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Abstract

A theory of virus infection in humans by using
the Weiss’s approach is presented. For this end it
was associated physical observables such as the dis-
tance and wind velocity. The model assumes random
quantities from the fact that the confluence of healthy
and infected people has not any known law. In this
manner we adjudicate various probabilities that might
to encompass a realistic scenario. From the resulting
theoretical model, various curves of probability and
infections have demonstrated that still under a scheme
of care outdoor, the wind velocity can be a important
factor of infections in open areas. In this manner, a
single infected can transmit the strain in a radius of 5
for a wind velocity of 7m/s.

1. Introduction

The rapid spread of the so-called Covid-19 [1] has

triggered the imminent employment of a plethora of

mathematical machineries that target to understand the

properties of this accelerated spread in people [2].

From the point of view of epidemiology the why one

certain family of virus acquires the capability to infect

people is because its vectorial properties that usually

consists in the physical areas by which the virus can

survive or adapted to climatological conditions [3].

Thus, virus might be potentially lethal if these mi-

crobiological aggregations can engage physical areas

for their fast transportability due to wind. Among a

plethora of ways of transmission, virus can be passed

from one people to another through airborne or public

air such breadth or any action that would led to people

to expire millimeter drops can easily stay in air for

various hours [4]. It is one of several reasons why

is highly recommended to avoid public zones where

there is a substantial probability that one or various

infected people can transmit the virus through air. In

this manner one can find that public transportation

might be also a place where infections would acquire

their maximum values. Other places where accumula-

tion of people is perceived as a potential scenario of

multiple transmission are banned along the period of

quarantine. Such examples are seen nowadays as part

of the decisions to avoid a fast jump on the number

of infections per unit of time. In this manner curfew

appears as an confident action to guarantee to stop the

spread. While people are avoiding physical contact,

virus might be going through solid and liquids that can

reach to contact entries inside the human body. Clearly,

the nature of spread although not deterministic, it

might be engage in part to stochastic factors in part,

so that one can talk about probabilities of transmission

depending entirely on physical factors. Actually all

these issues emerge as relevant views in pandemic

epoch in the sense that a deterministic control of spread

might to restore human activities once the outbreak has

passed their critic values against the human groups.

Clearly from the mathematical angle one can attack

the successive contagious problem through formulation

either based on probabilities of direct measurements

that employ so one extent realistic approximations as

to data of number of infections and exposure places

[5]. From the view of mathematical methodologies of

public infections, one can find the formalism developed

by Wells and Riley that models the probability of

infections in close spaces [6] with a minimal airborne,

as the cases seen in public transport (bus, train and

airplanes) . Thus, in this theory the exposure time

appears as a crucial variable that might define the

action of contagious. It actually a function depending

on a negative (or decreasing) exponential.

In this paper it was addressed the issue of multiple

infections through the Weiss’s theory that states that

the probability of matching an empty space with a

random object would have to be proportional to the

logarithm of the number of spaces. Therefore, the

present analysis consider the following:(i) number of

infected people, (2) estimated number of infections,
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(3) distances, and (4) wind velocity. Clearly, this idea

fits well to the well-known epidemiological problem

of successive infections in public areas. Therefore one

can take advantage of the Weiss’s theory to develop

a formalism that targets to estimate probabilities of

infection based on two observables: (i) distance and

(ii) wind velocity. As dictated nowadays, the presence

of Covid-19 in public areas as well as the imminent

presence of bacteria in health center forces us to paid a

particular attention to derive a quantitative and accurate

expressions in order to establish a relation of distances

and wind direction by knowing the virus aerodynamics.

Thus, from the question: What is the probability to
be infected in certain distances for outdoor areas
given a finite number of infected ones?
The answer of this question is given in section-II where

we have developed a theory entirely based on the Weiss

formalism that consists in probabilities that depends

on logarithmic formulations. In this manner in third

section, the epidemiological application of the theory

of Weiss is done. Finally from the results, we derive

the conclusion of paper.

2. Theory Formulation

2.1. The Weiss’s Formulation

The original formulation of Weiss [7] establishes

that if Q objects are thrown into N cells with the

golden condition: each object is limited to fall to
only one cell. If this repeated M times, then when

both N and QM becomes a large number then the

probability for finding an unoccupied cell is governed

by

P (M) =
NLogN

QM
. (1)

Clearly, this can be formulated as written below:

P (M) = Log
[
(N)

N
QM

]
, (2)

exhibiting a form of type LogNN that is seen as

NLogN a potential expression to be perceived a Shan-

nons entropy [8]. Although the Weiss’s formulation

has not this purpose, one can extend the original

formulation to the side of complex systems by the

which the Weiss’s model would fit. In fact, although

one can identify from the point of view of physics

that there is actually several physical observables that

would be adjusted to Eq.(1), the link of this to the

entropy territory might to require of a robust support.

On the other hand, the formulation of Eq.(1) lacks

of a realistic association to the problem of public

infections in times of pandemic. In fact, for arbitrary

values of 1/(QM) the term NLogN turns out to be

larger, fact that diverges seriously with the central point

of the present study. In fact, a simple inspection to

the morphology of NLogN yields that only for small

values of N , the square (NLogN)2 can only yields

values between 0 and 1, that restores the central scope

of Eq.(1).

Therefore, under a fully scenario of Shannon’s entropy,

one can demand that:

N

QM
= � (3)

with � an positive integer. Thus, the Shannon’s entropy

derived from Weiss’s equation can be written as:

E = Log
[
N �

]
= �LogN. (4)

Subsequently, N acquire the meaning of available

cells. In praxis, this availability would depend entirely

on time. Thus imply to rewrite N → N(t), that

demands to change Eq.(4) in the following form:

E = �LogN(t). (5)

Thus, while P (�, t) acquires the meaning of entropy

or disorder of system, N(t) is now perceived as the

probability that any system has N available cells at

the time t. Under the assumption that N(t) is an

universal function of number of available cells (or

physical states), then N(t) might be described by a

continuous function. This can be translated as follows:

E(�, t) = �Log

J∑
j

CjPj(t). (6)

In this manner the Weiss’s equation have been related

to a phenomenon of entropy by which the number

of cell has now as meaning the available cells at an

instantaneous time t. A more wide analysis of the

entropy interpretation of Weiss’s equation is beyond

the scope of this paper. Instead to see Ref.[7].

2.2. Extension and Modifications of Weiss’s
Equation

Turning back to Eq.(1), one can define M = 1/ω as

the frequency of being in any event either is accepting

objects or does not. Thus Eq.(1) is rewritten as:

P (ω) =
ωNLogN

Q
. (7)

With this, the derivative of P (ω) with respect to ω
turns out to be a constant. Eq.(2) might be derived

from the Logarithm operation in the sense that.

P (ω) =
N

Q
LogNω. (8)
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In realistic applications, it should be noted that the fact

that cells and objects are are related to elements of an

event or occurrence, it is entirely suitable that all these

components have a random character. Therefore, the

introduction of stochastic is valid and pertinent with

the purpose of the present analysis. In this manner,

consider the scenario that P (ω) and the rate N/Q are

random numbers. Thus one can rewrite Eq.(8) as

P (ω)
Q

N
= R(ω,Q,N) = LogNω. (9)

Taking advantage that R(ω,Q,N) is defined now as a

pure random number

R(ω,Q,N) = λ (10)

then it is plausible to define it as a product in the sense

that R(ω,Q,N) = RA(ω,N)RB(Q) so that

RA(ω,N)RB(Q) = LogNω, (11)

a grouping in both sides one gets that:

RA(ω,N) =
LogNω

RB(Q)
= λ (12)

because RA(ω,N) is random, then λ/RB(ω,N) is

also a random number then

LogNω

RB(Q)
= λ (13)

and a relation for N is derived:

N(ω,Q) = (Exp[λRB(Q)])
1
ω . (14)

A generalization of Eq.(14) is applied in Q the number

of objects, that can now depend on the frequency ω,

thus one can arrive to

N(ω,Q) = (Exp[λRB(Q(ω))])
1
ω , (15)

with λ a pure random number without any compromise

to acquire a physical meaning.

3. Epidemiological Implications

One can take advantage of the implications of

Eq.(15) in an entire scenario of virus infections in

public spaces. In this manner one can focus the previ-

ously presented theory to the concrete case of multiple

infections. For this, one can establish the following

associations and illustrated in Fig.1:

• Q objects → Q infected drops,

• N cells → N people,

• ω→ frequency by which N people experience the

arrival of Q drops,

• λ a random number that encompasses the aleatory

of events.

Figure 1. Sketch that relates the Weiss’s equa-
tion and a toy model of infections through drops
aerosol. This representation do not includes
the distance between cell (people) and objects
(drops). However, under this scenario distance is
tacit.

Eq.(15) is interpreted defined as the probability of

N people that might be under infection when are in

contact with Q drops. With the restitution of time as

independent variable then

N(T,Q) = (Exp[λRB(Q(T ))])
T
. (16)

It should be noted that RB(Q) is a function entirely

dependent on the number of drops. Of course in

pandemic times, infection is translated in terms of

drops expulsion by people that have been infected

previously. Of course, the emission of drops might not

be aleatory but instead it would be periodically, so that

it would be adjusted to a sinusoid function in according

to RB(Q,T ) = −Q0Sin(Q(t)) so that one arrives to:

N(T,Q) = (Exp[−λQ0Sin(Q(T ))])
T
. (17)

with Q0 a constant. This would be depending for

instance on the initial number of drops at an initial

time. In this way Eq.(17) is interpreted as the number

of N people that is receiving an amount Q infected

drops at the time T . This is actually to some extent

a bit contrary to the primary or fundamental Weiss’s

equation that states the probability of unoccupied cell.

While Eq.(17) have been established for all those

people that are receiving Q(T ) drops at the time T .

Nevertheless, one is interested in all those people that

are not receiving any drops, so that it can be established

in a straightforward manner through a view associated

to probabilities: PR + PN = 1 with PR and PN

the probabilities of those are receiving and do not,

respectively.

Certainly, the building of a formalism that involves the

contrary case, it is the ones that might not be subject

to not any infection would demand to incorporate extra
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variables that put apart the risk to be under of scenario

of probability of infection. It actually is perceived

as the necessity to implement physical variables that

break down the action of infection. As it will be seen

below, the scenario by the which a physical distance

among people can be modify the concept of probability

of infection.

3.1. Incorporation of Distance

In indoor and outdoor environments, drop dynamics

that drives the paths and physical routes of infections

is dictated by wind and distances. An important as-

sumption is that gravity is fully negligible and aerody-

namics of expelled drops is dictated by wind velocity.

composition and an accurate information about weight

and geometry of aerosol could be crucial to establish

a robust analysis in very specific models of drop

propagation. Thus, a logic definition of the velocity of

drop when it is emitted by a infected one in open areas,

is dictated by wind velocity. Therefore it is imminently

written as V = D
T so that the distance is then D = V T ,

in turn one has that T = D/V . From Eq.(17) it is valid

to employ the approximations given by

SinQ ≈ 1 +Q (18)

Q(T ) = −T − T 2 (19)

with a defined restriction to SinQ in the sense that a

term of type Q2, Q3 and higher order might to produce

a fully exponential model that would be not adjusted

to a realistic applicability. With Eq.(18) and Eq.(19)

then one can write down the number of drops is given

by:

N(T,Q) =
(
Exp[−λQ0(1− T − T 2)]

)T
. (20)

When the criterion that T is directly proportional to

the distance as written above, then one has that:

N(D,Q0) =

(
Exp

[
−λQ0

{
1− D

V
−

(
D

V

)2
}])D

V

.

(21)

that express the number of infections given an initial

of infected ones proportional to number of drops Q0

at a distance D. It should noted that although Eq.(21)

express its deterministic character, it is actually semi-

random because the presence of constant λ whose

origin might be correlated to physical variables. On

the other side Eq.(21) can also be perceived as a

function of type N(x) = nx(x) in agreement to

Eq.(1) or Weiss’s equation. Actually the inclusion of

physical variables have turned out in a model that

now depends on distance essentially. Indeed, under the

Figure 2. Number of infections caused by a single
2, 4 and 5 infected ones in colors: red, blue and
green, respectively, as function of distance in me-
ters. Curves were done with the package Wolfram
[9].

approximation ex ≈ x it is possible to interpret to

N(D) as the main function of infections as a function

of distance and the initial number of infections namely

n = −λQ0,

N(D) = n

[{
1− D

V
−

(
D

V

)2
}]D

V

. (22)

In Fig.2 up to three different scenarios for N(D) are

depicted. Here, the physical interpretation to n: the rate

of infections over total people (assumed to be healthy).

It was taken a wind velocity of order of V = m/s
outdoor. The color red indicates that 2 infected ones

can infect a single people in a distance of 1.25m. In

blue color, 3 infected one do up to 4 healthy ones at

1.5m. Critically, in green color, 5 infected ones can do

at 2.25m. It was assumed that wind direction takes the

path that joins spatially the position of infected and

healthy ones. In Fig.3, the probability of infection

for wind velocities as shown there, for V =1m/s, 3m/s,

5m/s and 7m/s of a single infected one can transmit the

virus to 4 people. For instance the curve corresponding

to 1m/s exhibit that infections can be done with a high

probability in a radius of 0.5m. The curve in which

wind acquires a velocity of 3m/s demonstrates that

for this case, infections is possible in a radius of 3m.

Subsequent filled curves for wind velocities of order of

5m/s and 7m/s demonstrate that wind is a crucial factor

for multiple infections as seen in the last case where

infections with a probability of 50% for a distance of

6m can be done. It is important to note that although

current schemes of prevention have been established

at various countries such as the one of being 1 up to
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Figure 3. The probability of infections for 4 differ-
ent values of wind. Theory of Weiss, exhibits the
prediction that infections can be done up to 5m
away from the carrier. Curves were done with the
package Wolfram [9].

2 meters of distance between two individuals, it might

not be safe in outdoor areas that are strongly affected

by wind. Thus, for wind velocities of 7m/s a 20% of

probability is predicted. Clearly, these estimations have

been done with a single infected one. Once the number

of infected increases, it would yield high probabilities.

It should be remarked that in all paper, it was assumed

that a single drop or object from a bunching of them

expelled by a infected one is the one that impacts and

stays in mouth or eyes of the healthy ones, also
called the cells.

4. Conclusion

In this paper, it was developed a theory based on

the Weiss’s formulation that states the chance of any

object to reach an empty cell. Thus, through derivations

of logarithm expressions, it was formulated a model

that has as central objective the calculation of the

number of infections as well as the probability of

infection as function of distance. It was assumed that

in outdoor areas, drops can move on in according to

wind velocities since virus can stay in air [10] and

[11]. Thus, various predictions of infections have been

given establishing a fine relation between the chance

to be infected because wind velocities without care the

distance between the infected and healthy one. Thus,

special attention was paid on the distances that would

reflect the more relevant parameter outdoor. Although

these results are preliminary, future developments, will

assume a fully physical scheme that involves the effect

of temperature on a concrete virus.
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