)

Our GCN was adapted from robust spatial filtering (RSF)
[17]. For a graph G(V, E), V is the set of vertices and E is the
set of edges and N is the number of nodes. Each vertex and
edge can have multiple features.The numbers of features for
a vertex and an edge are F' and L respectively. The above
arrangement allows the set V' and E to be represented as
tensors such as V € RY*F and E € RV*XNXL respectively.
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Fig. 2. Graph formation: We start with a histopathology image, detect all nuclei using a U-Net, and construct a graph by linking pairs of nuclei closer than

a distance threshold.

In RSF, the convolution operation on graphs is given by the
following equation:

F
‘/conv = Z H7V;%n + b7
i=1
3 @)
where, H' = hé + Z h;Aj
j=1

where, hﬂ and b are learnable parameters and A; represents the
jth edge feature of adjacency matrix. Multiple such filters are
used to learn F' vertex features. In RSF, the graph adjacency
matrix is not transformed into the spectral domain. Hence the
computationally heavy operation of inversion of the Laplacian
matrix is avoided.

For pooling operation, Ve/mb € is derived from the
input graph with V;,, € RY¥*F and A € RN*NXL  This
operation is similar to convolution operation given in Equation
Further, V,,; € RN *F and A,,; € RN *XN'XF with N’ <
N is obtained by,

RNXN’

Vemps = Softmazx(V)
Vout = Ve Vin (3)
Aout = VerpAinVemy

D. RSF with edge convolutions (RSF+Edge)

The convolutional layer in RSF convolves vertex features
of neighbor vertices to learn enhanced vertex features. This
operation does not exploit the edge features directly. Gadiya
et al. [24] proposed a method to learn enhanced vertex as well
as edge features. Edge convolutional is performed as per the
following equation:

Aout = ¢(WX> (4)

where W is tensor of learnable parameters and X is obtained
by concatenating edge and vertex features of a node and ¢ is
a monotonic nonlinear activation function.

E. Robust Spatial Filtering with Attention (RSF+Attention)

We conjectured that an attention mechanism could help
rank the graph vertices in their relative order of importance.

Attention mechanism is used in neural networks extensively
for natural language processing and to a lesser extent for
computer vision tasks [25], [20]. In our work, the attention
layer was included before the first pooling operation at the
input to highlight important nuclei directly, as shown in Figure
1.

E. Visualization

For the proposed model (RSF+Attention), we used the at-
tention scores for visualization of the importance of individual
nuclei. For the models that lacked an attention mechanism,
given a trained model M and a graph G, we rank all the nodes
based on the drop in classification probability in a manner
similar to [26]. To get a more discernible drop in accuracy, for
every node all the 1-hop neighbors along with their edges were
also occluded. Occlusion of a node n; creates a new graph
G, . Classification probability is computed for the occluded
graph. The relative drop in probability for the nodes n; gives
a measure score; for the importance of each node. We also
tested 2-hop and 3-hop occlusion but the results were similar
to those of 1-hop. Formally, score; for node n; can be given
as,

score; = p(M(QG)) — p(M(Gy,)) (3)

1V. EXPERIMENTS AND RESULTS

In this section, we show graphs formed from histology
images, classification accuracy of using various GCN archi-
tectures, and visualization of highlighted nuclei.

A. Graphs from H&E stained histopathology images

Each image produces a graph with a different number of
nodes. For BACH and prostate cancer Gleason grade datasets,
the average number of nodes in a graph was 1546 and 613,
respectively. Figure 2] shows an example of transforming H&E
stained histopathology image to a graph.

B. Classification of breast and prostate cancers

We trained the three models described in the previous sec-
tion, viz. robust spatial filtering (RSF), robust spatial filtering
with edge convolution (RSF+Edge), and robust spatial filtering
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Fig. 3. Comparison of visualization of RSF+edge and the proposed RSF+attention: Using RSF+attention, while nuclei on gland boundary are relatively more
highlighted in the in-situ breast cancer (first row), all cancerous nuclei are highlighted in invasive breast cancer (first row). Similarly, the gland shapes are
prominently highlighted in Gleason 3 prostate cancer (third row) as opposed to all cancer cells being highlighted in Gleason 4 prostate cancer (bottom row).
The scale on the right shows color scale for the relative importance of nuclei.

Vertel:SCF;)nV i \l,z ftE;CEngel R\S,eFrtzxAéginfn with attention (RSF+Attention). All models were trained for
Vertex Conv 2 | Vertex Conv 2 | Vertex Conv 2 + Attn approximately 50 epochs with a learning rate of 0.01 using
Pooling 1 Pooling 1 Pooling 1 the Adam optimizer. The architectures of the three models are
Vertex Conv 3 \i‘iiiccosgv 13 Vertex Conv 3 given in table [[} Table [[I] §h0ws that classification accuracy for
Edge Conv 2 the three models was quite comparable to each other. All the
Pooling 2 Pooling 2 Pooling 2 models contained nearly 300,000 parameters.
Edge Conv 3
IF:S é gg i é gg é C. Visualization
k-3 FCT;\%LE I FC-3 We now present the visualization produced by occlusion and
THE ARCHITECTURE OF TECHNIQUES IMPLEMENTED attention mechanisms. We performed occlusion experiments
on predictions of RSF and RSF+Edge models on the breast
Model BACH | Gleason and prostate cancer datasets. Visualization produced by these
RSF Based 94% 97% models were nearly the same, so we have omitted the results
RSF + Edge 92% 97% from the former due to space constraints. The images in the
RSE+ Attem'QFABLEg (ﬂ% o7% first row correspond to in-situ subtype in breast cancer from
ACCURACY RESULTS FOR DIFFERENT TECHNIQUES BACH dataset. We can see that nuclei on the outer layer of

the gland are highlighted by the occlusion experiments. Also,



in the second row, which corresponds to the invasive class
in BACH dataset, nearly all the nuclei are highlighted. Outer
linings are crucial for in-situ classification and where as for
invasive cancer is spread across the entire region. These are
the characteristics of in-situ and invasive histologies that are
correctly captured by the occlusion and attention experiments.
In the last two rows, visualization results for the prostate
cancer Gleason grade dataset are shown. In these images,
nuclei of the glands that lose their structure are highlighted,
as we expected them to be. The images in the last column of
Figure [3] are visualization results from RSF+Attention model.
These results were verified by expert pathologists and visibly
better at highlighting the above mentioned features.

V. CONCLUSION

We occluded nuclei clusters and exploited an attention
layer in a graph convolutional neural network to highlight
nuclei in histopathology slides and visualized the results on
a breast cancer and a prostate cancer datasets. The proposed
methods provide a notably more interpretable map depicting
the contribution of each nucleus and its neighborhood in the
final diagnosis. The presented results provide a way to explain
the new patterns the deep learning models found on the tissue
images. The proposed techniques not only open a path for the
verification of the existing practices in pathology but suggest
a way to generate new knowledge on where to focus to find
meaningful differences between tissue classes, for example,
those that may have different disease or treatment outcome.
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